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Abstract
Spectral approaches for partitioning netlists that use

the eigenvectors of a matrix derived from a weighted
graph model of the netlist(hypergraph) have been
attracting considerable atttention. There are several
known ways in which a weighted graph could be derived
from the netlist. However, the effectiveness of these
alternate net models for netlist partitioning has remained
unexplored. In this paper we first evaluate the relative
performance of these approaches and establish that the
quality of the partition is sensitive to the choice of the
model. We also propose and investigate a number of new
approaches for deriving a weighted graph model for a
netlist.We show through test reslults on benchmark
partitioning problems that one of the new models proposed
here, performs consistently better than all the other
models.

1.0 INTRODUCTION :

The problem of partitioning the modules of a netlist is
encountered in many situations. Some examples are, laying
out circuits on chips and printed circuit boards [1-3],
program segmentation [4,5], etc. In these cases the netlist
can be represented by a hypergraph - a generalized graph.
In such a hypergraph each module is'represented as a node
and each net is represented as a generalized edge which
may connect more than two modules. In this paper we
consider a netlist as a hypergraph H containing n nodes
(modules),V= { 1,2,3, n} ,and IEI generalized edges
(nets). The general problem considered here is of
partitioning these n nodes into k disjoint sets V] ,V2 ,V3

.....Vk such that the number of nets connecting these k
blocks is minimized. An additional requirement is that the
sizes of the partitions must be nearly equal. We only
consider the case where k=2 .

The netlist partitioning problem can be considered as a
generalized version of the well known graph partitioning

problem. Hence, several graph partitioning algorithms
have been used with or without modifications for solving
this problem. The graph partitioning problem is known to
be NP-complete and several heuristic algorithms have been
proposed in past [6-8]. These methods start with an initial
partition and seek to iteratively improve the partition by
interchanging modules between partitions.lt is well known
that the quality of the final partition depends on the initial
partition and in all these schemes the initial partition is
randomly generated. These methods can be readily used for
netlist partitioning. In view of their simplicity and
reasonably acceptable performance these methods are
popular and are widely used for netlist partitioning..

Spectral methods are a new class of methods which are
being widely investigated in the recent past for solving this
problem. Spectral methods were first proposed for
partitioning graphs[ 9-11]. In view of their promise efforts
are being made to modify and extend them to netlist
partitioning [12-19]. For applying these methods the
hypergraph is first approximated as a weighted graph.The
weights of the edges are used to form a matrix which
captures the netlist connectivity in some
sense.Eigenvectors of this matrix form the basis for
determining the partitions. Some of the spectral methods
[12-14] require k or more eigenvectors and significant
additional computation for partitioning the netlist into k
blocks. This is a major disadvantage of these methods as
the evaluation of a number of eigenvectors of the large
matrix derived from the netlist involves a large amount of
computation.

From this point of view spectral methods similar to the
one first proposed in [11], and later adopted in [15,16].are
more attractive as they require the evaluation of only one
eigenvector. This paper aims to investigate this type of
spectral methods further.The first question that we attempt
to answer here is whether the quality of partitions is
sensitive to the method of obtaining the graph
representation of the netlist. We believe that this question
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is important because several methods of representing a net
have been proposed in literature in different contexts.
However, only one such model ( a clique model) has been
used [16] to obtain the spectral partitions using a single
eigenvector. We first study the effectiveness of a number of
other clique models that have been proposed in the
literature [12,15-19] for getting a graph representation for
the netlist for spectral partitioning. The study here
comparing the effectiveness of the clique of models
proposed in [12.15-19] shows that the quality of the
partitions depends on the choice of the net model. Hence,
we propose a number of alternate approaches for
representing the netlist as a graph and compare the quality
of the spectral partition obtained by the new approaches. In
particular, we propose an alternate clique model and two
different star models to represent a net of the netlist.We
believe we are the first to explore star models for net
representation in this contextbeen . We show that the
quality of the partitions obtained using one of the new
models proposed here is consistently superior to those
obtained by using all the other approaches.

