
Data Structure Distribution & Multi-threading of Linux File

System for Multiprocessors

Anish Sheth & K. Gopinath

Computer Science and Automation,

Indian Institute of Science,

Bangalore 560012, India,

Email: gopi@csa.iisc.ernet.in

Abstract

The standard Linux design assumes a uniprocessor archi-
tecture. Allowing several processors to execute simultane-
ously in the kernel mode on behalf of di�erent processes
can cause consistency problems unless appropriate exclu-
sion mechanisms are used. In addition, if the �le system
data structures are not distributed, performance can be
a�ected. In this paper, we discuss a multiprocessor �le
system design for Linux ext2fs with various data struc-
tures, such as super block, inodes, bu�er cache, directory
cache (name cache), distributed wrt di�erent processors
with appropriate exclusion mechanisms.

1 Introduction

The classic design of the UNIX system assumes a unipro-
cessor architecture. Support for shared-memory multipro-
cessors in UNIX has evolved over a number of years. Early
implementations of UNIX allowed concurrent execution of
single-threaded processes but many of these implementa-
tions serialized execution within the system kernel. In this
paper, we present a redesign of the ext2fs of single proces-
sor Linux for a multiprocessor.
Allowing several processors to execute simultaneously

in the kernel mode on behalf of di�erent processes can
cause consistency problems unless appropriate exclusion
mechanisms are used. On a multiprocessor, if two or more
processes execute simultaneously in the kernel on separate
processors, the kernel data could become inconsistent if ex-
clusion mechanisms su�cient for uniprocessor systems are
used. There are three methods for preventing such incon-
sistency:
1. Execute all critical activity on one processor, relying on
standard uniprocessor methods for preventing corruption.
2. Serialize access to critical regions of code with locking
primitives.
3. Redesign algorithms to avoid contention for data struc-
tures.
The �rst method is a solution with master and slave pro-

cessors, with master executing in kernel mode while slaves

execute only in user mode. The master processor is respon-
sible for handling all system calls. Here inconsistency in
kernel can occur only in the scheduler algorithm. Because
of the single ready queue, all the processors look for ready
processes in this queue and two processors can schedule
the same process simultaneously. In one solution, master
speci�es the slave processor on which the process should
execute. In the second solution, kernel allows only one
processor to execute the scheduler at a time, using mecha-
nisms such as semaphores. More recently, Linux has been
extended in Linux 2.x so that only one processor can exe-
cute code at a time, without the master/slave dichotomy.

Another method for supporting UNIX systems on multi-
processor con�gurations is to partition the kernel into crit-
ical regions such that at most one processor can execute
code in a critical region at a time (Solaris 2.x, Unixware
2.x, etc.). As the sleep-locks used by the uniprocessors
cannot be used by multiprocessor systems, semaphores are
implemented, which allow atomic operations on them. One
example where these semaphores can be used is the bu�er
allocation algorithm(getblk()). For the free bu�er list, each
hash queue and each bu�er one separate semaphore can
be provided. A down operation is done on the hash queue
semaphore before searching the queue for the bu�er. A
bu�er semaphore is used to get exclusive access of the
bu�er so that it can be updated. If a new bu�er is to be ob-
tained from free list, a down operation is done on free list
semaphore before accessing it. While using semaphores,
we need to take care of possible deadlocks.

In this paper, we study the later approach. In addition,
to enhance locality, we distribute various data structures,
such as super block, inodes, bu�er cache, directory cache
(name cache), wrt di�erent processors with appropriate
exclusion mechanisms.

2 Linux File System

Every Linux �le system implements a basic set of common
concepts derived from the Unix operating system: �les are
represented by inodes, directories are simply �les contain-

1

ing a list of entries and devices can be accessed by request-
ing I/O on special �les.

2.1 The Second Extended File System

The Second Extended File System (ext2fs) [Car95] is the
most popular �le system on Linux, with support for big
partitions (up to 4 TB) and big �le sizes (up to 2 GB),
long �le names (up to 255 characters), reserved blocks for
root (default to 5%), symbolic links and directories with
variable length entries. Each directory entry contains the
inode number, the entry length, the �le name length and
the �le name. (Figure 1).

i1 16 5 anish

16

i2 40 multiprocessor14 i3 12 2 fs

560

Figure 1: EXT2FS Directory Entry

Each ext2fs �le system consists of block groups; the lay-
out is given in Figure 2. Each block group contains a
redundant copy of crucial �le system control informations
(super-block and the �le system descriptors) and also con-
tains a part of the �le system (a block bitmap, an inode
bitmap, a piece of the inode table, and data blocks). The
structure of a block group is shown in Figure 3.

