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a b s t r a c t

A conforming finite element method is proposed and analyzed for numerical approx-
imation of the solution of a parabolic variational inequality of the obstacle problem.
The model problem, which is originally proposed using a general obstacle, is reframed
as a model problem with zero obstacle but with non-homogeneous Dirichlet boundary
conditions. Subsequently the discrete problem is reframed and the error analysis proving
the convergence of the method is performed. The analysis requires a positive preserving
interpolation with non-homogeneous Dirichlet boundary condition and a post-processed
solution that satisfies the boundary conditions sharply. The results in the article extend
the results of (Johnson, SINUM, 1976) for a zero obstacle function to a more general
obstacle function.
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1. Introduction

The numerical analysis of parabolic variational inequalities has been an active field of research in the past few decades.
The parabolic obstacle problem is one of the well known typical models for studying the parabolic variational inequalities.
The parabolic obstacle problem appears naturally in the American option problem, Stefan problem and in electrochemical
machining problem. The numerical analysis of this class of problems has created interest as they naturally provide
challenges both in theory and computation. Some studies dealing with error analysis for finite element approximations
of parabolic variational inequalities have successfully been done in the literature [1–8]. In [2], the convergence of a
truncation method for the numerical solution of the parabolic variational inequality has been obtained with obstacle
ψ ∈ C2(Ω̄) and ψ ≤ 0 on the boundary ∂Ω , under the assumptions f , ft ∈ C([0, T ]; Ω̄), where f is the source term. An
L∞-convergence of an approximation for the parabolic variational inequality with the zero obstacle has been established
under the regularity condition utt ∈ L2([0, T ]; L2(Ω)) and with a certain assumption on the angle of the triangle T in
triangulation Th in [3]. An L2-error estimate for a fully-discrete approximation of the solution of parabolic variational
inequality with the zero obstacle has been studied in [4]. In that article the fully-discrete scheme is defined by continuous
linear finite element for space approximation and general θ-scheme (i.e. a general finite difference discretization in time
including the backward Euler, forward Euler and Crank–Nicolson scheme) for time discretization. An a posteriori error
analysis for parabolic variational inequalities (motivated by American option for baskets) has been done in [5]. In that
article the authors gave an upper bound for the error in L2(0, T ;H1(Ω)) of fully discrete method (i.e. piecewise linear finite
elements in space and the backward Euler method in time). In [6] the authors studied a finite element approximation
of a parabolic obstacle problem with nonsmooth initial data for one dimension of spatial variable. An error estimate for
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parabolic variational inequalities in the uniform norm has been derived in [7]. In that article, the authors coupled the finite
element spatial approximation with a semi-implicit scheme to give L∞-asymptotic behavior in the uniform norm using
discrete maximum principles. In [8], the authors dealt with the design and analysis of a finite element approximation of
the parabolic fractional obstacle problem in bounded domains. This analysis relies on the construction and approximation
properties of a positivity preserving interpolant. They discretized the truncation with a backward Euler scheme in time,
and use first-degree tensor product finite elements for space. Some error estimations dealing with parabolic variational
inequality arising from American option problem, Stefan problem, fluid problem, etc. have been studied in [9–15]. For
an example, in [9] the authors established an error estimate for finite element approximations of American option prices
under admissible regularity. In [13] the authors derived a priori error estimate for Stefan problem. For the theory of
variational inequalities and their corresponding numerical analysis, we refer to the books [16–23]. Moreover, some related
numerical analysis for elliptic, parabolic variational inequalities, PDEs and their solvers may be found in [24–26]. For an
example, in [26] the authors derived a posteriori error estimate for implicit backward Euler approximation of parabolic
PDEs in Hilbert space.

In this article, we study the convergence analysis of a finite element method for parabolic obstacle problem with
general obstacle, i.e., with obstacle ψ ∈ H2(Ω) and ψ |∂Ω≤ 0 on boundary ∂Ω , whereΩ ⊂ R2. Here, actually we generalize
the analysis in [1]. More explicitly, the results in the article can be described as follows since the generalization of the
analysis in [1] to the model problem (2.1)–(2.2) is not straight forward:

• In [1], the model problem is with zero obstacle function. Even though, the analysis for that case was quite difficult,
the generalization to nonzero obstacle requires some more attention. For example, let K̃h be the discrete version of
K̃ defined by interpolating the obstacle at the mesh points. Then the interpolation defined in [1] does not preserve
K̃h ⊂ K̃.

• Secondly since ∂u/∂t is not a continuous function, where u is the exact solution, we cannot use the Lagrange
interpolation. Because the error analysis requires the time derivative and interpolation commute. In [1], Johnson
used a different approach for defining the interpolation that is valid for H1(Ω) functions and at the same time it
preserves K̃h ⊂ K̃ (when ψ is identically zero) and further the interpolation of u therein is an element of K̃h when
the obstacle is a zero function.

• In this article, we have non-zero obstacle, therefore the additional difficulties arise due to the nonconforming
approximation K̃h ̸⊂ K̃. We rewrite the original problem into a problem with zero obstacle by translation and by
introducing nonhomogeneous Dirichlet boundary condition. Then we can use the positivity preserving interpolation
(with appropriate modifications at the boundary) in [27,28].

• In [1], the analysis uses the discrete solution to be in K. But since the nonhomogeneous Dirichlet boundary condition
are approximated on the boundary, this cannot hold. We require to define a post-processed solution satisfying the
Dirichlet boundary conditions sharply from the discrete solution.

The rest of the article is organized as follows. In Section 2, we first introduce some notations and give the continuous
setting of the obstacle problem with general obstacle. Then we convert the general obstacle problem into zero obstacle
problem with non homogeneous boundary condition by translation. We recall some required known regularity results
from [29]. In Section 3, we define the discrete problem and define an interpolation operator which satisfies a stability
property in L2 and H1. We then derive corresponding interpolation error estimates. Further, we construct a post-processed
discrete solution, and derive some error estimate for the discrete solution and post-processed solution. In Section 4, we
discuss a priori error estimates with these ingredients and derive order of convergence h + (∆t)

3
4 (log 1

∆t )
1
4 . Finally in

Section 5, we present numerical experiments to illustrate the theoretical results.

2. Model problem

Let Ω ⊂ R2 be a convex polygonal domain with boundary ∂Ω . We postpone the 3 dimensional case to future research
as there will be some technical difficulties in the analysis, although the ideas could be similar. For a nonnegative integer
m ≥ 0 and 1 ≤ p ≤ ∞, let Wm,p(Ω) be the Sobolev space equipped with the norm

∥v∥Wm,p(Ω) :=

⎛⎝∑
|α|≤m

∫
Ω

|Dαv|p dx

⎞⎠1/p

,

with the standard modification for p = ∞. Here Dα denotes the distribution derivative of order |α|. We denote the space
by Hm(Ω) when p = 2. The space H1

0 (Ω) denotes the subspace of H1(Ω) with zero trace (vanishing on the boundary in
the trace sense).

Let J = [0, T] (T > 0) be the time interval that the problem is defined. If X is a normed linear space equipped with
the norm ∥ · ∥X , then define the spaces Lp(J ; X) for 1 ≤ p ≤ ∞ as the set of all functions w : J → X such that

∥w∥Lp(J ;X) :=

(∫ T

0
∥w(t)∥p

X dt
)1/p

, 1 ≤ p < ∞,
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and

∥w∥L∞(J ;X) := sup
t∈J

∥w(t)∥X .