2.0 THE PARTITIONING APPROACH :

The proposed spectral partitioning schemes consist of
the following main steps.
1.Deriving a matrix form a graph model of the netlist.
2.Computing the second eigenvector of the above matrix.
S.Constructing the partition using the eigenvector and
some additional heuristics.

2.1 Netlist Matrix Model:

A netlist consists of a number of modules and nets.In
order to derive a graph model each module is considered
as a node.A net cannot be readily be represented as an edge
as it could connect more than two modules and several
alternatives are possible for representing a net connecting
'p' modules as a p node graph with 't' weighted edges
between these nodes.the Using any of these alternative
approaches (described in Section 3) a netlist containing n
nodes and IEI nets can be represented as a graph with n
nodes and 1 weighted edges where 1=£ t , , V je IEI . Using
this graph we define the n x n matrix model D where

By = -(Sum of the weights of the edges between nodes
iandj) i*j (1)

DH= - I D(j , j = 1,2, n and j * i (2)

22 Computing the Eigenvector:

It is known that the matrix defined in (1) and (2) is a
positive semidefinite symmetric matrix. Its smallest
eigenvalue is zero. As the matrix is sparse the eigenvector
corresponding to the second smallest eigenvalue can be

calculated very efficiently using the Lanzcos method
[10,15]. It is well known that this computation is not
excessive and the effort involved is a function of the
sparsity of the matrix D.

2.3 Constructing the Partition :

We consider four different heuristics for determining
the partitions U and W from V using the second
eigenvector x of D. Three of these are proposed in [16] and
the fourth one is proposed here. The heuristics chosen
from [16] are the sign (SGN), ratiocut (RCUT) and the
median (MED) heuristics. The new heuristic being
proposed here is a modification of the median (MODMED)
heuristic.

2.3.1Sign (SGN). Partiton the modules based on sign of
components of the eigenvector x.i.e. U ={ module i:Xj > 0 }
W = { module i:Xj<0}.

2.3.2 Ratiocut (RCUT) . Sort x to give a linear ordering
of the modules and determine the splitting index r that
yields the best ratiocut. This is done as follows. The n
components of x of the eigenvector are sorted yielding an
ordering V=Vi ,V2 ,V3, ,Vn of the modules.The splitting
index r, 1< r < n-1 is then found which gives the best
ratiocut cost when modules with index wazzu greater r
than are placed in U and the rest are placed in W.The
ratiocut cost is defined as

z =e ( U,W ) / (IUIIWI) (3)
where e ( U,W ) is the number of nets between the
partitions.

2.3.3 Median (MEDIAN) . Find the median xm of x.
Partiton the modules around the median xm value. The two
halves constitute U, and W. i.e., U = { module i : Xi> xm

} and W = { module i : Xj< xm }.
2.3.4 Modified Median (MODMED) . Sort x and
obtain a linear ordering V=Vi ,V2 ,V3, ,Vn of nodes and
determine the number of nets cut by varying the splitting
index i between 0.4n < i < 0.6n and find the value of i
that results in the minimum number of nets cut.The
motivation behind this new heuristic is that there is no
need to keep the partition sizes strictly equal, if it is
possible to achieve an improved partition. Hence, this
heuristic attempts to minimize the number of nets cut by
seeking natural partitions around the median by permitting
a certain amount of inequality in the partition sizes.We
have chosen a range of ± 10 % of n around the median.
However, there is nothing special about this value and it
could be modified acceding to the needs.
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3.0 GRAPH MODELS FOR NETS

The first step of the proposed partitioning approach
requires that each net is represented as a weighted graph.
Considering a net that connects p modules we need a p
node graph with weighted edges between them. The
existing models represent the net connecting p modules
as a p-node clique. We discuss various clique models as
also some new star models for representing the nets.