Boot

Sector

Block

Group 1

Block Block

Group 2 Group N

Figure 2: Physical Structure of an EXT2 File System

Super FS desc- Inode
Data Blocks

InodeBlock
Block riptors Bitmap Bitmap Table

Figure 3: Structure of a Block Group

2.2 The Linux Virtual File System

In order to ease the addition of new �le systems into the
Linux kernel, a Virtual File System(VFS) layer was de-
veloped. Details about the VFS interface in 4.4BSD can
be found in [McK95] whereas details for UNIX System
V Release 4 are available in [GC94]. When a process is-
sues a �le oriented system call, the kernel calls a function
contained in the VFS. This function handles the struc-
ture independent manipulations and redirects the call to a
function contained in the physical �le system code, which

is responsible for handling the structure dependent opera-
tions. File system code uses the bu�er cache functions to
request I/O on devices.

The VFS layer not only supplies an object oriented in-
terface to the underlying �le systems, but also provides a
set of management routines that can be used by all the
client �le systems. The following services are common:

1. In-core Inodes for all the �le system types are kept
in a global list which is hashed for better search perfor-
mance. A reference count is used for each in-core inode in-
dicating how many links are currently active to this inode.
When the last reference to a �le is closed, the reference
count becomes zero but the in-core inode is also kept on
hash chains so that it can be reactivated quickly if the �le
is reopened.
The list for in-core inodes is common to all the �le sys-

tems. When an application opens a �le that does not
currently have an in-core inode, the VFS routine calls
get empty inode() routine to allocate a new one. This rou-
tine removes the �rst unused inode from the front of the
inode list and used by the client �le system.
2. Bu�er Cache All read/write operations from/to disk
are through bu�er cache. Each disk block, when in mem-
ory, is kept in a bu�er. Each bu�er has a user count similar
to the in-core inode. When a particular block is accessed
for read/write, user count for the bu�er containing that
block is incremented. When operation is over and bu�er is
released, count is decremented. When bu�er is updated,
it is marked dirty and it is written1 back to the disk.

For di�erent types of bu�ers (e.g. clean, dirty, shared,
locked etc.), di�erent LRU queues are maintained. When-
ever bu�er type changes, bu�er is removed from original
LRU list and is added to the new LRU list at the time of
releasing the bu�er (i.e. when brelse() is called). Di�erent
bu�er sizes are supported, each with separate free lists.

3. The Directory Cache This interface provides a
facility to add a name and its corresponding inode, lookup
a name to get the corresponding inode, and to delete a
speci�c name from the cache. In addition to providing a
facility for deleting speci�c names, the interface also pro-
vides an e�cient way to invalidate all names that reference
a speci�c inode. Directory inodes can have many names
that reference them, notably the .. entries in all their im-
mediate descendents. Each inode is given a version - a 32-
bit number. An inode's version is incremented each time
inode is reassigned to a new �le. When an entry is made in
the directory table, the current value of the inode's version
is copied to the associated name entry. When a name is
found during a cached lookup, the version assigned to the
name is compared with that of the inode. If they match,

1There are three types of UNIX �le system writes: synchronous,

asynchronous and delayed. A write is synchronous if the process
issues it (i.e. sends it to the device driver) immediately and waits
for it to complete. A write is asynchronous if the process issues it
immediately but does not wait for it to complete. A delayed write is
not issued immediately; the a�ected bu�er cache blocks are marked
dirty and issued later by a background process (unless the cache runs
out of a clean block).

the lookup is successful; if they do not match, failure is
returned. The directory cache is a 2-level LRU. It also
provides for negative caching.