Finally let C(J ; X) be the space of all continuous functions w : J → X .
Define a bilinear form a by a(w, v) = (∇w,∇v). Hereafter, we denote the [L2(Ω)]d inner product by (·, ·), where

d = 1, 2.
Let ψ ∈ W 2,∞(Ω) be a given function with ψ |∂Ω≤ 0. Define the closed convex set by

K̃ := {v ∈ H1
0 (Ω) : v ≥ ψ a.e. in Ω}.

The model problem consists of finding u : J → K̃ such that a.e. on J ,(
∂u
∂t
, v − u

)
+ a(u, v − u) ≥ (f , v − u) ∀v ∈ K̃, (2.1)

u(x, 0) = u0(x) x ∈ Ω, (2.2)

where

f ∈ C(J ; L∞(Ω)),
∂ f
∂t

∈ L2(J ; L∞(Ω)),

u0 ∈ W 2,∞(Ω) ∩ K̃.

The model problem (2.1)–(2.2) has a unique solution u and there holds [29]

u ∈ L∞(J ;W 2,p(Ω)), 1 ≤ p < ∞,

∂u
∂t

∈ L2(J ;H1
0 (Ω)) ∩ L∞(J ; L∞(Ω)), (2.3)(

∂+u
∂t

, v − u
)

+ a(u, v − u) ≥ (f , v − u) ∀v ∈ K̃, t ∈ J ,

where ∂+u/∂t denotes the right-hand derivative of u with respect to t . Define the set

K := {v ∈ H1(Ω) : v ≥ 0 a.e. in Ω, v|∂Ω= −ψ}.

We introduce w := u − ψ . Then w satisfies w : J → K and(
∂w

∂t
, v − w

)
+ a(w, v − w) ≥ (f +∆ψ, v − w) ∀v ∈ K, a.e. on J , (2.4)

w(x, 0) = u0(x) − ψ(x) x ∈ Ω. (2.5)

It is immediate to see that the model problem (2.4)–(2.5) has a unique solution w and there holds

w ∈ L∞(J ;W 2,p(Ω)), 1 ≤ p < ∞,

∂w

∂t
∈ L2(J ;H1

0 (Ω)) ∩ L∞(J ; L∞(Ω)), (2.6)(
∂+w

∂t
, v − w

)
+ a(w, v − w) ≥ (f +∆ψ, v − w) ∀v ∈ K, t ∈ J ,

where ∂+w/∂t denotes the right-hand derivative of w with respect to t . Since the solution u of (2.1)–(2.2) satisfies for all
t ∈ J (see [29]) that

∂+u
∂t

= ∆u + f a.e. on Ω+(t),

∂+u
∂t

= max{f +∆ψ, 0} a.e. on Ω0(t),

where Ω+(t) := {x ∈ Ω : u(x, t) > ψ(x)} and Ω0(t) := {x ∈ Ω : u(x, t) = ψ(x)}. We conclude that the solution w of
(2.4)–(2.5) satisfies

∂+w

∂t
= ∆w + f +∆ψ a.e. on Ω+(t), (2.7)

∂+w

∂t
= max{f +∆ψ, 0} a.e. on Ω0(t),

where Ω+(t) := {x ∈ Ω : w(x, t) > 0} and Ω0(t) := {x ∈ Ω : w(x, t) = 0}.



88 T. Gudi and P. Majumder / Journal of Computational and Applied Mathematics 357 (2019) 85–102

3. Discrete problem

Let Th be a regular simplicial triangulation of Ω . Denote the set of all vertices of Th that are in Ω (resp. on ∂Ω) by V i
h

(resp. Vb
h ). Set Vh = V i

h ∪ Vb
h . Similarly, denote the set of all interior edges of Th by E i

h, the set of all boundary edges by Eb
h ,

and define Eh = E i
h ∪ Eb

h . Let hT be the diameter of T , where T is a triangle of Th. Set h := max{hT : T ∈ Th} and |T | := area
of T . The set of three vertices of T is denoted by VT and the length of an edge e ∈ Eh is denoted by he. Here each triangle
T in Th is assumed to be closed. Define T i

h to be the set of all triangles which do not share an edge with boundary ∂Ω . Let
T b
h denote the remaining set of triangles, i.e., the set of all triangles T ∈ Th which have an edge e ∈ Eb

h on its boundary
∂T . For simplicity assume that any T ∈ T b

h shares at most one edge with boundary ∂Ω , otherwise the triangle T has no
interior node.

Define the discrete space

Vh := {vh ∈ C(Ω̄) : vh|T∈ P1(T ) ∀ T ∈ Th},

where Pr (D) is the set of all polynomials of degree at most r and defined on an open set D ⊂ Ω . Define

Kh := {vh ∈ Vh : vh(z) ≥ 0, ∀ z ∈ V i
h; vh(z) = −ψ(z), ∀z ∈ Vb

h}.

For some positive integer N , let 0 = t0 < t1 < t2 < · · · < tN−1 < tN = T be a uniform partition of J = [0, T] with
∆t = T/N , and let Jn = (tn−1, tn]. On a discrete set {v0, v1, v2, . . . , vN} of N + 1 points, define

∂vn =
vn − vn−1

∆t
for n = 1, 2, . . . ,N.

The fully discrete finite element method for (2.4)–(2.5) is defined as to find W n
h ∈ Kh for n ≥ 1 such that(

∂W n
h , vh − W n

h

)
+ a(W n

h , vh − W n
h ) ≥ (f (tn) +∆ψ, vh − W n

h ) ∀vh ∈ Kh, (3.1)

W 0
h = πh(u0 − ψ) ∈ Kh, (3.2)

where πh is an appropriate interpolation operator.
The following assumption is made as in [1]:
If Dn = ∪t∈Jn (Ω

+(t) ∪Ω+(tn)) \ (Ω+(t) ∩Ω+(tn)), then there holds for constant C
N∑

n=1

m(Dn) ≤ C, (3.3)

where m(D) is the Lebesgue measure of D ⊂ R2.
Note: Hereafter, C will denote a positive constant, not necessarily the same at each appearance, which is independent of
the parameters ∆t and h.

3.1. Positive preserving interpolation

In this section we modify slightly the positive preserving interpolation operator introduced in [27], to deal with
nonhomogeneous Dirichlet boundary conditions. Let v ∈ H1(Ω) be such that v|∂Ω= g ∈ C(∂Ω). For any z ∈ V i

h, let
ωz be the patch of the vertex z which is the union of all the triangles sharing z. Define ∆z as the largest disk that can be
inscribed in ωz with center at z. Then, define αz ∈ R by

αz :=

⎧⎪⎨⎪⎩
1

|∆z |

∫
∆z

v(x) dx if z ∈ V i
h,

v(z) if z ∈ Vb
h ,

where |∆z | is the two dimensional Lebesgue measure of the disk ∆z . Then define the interpolation πhv ∈ Vh by

πhv(x) :=

∑
z∈Vh

αzφz(x),

where φz ∈ Vh is the Lagrange basis function associated to the vertex z satisfying

φzi (zj) = δij for 1 ≤ i, j ≤ dim(Vh),

and δij is the Kronecker delta function. Note that if v ∈ K, then πhv ∈ Kh. For any T ∈ Th, define

ST := ∪z∈VTωz .