3.1 CLIQUE Models

Several authors [12,17-19] have proposed clique
models for representing a net connecting p nodes as a p
node clique. These models have been proposed in different
contexts. A clique connecting p nodes consists of p(p-l)/2
edges.The models differ in the way weights are assigned to
each of the edges of the clique. Various clique models that
we have considered are summarized in Fig 1. Of thsese
only the CLIQ 1 (the standard clique model) and has
used[16] for spectral partitioning in a way similar to the
approach we are discussing here.

3.2 STAR Models

A major drawback of using a clique model for
representing a net is that it reduces the sparsity of D. This
in turn increases the computational effort while calculating
the eigenvector. The net is actually a ' tree ' type
structure and one can conjecture that a model that captures
this type of connectivity could help in obtaining better
partitions. In addition, improved sparsity of D would
contribute to the reduction in computational effort. There
are several ways in which p nodes can be connected using
(p-1) edges in the form of a tree. In order to have a
consistent strategy we use the functionality of the net to
arrive at a unique tree structure . A net connecting p
modules essentially carries a signal from one module
(source) to the remaining (p-1) modules (destinations).
This functionality can be represented as a star graph
having p nodes and (p-1) edges ; each of the edge
connecting the source with one of the (p-1) destinations.
We consider two variants of this model. In the first model
which we refer to as the STAR model, all the (p-1) edges
are assigned a weight of 1. The second model is referred to
as the Weighted Star (WTSTAR) model and in this case
the edges are assigned a weight of l/(p-l),

4.0 NUMERICAL RESULTS

The performance of the various models considered
here is compared by obtaining partitions for a number of
benchmark examples. First we compare the performance of

the clique models. In all these cases we use the MODMED
heuristic for finding the two partitions based on the second
eigenvector, test results are summarized in Table 1, where
the number of nets cut is given for a number of cases by the
five clique models.

From Table 1 it is clear that the quality of partitions is
sensitive to the choice of the model. Among the models
considered the partitions obtained using the CLIQ 1 and
CLIQ 4 models are consistently superior to those obtained
by the others. It is interesting to note that the CLIQ 2
model [18] which assigns the edge weight such that the
weight of any cut in the clique underestimates any cut in
the generalized edge, performs poorly as compared with
the standard clique model CLIQ1 even though it is rather
arbitrary. It is also noteworthy that the new clique model
proposed here (CLIQ 3), even though very simple, does not
exhibit any significant improvement. The CLIQ 5 model
has been prefered over the CLIQ 1 model in [12,13] .
However, with the present approach, the performance of
the CLIQ 5 model is extremely poor. Based on the results
in Table 1 we found it difficult to assess the relative
capability of CLIQ 1 and CLIQ 4 models. Some more
examples i.e. S298,DECOD,COMP,COUNT were
considered. For these circuits the number of nets cut by the
CLIQ 1 model was 7, 18, 3, 4 where as that by CLIQ 4
was 74, 19, 47, 35 respectively. Based on this we can infer
that the CLIQ 1 model appears to be the best among all the
clique models considered here. In view of this, in the
remaining part of the paper when we refer to clique
models, we refer to only CLIQ 1 model- as we consider it
as the best among this class of methods.

The effectiveness of the new star models for
partitioning netlists has also been assessed by finding
partitions of a number of examples. We have compared the
quality of the partitions obtained by the new models with
those obtained by the best clique model ( CLIQ 1). The
results are summarized in Tables 2,3 and 4 corresponding
to the STAR, WTSTAR and CLIQ models respectively. In
these tables n 1 and n2 indicate the partition sizes and NC
the number of nets cut. While using each of this models the
final partitions are obtained by all the four different
heuristics discussed earlier ; SON, RCUT, MEDIAN and
MODMED.