3 A Design for a Multiprocessor

Linux File System

The design outlined below uses critical regions and re-
designs algorithms to avoid contention. We also describe
the data structures used in the �le system, the distribution
of data structures, their use in the new system and locks
needed in the design. Note that both the �le system inde-
pendent portion as well as ext2fs itself need changes. In
the following, we assume a standard single-threaded kernel
and use the word \processor" and its single kernel thread
interchangeably.
First, we discuss the implementation of a semaphore for

the multiprocessor case whose structure is as follows:

struct semaphore {

int share;

int excl;

struct wait_queue * wait;

struct wait_queue * excl_wait;

}

struct wait_queue {

struct task_struct * w_task;

struct wait_queue * w_next;

struct wait_queue * w_prev;

}

share - Number of threads in shared mode
excl - inode locked in exclusive mode
wait - Wait queue of threads
excl wait - Wait queue of threads

- that require lock in exclusive mode

Some system calls use inodes only for reading and some
use it for update. System calls like write(), link(), unlink()
update the �le/directory entries and hence should have
exclusive access to the inode. We de�ne the following down
and up operations for exclusive access:

void down_excl(struct semaphore *sem){

struct wait_queue *waiter;

struct wait_queue *excl_waiter;

init waiter & excl_waiter (curr thread)

lock(sem);

add_wait_queue(&sem->wait, waiter);

add_wait_queue(&sem->excl_wait, excl_waiter);

repeat:

if(sem->share!=0 || sem->excl==1 ||

sem->excl_wait!=excl_waiter) {

unlock(sem);

schedule();

lock(sem);

goto repeat;

}

sem->excl++;

remove_wait_queue(&sem->wait, waiter);

remove_wait_queue(&sem->excl_wait,excl_waiter)

unlock(sem);

}

void up_excl(struct semaphore *sem){

lock(sem);

sem->excl--;

wakeup(sem, ALL_WAIT);

unlock(sem);

}

Functions like lookup() used in namei() use directories
only for searching. Hence we can provide shared access to
more than one such operation. Similar is the case with sys-
tem calls like read(). Semaphore operations that provide
shared access are de�ned as follows:

void down_shared(struct semaphore * sem){

struct wait_queue *waiter;

initialize waiter

lock(sem);

add_wait_queue(&sem->wait, waiter);

repeat:

if(sem->excl!=0 ||

(sem->excl_wait && sem->wait->w_task==

sem->excl_wait->w_task)) {

unlock(sem);

schedule();

lock(sem);

goto repeat;

}

sem->share++;

remove_wait_queue(&sem->wait, waiter);

unlock(sem);

}

void up_shared(struct semaphore *sem){

lock(sem);

sem->share--;

if(sem->share==0)

wakeup(sem, FIRST_WAIT);

unlock(sem);

}

wakeup() puts waiting processes in the ready queue;
its second parameter has the following meaning:
FIRST WAIT (wake up only �rst process from the wait
queue), ALL WAIT (wake up all the processes before the
�rst excl wait process; if the �rst process in wait queue is
same as that in exclusive wait queue then wake up only
�rst process).
Functions down excl() and down shared(), for a given

semaphore, are called only once during the system call ex-
ecution. The above implementation does not support mul-
tiple down operations for a given semaphore in any system
call. A kernel thread will deadlock if a down operation is
done a second time on the same semaphore.

3.1 Super Block Management

The �elds of the super block that are of interest are:
1. group descriptors In allocating or deallocating a disk
block or an inode, group descriptors and inode bitmaps
or block bitmaps for that group are used. To allow only
one processor to update these structures, each processor
can haves some group descriptors assigned to it. When-
ever it needs to allocate new blocks or inodes, it allo-
cates them from those groups. However, if the processor
has used all its blocks/inodes, it cannot allocate a new
block/inode even if disk groups on other processors have
free blocks/inodes. Also, deallocating a block or an inode
from a group of another processor is not possible. An al-
ternative is to provide a lock per group descriptor. Each
processor before accessing these structures, gets the lock,
does the necessary operations and releases the lock. By
providing a lock per group we can allow more than one
processors to do inode and/or block operations if they are
doing so in di�erent groups. If multiple processors intend
to update the same group data, only one can continue and
others have to wait till the �rst one completes.
2. free blocks count Each group descriptor maintains
counts of free blocks in the group. A global counter
(s free blocks count) is also provided for redundancy. Dur-
ing the mount operation or fsck, both are used for �le
system check. In the existing system, each time a disk
block is allocated/deallocated, global counter is updated
along with the free disk block count in the group descrip-
tor. In a multiprocessor system, this will serialize all the
disk block allocation/deallocation operations.

The solution is to provide a count per processor. Each
processor, while allocating or deallocating a block, updates
this local count. Free block count per processor can be
a positive or negative number. These local counts are
stored in the super block structure. Current structure
uses only 84 bytes whereas disk space allocated to super
block is 1024 bytes. A new �eld (unsigned long s nr procs)
has been added to the disk super block structure (struct
ext2 super block) to indicate number of processors in the
system. Also, an array of free block counts for processors
that can be accessed as an o�set from the new �eld.