If all three vertices of T are inside Ω and v ∈ P1(ST ), then it is easy to check that πhv ≡ v on T , see [27]. Further if at
least one vertex is on ∂Ω and v ∈ P1(ST ), we have again πhv ≡ v on T . We prove the stability estimates for πh.
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Lemma 3.1. Let v ∈ H1(Ω) be such that v|∂Ω= g ∈ H3/2(∂Ω). If T ∈ Th with T ∩ ∂Ω = ∅, then

∥πhv∥L2(T ) ≤ C∥v∥L2(ST ), (3.4)

∥∇πhv∥L2(T ) ≤ C∥∇v∥L2(ST ). (3.5)

Further if T ∈ Th with T ∩ ∂Ω ̸= ∅, then

∥πhv∥L2(T ) ≤ C

(
∥v∥L2(ST ) + hT max

z∈VT∩Vb
h

|g(z)|

)
, (3.6)

∥πhv∥L2(T ) ≤ C
(
∥v∥L2(ST ) + hT∥∇v∥L2(ST ) + h3/2

T ∥g ′
∥L2(∂ST∩∂Ω)

)
(3.7)

∥∇πhv∥L2(T ) ≤ C
(
∥∇v∥L2(ST ) + h1/2

T ∥g ′
∥L2(∂ST∩∂Ω)

)
. (3.8)

Proof. We present the proof in several steps.

Proof of (3.4) and (3.6): Note that if z ∈ V i
h, then it is easy to show that

|αz | ≤ Ch−1
T ∥v∥L2(ST ),

and if z ∈ Vb
h , then it is clear that

|αz | = |g(z)|

Since

∥πhv∥
2
L2(T ) ≤ C

∑
z∈VT

|αz |
2
∥φz∥

2
L2(T ) ≤ C

∑
z∈VT

h2
T |αz |

2,

the proof of L2-stability in (3.4) and (3.6) follows.

Proof of (3.5): Since T ∈ Th with T ∩ ∂Ω = ∅, we have that all z ∈ VT are inside of Ω . Then note that for any c ∈ R,
πhc = c on T and

∥∇πhv∥L2(T ) = ∥∇(πhv + c)∥L2(T ) = ∥∇πh(v + c)∥L2(T ) ≤ Ch−1
T ∥πh(v + c)∥L2(T )

≤ Ch−1
T ∥v + c∥L2(ST ),

where we have used (3.4) in the last step. Now choose c as the integral mean of v on ST and use scaling argument to
derive

∥∇πhv∥L2(T ) ≤ C∥∇v∥L2(ST ).

This proves (3.5).

Proof of (3.7): Now suppose that there is some z ∈ VT such that z ∈ Vb
h .

Case (i): Let ∂Ω ∩ ∂T be an edge and denote it by e. Since g ∈ C(e), there is some z0 ∈ e such that

g(z0) =
1
he

∫
e
g(s) ds.

Note that

|g(z0)| = h−1/2
e ∥g∥L2(e) = h−1/2

e ∥v∥L2(e),

and since g ∈ H1(e), we have that g is absolutely continuous on e. Now for any z ∈ e,

|g(z)| ≤ |g(z0)| + h1/2
e ∥g ′

∥L2(e),

where g ′ denotes the tangential derivative of g on e. By the trace inequality

|g(z)| ≤ h−1/2
e ∥v∥L2(e) + h1/2

e ∥g ′
∥L2(e)

≤ C
(
h−1
e ∥v∥L2(T ) + ∥∇v∥L2(T )

)
+ h1/2

e ∥g ′
∥L2(e). (3.9)

Therefore using this in (3.6), we find

∥πhv∥L2(T ) ≤ C
(
∥v∥L2(ST ) + ∥v∥L2(T ) + hT∥∇v∥L2(T ) + h3/2

T ∥g ′
∥L2(e)

)
≤ C

(
∥v∥L2(ST ) + hT∥∇v∥L2(T ) + h3/2

T ∥g ′
∥L2(e)

)
.
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Case (ii): If ∂Ω ∩ ∂T is not an edge, then choose an edge e ∈ Eb
h such that z ∈ e. Let T̃ ∈ Th be a triangle with e ⊂ ∂ T̃ .

Repeating the arguments that are used for proving (3.9), we arrive at

|g(z)| ≤ C
(
h−1
e ∥v∥L2(T̃ ) + ∥∇v∥L2(T̃ )

)
+ h1/2

e ∥g ′
∥L2(e).

Since T̃ ⊂ ST and e ⊂ ∂ST ∩ ∂Ω , we have

|g(z)| ≤ C
(
h−1
e ∥v∥L2(ST ) + ∥∇v∥L2(ST )

)
+ h1/2

e ∥g ′
∥L2(∂ST∩∂Ω).

Substituting the estimate for g(z) in (3.6), we obtain (3.7).

Proof of (3.8): For the estimate on ∇πhv, consider any c ∈ R and

∥∇πhv∥L2(T ) = ∥∇πh(v − c)∥L2(T ) ≤ Ch−1
T ∥πh(v − c)∥L2(T )

≤ Ch−1
T

(
∥v − c∥L2(ST ) + hT∥∇v∥L2(T ) + h3/2

T ∥g ′
∥L2(∂ST∩∂Ω)

)
,

where we have used (3.7) in the last step. Again choosing c as the integral mean of v on ST and using scaling argument,
we find that

∥∇πhv∥L2(T ) ≤ C
(
∥∇v∥L2(ST ) + h1/2

T ∥g ′
∥L2(∂ST∩∂Ω)

)
.

Therefore the proof follows. □

The following approximation properties now follow from the stability and polynomial invariance of πh:

Theorem 3.2. Let v ∈ Hm+1(Ω) (0 ≤ m ≤ 1) be such that v|∂Ω= g ∈ H3/2(∂Ω). If T ∈ Th with T ∩ ∂Ω = ∅, then

∥v − πhv∥L2(T ) ≤ Chm+1
T ∥v∥Hm+1(ST ), (3.10)

∥∇(v − πhv)∥L2(T ) ≤ Chm
T ∥v∥Hm+1(ST ). (3.11)

Further if T ∈ Th with T ∩ ∂Ω ̸= ∅, then

∥v − πhv∥L2(T ) ≤ C
(
hT∥v∥H1(ST ) + h3/2

T ∥g ′
∥L2(∂ST∩∂Ω)

)
if v ∈ H1(T ), (3.12)

∥v − πhv∥L2(T ) ≤ Ch2
T∥v∥H2(ST ) if v ∈ H2(T ), (3.13)

∥∇(v − πhv)∥L2(T ) ≤ C
(
∥∇v∥L2(ST ) + h1/2

T ∥g ′
∥L2(∂ST∩∂Ω)

)
if v ∈ H1(T ), (3.14)

∥∇(v − πhv)∥L2(T ) ≤ ChT∥v∥H2(ST ) if v ∈ H2(T ). (3.15)

Proof. In the case if T ∈ Th with T ∩ ∂Ω = ∅, then the estimates are direct consequence of the stability and polynomial
invariance of the interpolation operator πh. Now let T ∈ Th with T∩∂Ω ̸= ∅. Then by using (3.7), we find for any p ∈ P1(T )
that

∥v − πhv∥L2(T ) = ∥v + p − πh(v + p)∥L2(T ) ≤ ∥v + p∥L2(T ) + ∥πh(v + p)∥L2(T )

≤ C
(
∥v + p∥L2(ST ) + hT∥∇(v + p)∥L2(ST ) + h3/2

T ∥(g + p)′∥L2(∂ST∩∂Ω)

)
.