Considering the partitions obtained by the SGN based
heuristics in Tables 2,3,and 4, we see that this heuristic
does not succeed in keeping the partition sizes nearly
equal. This behavior is observed with all the three models
CLIQ, STAR and WTSTAR. In cases where the partitions
are reasonably balanced the quality of the partitions is
inferior to that obtained by the MODMED heuristic. In
situations where the nets cut are small as compared to the
MODMED heuristic, the partitions are highly imbalanced.

The performance of the RCUT heuristic is also
similar to the SGN heuristic across all three models. As a
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matter of fact this is counter intuitive, since the ratio-cut
heuristic is evolved with an explicit purpose of
incorporating the size balance feature into the algorithm.
However, it is very clear from the results in Tables 2, 3
and 4 that the ratio-cut heuristic cannot generate
reasonably balanced good partitions. Even with this
heuristic when the number of nets cut is small the sizes are
not balanced and when the sizes are nearly balancedKL ,
the partitions obtained by the MODMED heuristic are
invariably better.

The partitions obtained by the MEDIAN heuristic are
generally better than the RCUT and SON heuristics. These
partitions are obviously the best from the point of view of
the equality of sizes. The only limitation of this approach is
that since the partition sizes are implicitly fixed, and if
there are good partitions which are almost balanced but not
exactly equal in size, this heuristic fails to recognize them.
The new heuristic MODMED is intended to overcome this
problem and it succeeds in achieving it as it is clear from
Tables 2, 3 and 4.

Hence, it is clear that for all the three models the
performance of the MODMED heuristic is clearly superior
to the other heuristics and we limit our further comparison
of the methods to only this heuristic. In order to facilitate
the comparison of these three models, we summarize their
performance in Table 5. For all the examples we have also
obtained the partitions using the Kernighan and Lin
(KL)algorithm [ 7] also. The number of nets cut given in
Table 5 for the algorithm is the average of ten trials. From
Table 5 it is clear that the partitions obtained by using the
WTSTAR net model and MODMED heuristic is superior
to those obtained by the other models. The only exception
being the circuit EXAMPLE2, for which the STAR and
CLIQ models give a slightly better partitions. However,
comparing the number of nets cut in each case we see that
the performance of the WTSTAR model is almost as good
as the other models in this case also.

In order to assess the quality of the spectral partitions
obtained by the various models , we have tried to determine
whether the partitions could be improved further. We used
the partitions obtained by the various models as the initial
partition for the KL algorithm and recorded the
improvement in the partitions, in each case. We have used
only the MED heuristic for this experiment as only with
this heuristic same size partitions are obtained in all the

NAME
CLIQ 1
CLIQ 2
CLIQ 3
CLIQ 4
CLIQ 5

PROPOSED BY
Lengaur [17]

Hadley et.al!8]
present authors

Frankle et. al[19]
Alpertand Yao[12]

EDGE WEIGHTS

1/(P-Di/d-(p/2)j*r(p/2)i)
1

(2/p)M

(l-2/2p)*4/(P*(P-l))

cases. These results are given in Table 6. It can be seen
that KL algorithm improves the partitions obtained by the
STAR and CLIQ models to a considerable extent in all
cases where as the improvement observed with WTSTAR
model is very marginal. Even then, the final partitions
obtained by the WTSTAR model and KL algorithm
together are superior to the others in all the cases. This
also shows that the quality of the partitions obtained by
WTSTAR model are intrinsically very good.

5.0 CONCLUSION

In this paper we have considered the problem of
partitioning a netlist using only one eigenvector of a matrix
derived from the weighted graph model of the netlist. We
have established that the quality of the partitions is
dependent on the method used to obtain the weighted
graph representation of the netlist. This has been done by
considering a number of approaches that have been
proposed by earlier works for generating the weighted
graph of a netlist and using this matrix to obtain the
partitions by spectral methods. In our effort to investigate
whether better partitions can be obtained using alternate
models of representing the netlist by a weighted graph, we
propose three new models We have also shown that one of
the new approaches (WTSTAR model for net
representation) succeeds in providing partitions that are
comparable to or better than the partitions generated by all
the other approaches. The fact that the partitions obtained
using the WTSTAR model with MODMED heuristic
could not be improved to any significant extent in any of
the test cases by the KL algorithm is also an indicator of
the very good quality of the partitions produced by this
approach.

