ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas

Jolly, Mohit Kumar and Somarelli, Jason A and Sheth, Maya and Biddle, Adrian and Tripathi, Satyendra C and Armstrong, Andrew J and Hanash, Samir M and Bapat, Sharmila A and Rangarajan, Annapoorni and Levine, Herbert (2019) Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. In: PHARMACOLOGY & THERAPEUTICS, 194 . pp. 161-184.

[img] PDF
Pha_The_194_161_2019.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy
Official URL: https://doi.org/10.1016/j.pharmthera.2018.09.007

Abstract

Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy `metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state (s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets. (C) 2018 Elsevier Inc. All rights reserved.

Item Type: Journal Article
Publication: PHARMACOLOGY & THERAPEUTICS
Publisher: PERGAMON-ELSEVIER SCIENCE LTD
Additional Information: Copyright of this article belongs to PERGAMON-ELSEVIER SCIENCE LTD
Keywords: Hybrid epithelial/mesenchymal; Epithelial-mesenchymal transition; Cancer metastasis; Cancer stem cells; Collective cell migration; Phenotypic plasticity
Department/Centre: Division of Biological Sciences > Molecular Reproduction, Development & Genetics
Date Deposited: 26 Feb 2019 05:06
Last Modified: 26 Feb 2019 05:06
URI: http://eprints.iisc.ac.in/id/eprint/61828

Actions (login required)

View Item View Item