If v ∈ H1(T ), then choose p ∈ P0(T ) as the integral mean of v on ST . If v ∈ H2(T ), then choose p ∈ P1(T ) as the Lagrange
interpolation of v and complete the proof of the L2-norm estimate. Using similar arguments we can derive the estimates
for the derivative. For

∥∇(v − πhv)∥L2(T ) = ∥∇(v + p − πh(v + p))∥L2(T ) ≤ ∥∇(v + p)∥L2(T ) + ∥∇πh(v + p)∥L2(T )

≤ C
(
∥∇(v + p)∥L2(ST ) + h1/2

T ∥(g + p)′∥L2(∂ST∩∂Ω)

)
.

Choosing appropriate p completes the proof. □

3.2. Discrete solution with sharp boundary condition

The numerical method in (3.1)–(3.2) can be treated as a nonconforming scheme with respect to the Dirichlet data since
the discrete problem uses the approximate Dirichlet data −ψh which is not equal to the given data −ψ on the boundary
∂Ω , whereψh is the linear Lagrange interpolation ofψ . Following the details in [30], we construct an intermediate solution
W̃ n

h (which can be treated as a post-processing of W n
h ) with the help of W n

h and ψ as follows. For T ∈ T i
h , define W̃ n

h to
be the same as W n

h on T . For T ∈ T b
h , first define W n

h
∗ on ∂T (the boundary of T ) by

W n
h

∗(x, y) :=

{
−ψ(x, y) if (x, y) ∈ ∂Ω,

W n
h (x, y) if (x, y) ∈ ∂T\∂Ω.

(3.16)
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Fig. 3.1. Heights h1 and h2 .

Then define W̃ n
h to be some H1(T ) extension of W n

h
∗

∈ C(∂T ) to T such that W̃ n
h |∂T= W n

h
∗ and W̃ n

h |T = W n
h |T for all T ∈ T i

h .
By the construction W̃ n

h ∈ H1(Ω) and W n
h − W̃ n

h ≡ 0 on any triangle T ∈ T i
h .

Let T ∈ T b
h and W n

h
∗

∈ C(∂T ) be defined by (3.16). Let e ∈ Eb
h be such that e ⊂ ∂T . Let z = (x, y) be an interior point

of T and ℓ be the line that is orthogonal to e passing through z, as it shown in Fig. 3.1. Let z1 = (x1, y1) and z2 = (x2, y2)
be the points of intersection of ℓ with ∂T . Let h1 is the distance between z and z1; and h2 is distance between z and z2.
Then define W̃ n

h on T by

W̃ n
h (x, y) :=

h2W n
h

∗(x1, y1) + h1W n
h

∗(x2, y2)
h1 + h2

for (x, y) ∈ T ◦, (3.17)

where T ◦ is the interior of T .
Let T ∈ T b

h . Since W n
h |T∈ P1(T ), we note that

W n
h (x, y) =

h2W n
h (x1, y1) + h1W n

h (x2, y2)
h1 + h2

for (x, y) ∈ T ◦,

and

(W̃ n
h − W n

h )(x, y) =

(
h2

h1 + h2

)
(ψh − ψ)(x1, y1).

Since |h2/(h1 + h2)| ≤ 1, the following result is immediate, see [30].

Theorem 3.3. Let T ∈ T b
h and define W̃ n

h by (3.17), a linear extension of W n
h

∗ given by (3.16). Let e ∈ Eb
h be an edge of T

and assume ψ is such that ψ |e∈ H1(e). Then there holds

∥W̃ n
h − W n

h ∥L2(T ) ≤ Ch
1
2
e ∥ψ − ψh∥L2(e),

where C is a positive constant, e ∈ Eb
h an edge of T . Moreover,

∥W̃ n
h − W n

h ∥L2(Ω) ≤ C

⎛⎜⎝∑
e∈Eb

h

he∥ψ − ψh∥
2
L2(e)

⎞⎟⎠
1/2

.

From Theorem 3.3 and [30, Theorem 3.2], we have the following corollary. The corollary establishes the difference
between the numerical solution W n

h of variational inequality (3.1)–(3.2) and post-processing of W n
h in the L2 and the H1

norms. This corollary plays a crucial rule in the subsequent a priori error analysis to obtain optimal order of convergence.

Corollary 3.4. For each W n
h there exists W̃ n

h ∈ K such that

∥W̃ n
h − W n

h ∥L2(Ω) ≤ Ch2 and ∥W̃ n
h − W n

h ∥H1(Ω) ≤ Ch.

4. Error estimate

In this section we estimate the error i.e., the difference between the solution of parabolic variational inequality
(2.4)–(2.5) and its numerical approximation as described in Section 3. We show that this error estimated in a certain
norm, is of order h + (∆t)

3
4
(
log 1

∆t

) 1
4 .
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Theorem 4.1 (Main Theorem). Suppose w is the solution of (2.4)–(2.5) and,

f ∈ C(J ; L∞(Ω)),
∂ f
∂t

∈ L2(J ; L∞(Ω)), w0 ∈ W 2,∞(Ω) ∩ K,

and (3.3) holds. Let Wh be the solution of the corresponding discrete problem (3.1). Then, there exists a constant C independent
of ∆t and h such that

max
n∈{1,...,N}

∥wn
− W n

h ∥L2(Ω) +

(
N∑

n=1

∥wn
− W n

h ∥
2
H1(Ω)∆t

) 1
2

≤ C

[
h + (∆t)

3
4

(
log

1
∆t

) 1
4
]
,

where wn and W n
h is the solution at time tn.

Proof. Let us define η(t) := w(t) − πhw(t) for t ∈ J , en := wn
− W n

h and ẽn := wn
− W̃ n

h for n = 0, . . . ,N . Then,
en − ηn = πhw

n
− W n

h . Now,

(∂en, en) + a(en, en) = (∂en, ηn) + (∂en, en − ηn) + a(en, ηn)
+ a(en, en − ηn)

= (∂en, ηn) + a(en, ηn) + (∂wn, πhw
n
− W n

h )

− (∂W n
h , πhw

n
− W n

h ) + a(wn
− W n

h , πhw
n
− W n

h ). (4.1)

First we put v = W̃ n
h ∈ K and t = tn in the inequality of (2.6) and v = πhw

n
∈ Kh in (3.1), then by adding these two

inequalities, we get

− (∂W n
h , πhw

n
− W n

h ) − a(W n
h , πhw

n
− W n

h ) (4.2)

≤ (f n +∆ψ, ηn) − (f n +∆ψ, W̃ n
h − W n

h )

+

(
∂+w

∂t
(tn), W̃ n

h − wn
)

+ a(wn, W̃ n
h − wn).