Even though no effort has been made here to quantify
the computational advantage of this approach it is easy to
see that one can expect a significant saving in
computational effort while computing the eigenvector
using the WTSTAR model instead of any of the CLIQ
models in view of the increased sparsity of the matrix D.
Our proposed approach can be readily extend to partition
the netlists into more than two partitions and even in this
case the new approach performs better than the other
approaches. This aspect, however, is discussed elsewhere.

Fig 1. Summary of CLIQUE models.
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CIRCUIT

MUX
LDD

DECOD
FRG1

UNREG

CLIQ 1
nl n2 NC

53
77
28
92
87

59
54
18
47
78

18
13
18
15
42

CLIQ 2
nl n2 NC

57
65
19
59
63

55
66
27
80
102

24
23
18
24
50

CLIQ 3
nl n2 NC
57
66
19
56
57

55
65
27
83
108

24
23
19
23
42

CLIQ4
nl n2 NC

67
66
18
56
72

45
65
28
83
93

6
22
18
20
7

CLIQ5
nl n2 NC

45
52
18
65
69

67
79
28
74
96

37
48
18
41
54

nl ,n2 - Sizes of the partitions, NC-Nets cut. Table 1. Performance of CLIQUE models (MODMED heuristic).

CIRCUIT

MUX
LDD

PCLER8
CHT
FRG1

UNREG
EXAMPLE2

ALU2
X4

DECOD
S298

COMP
COUNT

B9
CC

Number of Nodes

112
131
147
315
139
165
517
376
608
46
142
211
195
186
100

SGN
nl n2 NC

29
66
88
115
109
139
275
75
364
6
58
109
99
136
89

83
65
59
200
30
26
242
301
244
40
84
102
96
50
11

10
15
11
2
1
6
19
47
14
2
14
4
5

54
3

RCUT
nl n2 NC

4
59
104
116
109
131
81
34

361
8
9
49
100

1
95

108
72
43
199
30
34

436
342
247
38
133
162
95
185
5

1
14
8
2
1
6
3
11
14
2
2
2
4
1
1

MEDIAN
nl n2 NC

56
65
73
157
69
82
257
188
304
23
71
105
97
93
50

56
66
74
158
70
83

258
188
304
23
71
106
98
93
50

24
22
15
28
30
50
24
87
73
22
12
4
5
92
17

MODMED
nl n2 NC

44
58
87
130
82
87
309
122
361
18
69
110
100
110
41

68
73
60
185
57
78
208
254
247
28
73
101
95
76

20
14
10
9
22
42
7
71
14
18
9
3
4
69
14

n 1 ,n2- Sizes of the two partitions, NC-netscut. Table 2. Partitions obtained using STAR model.