By applying inequality (4.2) in Eq. (4.1) it follows that

(∂en, en) + a(en, en) ≤

6∑
j=1

Aj
n, (4.3)

where A1
n = (∂en, ηn)

A2
n = a(en, ηn)

A3
n = (f n +∆ψ, ηn) − a(wn, ηn) + a(wn, W̃ n

h − W n
h )

− (f n +∆ψ, W̃ n
h − W n

h )

A4
n =

(
∂+w

∂t
(tn) − ∂wn,W n

h − wn
)

A5
n =

(
∂+w

∂t
(tn), W̃ n

h − W n
h

)
A6
n = − (∂wn, ηn).

By multiplying (4.3) with ∆t and taking summation on both sides over n = 1, . . . ,N , we get
N∑

n=1

(en − en−1, en) +

N∑
n=1

a(en, en)∆t ≤

N∑
n=1

6∑
j=1

Aj
n∆t =

6∑
j=1

Ej, (4.4)

where Ej =

N∑
n=1

Aj
n∆t, for j = 1, 2, . . . , 6.

Since

2
M∑

n=1

(en − en−1, en) =

M∑
n=1

(en − en−1, en − en−1) +

M∑
n=1

(en − en−1, en−1) +

M∑
n=1

(en − en−1, en)

=

M∑
n=1

∥en − en−1
∥
2
L2(Ω) + ∥eM∥

2
L2(Ω) − ∥e0∥2

L2(Ω) for M = 1, . . . ,N,
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inequality (4.4) yields

max
n∈{1,...,N}

∥en∥2
L2(Ω) + 2

N∑
n=1

a(en, en)∆t ≤ ∥e0∥2
L2(Ω) + 2

6∑
j=1

Ej. (4.5)

We estimate the terms Ei, i = 1, . . . , 6 in the subsequent discussion.

Estimation of E1 :

E1 =

N∑
n=1

(∂en, ηn)∆t =

N∑
n=1

(en, ηn) −

N∑
n=1

(en−1, ηn)

=

N∑
n=1

(en−1, ηn−1) + (eN , ηN ) − (e0, η0) −

N∑
n=1

(en−1, ηn)

= −

N∑
n=1

(en−1, ∂ηn)∆t + (eN , ηN ) − (e0, η0).

By using Hölder’s inequality and Cauchy–Schwarz inequality, we deduce

E1 ≤

N∑
n=1

∥en−1
∥L2(Ω) ∥∂η

n
∥L2(Ω)∆t + ∥eN∥L2(Ω) ∥η

N
∥L2(Ω) + ∥e0∥L2(Ω) ∥η

0
∥L2(Ω)

≤
ϵ

2

N∑
n=1

∥en−1
∥
2
L2(Ω)∆t +

1
2ϵ

N−1∑
n=0

∥∂ηn∥2
L2(Ω)∆t +

ϵ

2
∥eN∥

2
L2(Ω)

+
1
2ϵ

∥ηN∥
2
L2(Ω) +

ϵ

2
∥e0∥2

L2(Ω) +
1
2ϵ

∥η0∥2
L2(Ω). (4.6)

From (2.6) we have wn
∈ H2(Ω), hence from (3.10) and (3.13) of Theorem 3.2, we get

∥ηn∥L2(Ω) ≤ C h2

⎛⎝∑
T∈Th

∥wn
∥
2
H2(ST )

⎞⎠ 1
2

≤ C h2 max
n

∥wn
∥H2(Ω)

≤ C h2
∥w∥L∞(J ;H2(Ω)).

Therefore, maxn ∥ηn∥L2(Ω) ≤ C h2
∥w∥L∞(J ;H2(Ω)). On the other hand

∥∂ηn∥L2(Ω) ≤ (∆t)−
1
2 ∥
∂η

∂t
∥L2(Jn;L2(Ω)).

Since time differentiation commutes with interpolation πh and ∂w
∂t ∈ L2(J ;H1

0 (Ω)), by (3.10) and (3.12) of Theorem 3.2,
we have

∥
∂η(t)
∂t

∥L2(Ω) ≤ C h∥
∂w(t)
∂t

∥H1(Ω).

This implies,

∥
∂η

∂t
∥L2(Jn;L2(Ω)) ≤ C h∥

∂w

∂t
∥L2(Jn;H1(Ω)).

Therefore, ∥∂ηn∥L2(Ω) ≤ C h(∆t)−
1
2 ∥

∂w
∂t ∥L2(Jn;H1(Ω)).

By using above inequalities in (4.6), we get the following.

E1 ≤
T ϵ
2

max
n∈{1,...,N}

∥en−1
∥
2
L2(Ω) + C h2

N∑
n=1

(∆t)−1
∥
∂w

∂t
∥
2
L2(Jn;H1(Ω))∆t +

ϵ

2
∥eN∥

2
L2(Ω)

+ C h4
∥w∥

2
L∞(J ;H2(Ω)) +

ϵ

2
∥e0∥2

L2(Ω)

≤
T ϵ
2

max
n∈{1,...,N}

∥en−1
∥
2
L2(Ω) + C h2

∥
∂w

∂t
∥
2
L2(J ;H1(Ω)) +

ϵ

2
∥eN∥

2
L2(Ω) +

ϵ

2
∥e0∥2

L2(Ω)

+ C h4
∥w∥

2
L∞(J ;H2(Ω)) (by using N =

T
∆t

).
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Estimation of E2 :

E2 =
∑N

n=1 A
2
n∆t . By using Hölder’s inequality and Cauchy–Schwarz inequality, we get

|A2
n|∆t = |a(en, ηn)|∆t ≤

ϵ∆t
2

∥en∥2
H1(Ω) +

1
2ϵ

∥ηn∥2
H1(Ω)∆t.

By using (3.11) and (3.15) of Theorem 3.2,

∥ηn∥2
H1(Ω) ≤ C

∑
T∈Th

h2
T∥w

n
∥
2
H2(ST )

≤ C h2
∥wn

∥
2
H2(Ω)

≤ C h2
∥w∥

2
L∞(J ;H2(Ω)).

From the above inequalities in Estimation of E2 and the fact N =
T
∆t , we have

E2 ≤
Tϵ
2

max
n∈{1,...,N}

∥en∥2
L(Ω) +

ϵ

2

N∑
n=1

a(en, en)∆t + C h2
∥w∥

2
L∞(J ;H2(Ω)).

Estimation of E3 :

E3 =
∑N

n=1 A
3
n∆t , where

A3
n = (f n +∆ψ, ηn) − (f n +∆ψ, W̃ n

h − W n
h ) − a(wn, ηn − (W̃ n

h − W n
h )).

By applying integration by parts in the last term of right hand side, we have

A3
n = (f n +∆ψ, ηn) − (f n +∆ψ, W̃ n

h − W n
h ) +

∫
Ω

∆wn
(
ηn − (W̃ n

h − W n
h )
)
dx,

where we have used the fact that ηn − (W̃ n
h −W n

h ) ∈ H1
0 (Ω). Then by applying Hölder’s inequality and triangle inequality,

we get

|A3
n| ≤

(
∥f n∥L2(Ω) + ∥∆ψ∥L2(Ω) + ∥∆wn

∥L2(Ω)
) (

∥ηn∥L2(Ω) + ∥W̃ n
h − W n

h ∥L2(Ω)

)
.

Thus,

E3 ≤
(
∥f ∥L∞(J ;L2(Ω)) + ∥∆ψ∥L2(Ω) + ∥∆w∥L∞(J ;L2(Ω))

) N∑
n=1

∆t (∥ηn∥L2(Ω)

+ ∥W̃ n
h − W n

h ∥L2(Ω)).

Now by using Theorem 3.2 and Corollary 3.4, we have

E3 ≤ C h2 (
∥f ∥L∞(J ;L2(Ω)) + ∥∆ψ∥L2(Ω) + ∥∆w∥L∞(J ;L2(Ω))

)
(

N∑
n=1

∆t∥wn
∥H2(Ω) +

N∑
n=1

∆t)

≤ C h2(∥f ∥L∞(J ;L2(Ω)) + ∥∆ψ∥L2(Ω) + ∥∆w∥L∞(J ;L2(Ω)))(N∆t∥w∥L∞(J ;L2(Ω)) + N∆t).

From the fact f ∈ C(J ; L∞(Ω)), w ∈ L∞(J ;W 2,p(Ω)), 1 ≤ p < ∞ and ψ ∈ H2(Ω) with N =
T
∆t we deduce

E3 ≤ C h2.

Estimation of E4 :

E4 =
∑N

n=1 A
4
n∆t , where

A4
n =

(
∂wn

−
∂+w

∂t
(tn), wn

− W n
h

)
=

∫
Ω

(
wn

− wn−1

∆t
−
∂+w

∂t
(tn)
)
endx

=
1
∆t

∫
Jn

[∫
Ω

(
∂+w

∂t
(t) −

∂+w

∂t
(tn)
)
endx

]
dt

=
1
∆t

∫
Jn

[∫
Ω+(t)

∆w(t)endx −

∫
Ω+(tn)

∆w(tn)endx
]
dt (by (2.7))

+
1
∆t

∫
Jn

[∫
Ω+(t)

(f (t) +∆ψ)endx −

∫
Ω+(tn)

(f n +∆ψ)endx
]
dt
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+
1
∆t

∫
Jn

∫
Ω0(t)

max{f (x, t) +∆ψ(x), 0}endxdt

−
1
∆t

∫
Jn

∫
Ω0(tn)

max{f (x, tn) +∆ψ(x), 0}endxdt

=
1
∆t

∫
Jn

[∫
Ω+(t)

∆w(t)endx −

∫
Ω+(tn)

∆w(tn)endx
]
dt

+
1
∆t

∫
Jn

[∫
Ω

(
f̃ (x, t) − f̃ (x, tn)

)
endx

]
dt

= B1
n + B2

n, (4.7)

here f̃ (x, t) =

{
f (x, t) +∆ψ(x) if x ∈ Ω+(t),
max{0, f (x, t) +∆ψ(x)} if x ∈ Ω0(t). .

Now, we use the fact ∆w(t) = 0 a.e. on Ω0(t) to estimate B1
n.

B1
n =

1
∆t

∫
Jn

[∫
Ω+(t)

∆w(t)endx −

∫
Ω+(tn)

∆w(tn)endx
]
dt

=
1
∆t

∫
Jn

∫
Ω

[∆w(t) −∆w(tn)] endxdt

=
1
∆t

∫
Jn

∫
Ω

[∆w(t) −∆w(tn)] ẽndxdt

+
1
∆t

∫
Jn

∫
Ω

[∆w(t) −∆w(tn)]
(
en − ẽn

)
dxdt

= I1 + I2.

By using integration by parts over Ω , we have the following.

I1 =
1
∆t

∫
Jn

∫
Ω

[∆w(t) −∆w(tn)]ẽndxdt

=
1
∆t

∫
Jn

∫
Ω

(∇w(tn) − ∇w(t)) · ∇ ẽndxdt

=
1
∆t

∫
Jn

∫ tn

t
a(
∂w

∂t
(s), ẽn)dsdt.

By using Hölder’s inequality, Cauchy–Schwarz inequality and triangle inequality we deduce

|I1| ≤
1
∆t

∫
Jn

∫
Jn

∥ẽn∥H1(Ω) ∥
∂w

∂t
(s)∥H1(Ω)dsdt

≤
1
∆t

∥ẽn∥H1(Ω)

∫
Jn

[(∫
Jn

∥
∂w

∂t
(s)∥2

H1(Ω)

) 1
2

(∆t)
1
2

]
dt

= (∆t)
1
2 ∥ẽn∥H1(Ω) ∥

∂w

∂t
∥L2(Jn;H1(Ω))

≤
ϵ

2
∥ẽn∥2

H1(Ω) +
1
2ϵ
∆t ∥

∂w

∂t
∥
2
L2(Jn;H1(Ω))

≤
ϵ

2
∥en∥2

H1(Ω) +
ϵ

2
∥W n

h − W̃ n
h ∥

2
H1(Ω) +

1
2ϵ
∆t∥

∂w

∂t
∥
2
L2(Jn;H1(Ω)).

On the other hand I2 =
1
∆t

∫
Jn

∫
Ω

(∆w(t) −∆w(tn)) (en − ẽn)dxdt.

By using Hölder’s inequality, triangle inequality and the fact w ∈ L∞(J ;W 2,p(Ω)), 1 ≤ p < ∞ we deduce

|I2| ≤
1
∆t

∫
Jn

(
∥∆w(t)∥L2(Ω) + ∥∆w(tn)∥L2(Ω)

)
∥en − ẽn∥L2(Ω)dt

≤ 2∥∆w∥L∞(J ;L2(Ω)) ∥en − ẽn∥L2(Ω).
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Since en − ẽn = W n
h − W̃ n

h and ∆t =
T
N , we have

N∑
n=1

|B1
n|∆t ≤

N∑
n=1

|I1|∆t +

N∑
n=1

|I2|∆t

≤
ϵ

2

N∑
n=1

∥en∥2
H1(Ω)∆t +

Tϵ
2

max
n∈{1,...,N}

∥W n
h − W̃ n

h ∥
2
H1(Ω)

+
1
2ϵ

(∆t)2∥
∂w

∂t
∥
2
L2(J ;H1(Ω))

+ 2T∥∆w∥L∞(J ;L2(Ω)) max
n∈{1,...,N}

∥W n
h − W̃ n

h ∥L2(Ω). (4.8)

Now we estimate B2
n. The estimation of B2

n is similar to the estimation of q2n in [1, page no. 605]. But for the sake of the
completeness we have given the following details:

B2
n =

1
∆t

∫
Jn

[∫
Ω

(
f̃ (x, t) − f̃ (x, tn)

)
endx

]
dt

=
1
∆t

∫
Jn

[∫
Ω\Dn

(
f̃ (x, t) − f̃ (x, tn)

)
endx

]
dt

+
1
∆t

∫
Jn

[∫
Dn

(
f̃ (x, t) − f̃ (x, tn)

)
endx

]
dt.