CIRCUIT

MUX
LDD

PCLER8
CHT
FRG1

UNREG
EXAMPLE2

ALU2
X4

DECOD
S298

COMP
COUNT

B9
CC

Number of Nodes

112
131
147
315
139
165
517
376
608
46
142
211
195
186
100

SGN
nl n2 NC

85
65
75
199
109
95
211
211
29
38
52
107
99
143
8

27
66
72
116
30
73
306
165
579
8
90
104
%
43
92

6
13
5
2
1
6
10
62

1
2
11
4
5
3
1

RCUT
nl n2 NC

90
49
74
199
109
82
176
30
29
38
70
49
100
156
8

22
82
73
116
30
83

341
346
579
8
72
162
95
31
92

4
11 _
4
2
1
6
4
11
1
2
6
2
4
1
1

MEDIAN
nl n2 NC

56
65
73
157
69
82
257
188
304
23
71
105
97
93
50

56
66
74
158
70
83
258
188
304
23
71
106
98
93
50

14
13
4
23
27
7
26
56
16
9
7
4
15
17
12

MODMED
nl n2 NC

53
64
74
185
90
82
206
223
280
22
70
110
100
110
52

59
67
73
130
49
83
311
153
328
24
72
101
95
76
48

14
13
4
7
15
6
10
53
10
7
6
3
4
11
9

n 1 .n2- Sizes of the two partitions, NC-nelscut. Table 3. Partitions obtained using WTSTAR model.

CIRCUIT

MUX
LDD

PCLER8
CHT
FRG1

UNREG
EXAMPLE2

ALU2
X4

DECOD
S298

COMP
COUNT

B9
CC

Number of Nodes

112
131
147
315
139
165
517
376
608
46
142
211
195
186
100

SGN
nl n2 NC

84
74
90
199
109
151
239
299
255
8

53
103
80
31
89

18
57
57
116
30
14

278
77
353
38
89
108
115
155
11

8
13
10
2
I
6

27
49
19
2
18
4
5
2
3

RCUT
nl n2 NC

108
78
88
199
109
160
81
341
241
8
22
162
88
30
95

4
53
59
116
30
5

436
35
367
38
120
49
107
156
5

1
12
10
2
1
2
3
11
13
2
3
2
4
1
1

MEDIAN
nl n2 NC

56
65
73
157
69
82
257
188
304
23
71
105
97
93
50

56
66
74
158
70
83

258
188
304
23
71
106
98
93
50

22
21
14
27
33
70
23
80
68
22
7
4
31
30
20

MODMED
nl 1)2 NC

53
74
88
184
92
87
309
255
243
28
68
110
88
74
56

59
57
59
131
47
78
208
121
365
IS
74
101
107
112
44

18
13
10
11
15
42
6
72
14
18
7
3
4
23
13

n 1 .nl- Sizes of the two partitions. NC-nets cut. Table. 4 Partitions obtained using CLIQ 1 model.
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CIRCUIT

MUX
LDD

PCLER8
CHT
FRG1

UNREG
EXAMPL2

ALU2
X4

DECOD
S298

COMP
COUNT

B9
cc

Number of nets cut
KL STAR CLIQ WTSTAR
21
24
14

15
•)->

23
52
71
66
12
20
10
16
16
15

20
14
10
9
22
42
7

71
14
18
9
3
4

69
14

18
13
10
I I
15
42
6
72
14
18
7
3
4
23
13

14
13
4
7
15
6
10
53
10
7
6
3
4

I I

9

Percentage Improvement over
KL STAR CLIQ
50

_ 85
250
114
43
283
220
34
560
70
233
233
300
45
67

43
8

150
29
43
600
-30
34
40
154
50
0
0

528
56

29
0

150
57
0

600
-40
36
40
154
17
0
0

109
44

Table. 5 Comparison of WSTAR model with other models (MODMED heuristic).

CIRCUIT

MUX
LDD
CHT
FRG1

UNREG
EXAMPLE2

ALU2
X4

DECOD
S298

COMP
COUNT

B9
CC

STAR
INITIAL FINAL

24
22
28
30
50
24
87
73
22
12
4
5

92
17

14
22
22
22
29
20
69
79
21
12
4
3
19
14

CLIQ
INITIAL FINAL

22
21
27
33
70
23
80
68
22
7
4
3
30
20

12
21
23
26
33
20
79
68
9
6
4
5
15
14

WTSTAR
INITIAL FINAL

14
13
23
27
7
26
56
16
9
7
4
5
17
12

8
13
19
24
5
19
56
15
9
6
4
3

L 15

12
Table 6. Improvement of Spectral partitions by KL algonthm (nets cut).
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