Now, we prove the following inequality

|f̃ (x, t) − f̃ (x, tn)| ≤ |f (x, t) − f (x, tn)| for Ω \ Dn, t ∈ Jn. (4.9)

Let us choose a point x ∈ Ω \ Dn.
Case 1. If x ∈ Ω+(tn) then, x ∈ Ω+(t) from the definition of Dn in (3.3). Therefore, |f̃ (x, t) − f̃ (x, tn)| =

|f (x, t) +∆ψ(x) − f (x, tn) −∆ψ(x)|.
Case 2. If x /∈ Ω+(tn) then, x ∈ ∪t∈JnΩ

0(t). Therefore,

|f̃ (x, t) − f̃ (x, tn)| = |max{0, f (x, t) +∆ψ}

− max{0, f (x, tn) +∆ψ}|

≤ |f (x, t) − f (x, tn)|.

Thus, inequality (4.9) follows.
Let B2

n = B2
n1 + B2

n2 , where

B2
n1 =

1
∆t

∫
Jn

[∫
Ω\Dn

(
f̃ (x, t) − f̃ (x, tn)

)
endx

]
dt

B2
n2 =

1
∆t

∫
Jn

[∫
Dn

(
f̃ (x, t) − f̃ (x, tn)

)
endx

]
dt.

Thus by using inequality (4.9), Hölder’s inequality and Cauchy–Schwarz inequality, we get

|B2
n1 | ≤

ϵ

2
∥en∥2

L2(Ω) +
1
2ϵ

(∆t)∥
∂ f
∂t

∥
2
L2(Jn,L2(Ω)).

Therefore, by the fact N =
T
∆t , we have

N∑
n=1

|B2
n1 |∆t ≤

Tϵ
2

max
n∈{1,...,N}

∥en∥2
L2(Ω) +

1
2ϵ

(∆t)2∥
∂ f
∂t

∥
2
L2(J ;L2(Ω)). (4.10)

On the other hand,

|B2
n2 | ≤

1
∆t

∫
Jn

[∫
Dn

|f̃ (x, t) − f̃ (x, tn)| |en|dx
]
dt

≤
2
∆t

(∥f ∥L∞(Jn,L∞(Ω)) + ∥∆ψ∥L∞(Dn))
∫
Jn

∫
Dn

|en|dxdt

= 2(∥f ∥L∞(Jn,L∞(Ω)) + ∥∆ψ∥L∞(Dn))
∫
Dn

|en|dx. (4.11)
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By using Hölder’s inequality, we have

rn ≤ ∥en∥L2(Ω) (m(Dn))
1
2 , where rn :=

∫
Dn

|en|dx. (4.12)

On the other hand, by using Hölder’s inequality with 1
p +

1
q = 1, p ≥ 1 and the fact, supp≥1

1
√
p∥v∥Lp(Ω) ≤ C∥v∥H1(Ω), v

∈ H1(Ω) that in [31] , we deduce

rn ≤ ∥en∥Lp(Dn) (m(Dn))
1
q ≤ C

√
p∥en∥H1(Ω) (m(Dn))

1
q . (4.13)

Let {N1,N2} be a partition of {1, . . . ,N} into two disjoint subsets. Taking summation over n ∈ {1, . . . ,N}, then applying
inequality (4.12) and (4.13) over N1 and N2 respectively, we obtain

N∑
n=1

rn∆t ≤

∑
n∈N1

(m(Dn))
1
2 ∥en∥L2(Ω)∆t + C

∑
n∈N2

√
p (m(Dn))

1
q ∥en∥H1(Ω)∆t. (4.14)

Using Cauchy–Schwarz inequality, we have∑
n∈N1

(m(Dn))
1
2 ∥en∥L2(Ω)∆t ≤ max

n∈N1
∥en∥L2(Ω)

∑
n∈N1

(m(Dn))
1
2∆t

≤ max
n∈{1,...,N}

∥en∥L2(Ω)

∑
n∈N1

(m(Dn))
1
2∆t

≤ max
n∈{1,...,N}

ϵ

2
∥en∥2

L2(Ω) +
1
2ϵ

⎛⎝∑
n∈N1

(m(Dn))
1
2∆t

⎞⎠2

. (4.15)

In the last term of (4.14), using Cauchy–Schwarz inequality, we deduce∑
n∈N2

√
p (m(Dn))

1
q ∥en∥H1(Ω)∆t ≤ ∆t

∑
n∈N2

[
ϵ

2
∥en∥2

H1(Ω) +
1
2ϵ

p (m(Dn))
2
q

]

≤
ϵ

2

N∑
n=1

∥en∥2
H1(Ω)∆t +

1
2ϵ
∆t
∑
n∈N2

p (m(Dn))
2
q

≤
ϵ

2
max

n∈{1,...,N}

∥en∥2
L2(Ω)N ·∆t +

ϵ

2

N∑
n=1

a(en, en)∆t

+
1
2ϵ
∆t
∑
n∈N2

p (m(Dn))
2
q . (4.16)

Here, we define F as the following

F := C (∆t)2

⎡⎢⎣
⎛⎝∑

n∈N1

(m(Dn))
1
2

⎞⎠2

+ p (∆t)−1
∑
n∈N2

(m(Dn))
2
q

⎤⎥⎦ .
By using [1, Lemma 3] with assumption (3.3), we have

F ≤ C (∆t)
3
2

(
log

1
∆t

) 1
2

.

Thus, by above estimation of F and from (4.14), (4.15) and (4.16), we have

N∑
n=1

rn∆t ≤ ϵ max
n∈{1,...,N}

∥en∥2
L2(Ω) + ϵ

N∑
n=1

a(en, en)∆t + C (∆t)
3
2

(
log

1
∆t

) 1
2

. (4.17)

Using the fact f ∈ C(J ; L∞(Ω)) in (4.11), and from (4.17), we have

N∑
n=1

|B2
n2 |∆t ≤ C

N∑
n=1

rn∆t.
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Thus by using above inequality, and from (4.10) and (4.17), we have
N∑

n=1

|B2
n|∆t ≤ C ϵ max

n∈{1,...,N}

∥en∥2
L2(Ω) +

1
2ϵ

(∆t)2∥
∂ f
∂t

∥
2
L2(J ;L2(Ω)) + C ϵ

n∑
n=1

a(en, en)∆t

+ C (∆t)
3
2

(
log

1
∆t

) 1
2

. (4.18)

Finally, from definition of E4, (4.7) and by using (4.8), (4.18) and
N∑

n=1

∥en∥2
H1(Ω)∆t ≤ T max

n∈{1,...,N}

∥en∥2
L2(Ω) +

N∑
n=1

a(en, en)∆t

we deduce

E4 ≤

N∑
n=1

|B1
n|∆t +

N∑
n=1

|B2
n|∆t

≤ C ϵ max
n∈{1,...,N}

∥en∥2
L2(Ω) + C ϵ

N∑
n=1

a(en, en)∆t

+ Tϵ max
n∈{1,...,N}

∥W n
h − W̃ n

h ∥
2
H1(Ω)

+ 2T∥∆w∥L∞(J ;L2(Ω)) max
n∈{1,...,N}

∥W n
h − W̃ n

h ∥L2(Ω)

+
1
2ϵ

(∆t)2
[
∥
∂w

∂t
∥
2
L2(J ;H1(Ω)) + ∥

∂ f
∂t

∥
2
L2(J ;L2(Ω))

]
+ C (∆t)

3
2

(
log

1
∆t

) 1
2

.

Estimation of E5:

E5 =

N∑
n=1

A5
n∆t, where A5

n =

(
∂+w

∂t
(tn), W̃ n

h − W n
h

)
=

∫
Ω+(tn)

(
∆w(tn) + f n +∆ψ(x)

)
(W̃ n

h

− W n
h )dx +

∫
Ω0(tn)

max{0, f n +∆ψ(x)}(W̃ n
h − W n

h )dx.

By using Hölder’s inequality and triangle inequality with N =
T
∆t , we have the following.

E5 =

N∑
n=1

A5
n∆t ≤ T [ ∥∆w∥L∞(J ;L2(Ω)) + 2∥f ∥L∞(J ;L2(Ω))

+ 2∥∆ψ∥L2(Ω) ] max
n∈{1,...,N}

∥W̃ n
h − W n

h ∥L2(Ω).

Estimation of E6: E6 =
∑N

n=1 A
6
n∆t , where A6

n = −(∂wn, ηn) ≤ ∥∂wn
∥L2(Ω) ∥ηn∥L2(Ω), and from definition of

∂wn we have ∥∂wn
∥L2(Ω) =

1
∆t

(∫
Ω

|
∫ tn
tn−1

∂w
∂t (s)ds|

2
dx
) 1

2
. Since ∂w

∂t ∈ L∞(J ; L∞(Ω)), there exists C > 0 such that

|
∂w
∂t | ≤ supt∈J ess supx∈Ω |

∂w
∂t | ≤ C a.e . Thus,∫ tn

tn−1

|
∂w

∂t
|ds ≤ C ∆t

⇒

(
|

∫ tn

tn−1

|
∂w

∂t
|ds|

)2

≤ C2 (∆t)2

⇒

∫
Ω

(
|

∫ tn

tn−1

|
∂w

∂t
|ds|

)2

≤ C2 (∆t)2 m(Ω)

⇒

⎛⎝∫
Ω

(
|

∫ tn

tn−1

|
∂w

∂t
|ds|

)2
⎞⎠ 1

2

≤ C (∆t) (m(Ω))
1
2 .
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Therefore, ∥∂wn
∥L2(Ω) ≤ C (m(Ω))

1
2 , and hence

N∑
n=1

|A6
n|∆t ≤ C (m(Ω))

1
2 max

n∈{1,...,N}

∥ηn∥L2(Ω)

N∑
n=1

∆t

≤ C h2
∥w∥L∞(J ;H2(Ω)).

This implies, E6 ≤ C h2
∥w∥L∞(J ;H2(Ω)).

From Corollary 3.4, and the estimation of E4 and E5 we have following.

E4 ≤ C ϵ max
n∈{1,...,N}

∥en∥2
L2(Ω) + C ϵ

N∑
n=1

a(en, en)∆t

+ C h2
+ C (∆t)2 + C (∆t)

3
2

(
log

1
∆t

) 1
2

,

and E5 ≤ C h2.

By making ϵ small, from the above estimations of Ei, i = 1, . . . , 6 and (4.5), there exists a constant C > 0 independent
on ∆t and h such that,

max
n∈{1,...,N}

∥en∥2
L2(Ω) +

N∑
n=1

a(en, en)∆t ≤ C∥e0∥2
L2(Ω) + Ch2

+ C(∆t)2 + C(∆t)
3
2

(
log

1
∆t

) 1
2

.

Therefore, max
n∈{1,...,N}

∥en∥L2(Ω) +

(
N∑

n=1

∥en∥2
H1(Ω)∆t

) 1
2

≤ C

[
h + (∆t)

3
4

(
log

1
∆t

) 1
4
]
.

These complete the proof. □

Remark 4.2. We observe that if ∂2u
∂t2

∈ L2(J ;H−1(Ω)) then we get ∆t in place of (∆t)
3
4
(
log 1

∆t

) 1
4 in the above error

estimation (cf. [32]). For an example, if the variational inequality originates from a Stefan problem then ∂u
∂t ∈ C(J ; C(Ω̄))

and ∂2u
∂t2

∈ L2(J ; L2(Ω)), and in this case we get ∆t in place of (∆t)
3
4
(
log 1

∆t

) 1
4 . But in general it is not possible to get

more global regularity of the solution u than that given by (2.3) even if the given data is smooth.

5. Numerical experiments

In this section, we present numerical experiments to illustrate the theoretical results derived in the previous section.
By considering 2d oscillating moving circle from [5], as a model example, we test the validity of the a priori error estimates
derived in Theorem 4.1.

5.1. 2d oscillating moving circle

Let Ω be the square (−1, 1)× (−1, 1), J = [0, 0.25] be the time interval, and let the non-contact and contact sets be

Ω+(t) := {(x, y) ∈ Ω : r(t) > r0(t)} and Ω0(t) := {(x, y) ∈ Ω : r(t) ≤ r0(t)}

respectively, where r(t) = {(x − r1 cos(aπ t))2 + (y − r1 sin(aπ t))2}
1
2 , r0(t) =

1
3 + 0.3 sin(4aπ t),

r1 =
1
3 and a = 4. The exact solution w is

w(x, y, t) =

⎧⎨⎩
1
2

(
r2(t) − r20 (t)

)2
if (x, y) ∈ Ω+(t),

0 if (x, y) ∈ Ω0(t).
.

The initial and boundary conditions are given by w. The obstacle is ψ := 0 and forcing function f is

f (x, y, t) =

⎧⎨⎩4
(
r20 (t) − 2r2(t) −

1
2
(r2(t) − r20 (t))

(
p(t) + r0(t)r ′

0(t)
))

if (x, y) ∈ Ω+(t),

−4r20 (t)
(
1 − r2(t) + r20 (t)

)
if (x, y) ∈ Ω0(t),

where p(t) = (x − c1(t)) c ′

1(t) + (y − c2(t)) c ′

2(t), c1(t) = r1 cos(aπ t) and c2(t) = r1 sin(aπ t). The free boundary is an
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Table 5.1
Errors and orders of convergence for h.
N h Errcom Order

10 2/4 1.50425057 –
40 2/8 0.53532046 1.49057020

160 2/16 0.19618411 1.44819457
640 2/32 0.08112544 1.27398188

2560 2/64 0.03635862 1.15785670

Table 5.2
Errors and orders of convergence for ∆t .
N h Errcom Order

5 2/4 1.63721581 –
10 2/8 0.90592722 0.85377744
20 2/16 0.51329971 0.81959369
40 2/32 0.25140404 1.02979362
80 2/64 0.12514001 1.00646467

160 2/128 0.063533927 0.97794401

Fig. 5.1. Time step size ∆t and errcom.

oscillating circle with radius r0(t) and center (c1(t), c2(t)) moving anticlockwise along the circle of radius r1 centered at
the origin.

In Table 5.1, we have shown order of convergence in the norm defined below for space variable h with ∆t = O(h2).
Define

errcom = max
n∈{1,...,N}

∥en∥2
L2(Ω) +

N∑
n=1

a(en, en)∆t,

N = number of time steps.

In Table 5.2, we have displayed order of convergence for time variable ∆t with ∆t = O(h) with the same error norm as
in above. We expect that the convergence rate with uniform time-step would be about O(∆t

3
4 ) and for space O(h) with

uniform mesh refinement. Our experiments attend this expectation (see Figs. 5.1 and 5.2).
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Fig. 5.2. The computed (left) and error w − Wh (right) at time t = 0.25.
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