While mounting or unmounting the �le system, all local
counts are added to the global count s free blocks count
and all local counts are reset to 0. In between, whenever
a bu�er containing super block is written to disk (because
it is dirty), these local counters can have nonzero value.

In ext2fs, if total number of free blocks is less than
or equal to reserve block count, a new block is not al-
located. With the above modi�cation, we do not have
the free blocks count in the �le system as it is distributed
between many counters. Hence, when allocating a disk
block, instead of comparing reserve block count with the
s free blocks count for the �le system, a block is allocated
from the disk group that has more free disk blocks than the
reserve block count per group (dreserve blocks count/group
counte).

3. free inodes count s free inodes count indicates the
number of free inodes in the �le system. It is used in a
similar manner as s free blocks count. For this counter, a
similar solution can be used. Free inode counts per proces-
sor are maintained, which are stored after the free blocks
count per processor in the disk super block structure.

3.2 Inode Management

All the inodes are kept in the single global structure. Each
time iget() or iput() is called, we need to provide some
locking mechanism to keep the inode structure consistent.
In addition to a semaphore for each in-core inode, the fol-
lowing locks are provided:
1. Lock for �nding free inode The link list of inodes is
traversed when unused inode is needed. The �rst unlocked
inode with i count zero is returned as the free inode. The
returned inode is put at the end of the link list. To allow
only one thread to traverse and update the link list, a lock
is provided.
2. Lock per hash bucket To search an inode, iget()
hashes using the inode number and the device number.
That particular hash bucket is locked before searching for
the inode. This lock is necessary because some other
thread might be removing a free inode from one hash
bucket and later adding it to some other hash bucket list
depending on the new inode number.
3. Lock for i count of in-core inode structure
Whether an inode is unused or not is decided by the
i count. If i count is zero, then the inode is unused. Each
time iget() is done for an inode, i count is incremented
and for each iput() it is decremented. To make sure that
only one thread is updating/accessing this value, a lock is
provided for the i count �eld of each in-core inode.

Ext2fs inode allocation algorithm tries to keep inodes
evenly allocated in each group. A new inode is allocated
for a directory in the group which has more number of
free inodes than average free inodes per group, which it
calculates using following formula: average free inode =
free inodes count / number of groups. In our system,
s free inodes count is not uptodated all the time. So it
is not possible to calculate average free inodes per group
and use it for inode allocation. We keep one pointer which
tells the process from which group descriptor to start the
search for new inode. We de�ne an array start search with
one element per processor in the array and initialized as
below: start search[processor number] = processor num-
ber % s group count. Whenever a process needs a new
inode, depending on which processor it is executing, it
starts searching for new inode in the group number given
in start search[processor number]. This value is updated to
the group number from which last inode was allocated by
a process executing on the that processor. Assumption for
above procedure is that inode allocation and deallocation
are evenly distributed on all processors.

3.3 Bu�er Cache Management

Bu�er headers are kept globally as well as per processor
with the global one being the union of all the local ones.
However, the bu�er data is never copied. Bu�er headers
containing meta-data (i.e. super block, group descriptors,
bitmaps, inodes) are kept globally only (for reasons, see
Section 3.3.3).

3.3.1 Global Bu�er Cache

The global header structure g bu�er head contains all the
�elds of original struct bu�er head along with the new
�elds. The existing b count has a new meaning indicating
the number of processors with active references. To man-
age the global bu�er cache, the following locks are used:
1. Lock for each lru list: Depending on the bu�er type
(Clean, Dirty, Locked etc.) bu�ers are put in the respec-
tive LRU lists. Locks are provided per LRU list.
2. Lock per hash table bucket: Each bu�er is hashed
using device number and block number. For updates to
the hash queues, locks are provided per hash bucket so
that operations on di�erent hash buckets can be carried
out simultaneously.
3. Lock for free list: A free list of bu�ers is maintained
for each bu�er size separately. To provide exclusive access
to the free list, lock is kept for each bu�er size.
4. Lock for bu�er re�ll: Once the bu�er type (Clean,
Dirty, Locked etc.) changes, bu�er is removed from the
original LRU list and put in the new LRU list in the
brelse() function. More than one brelse() can be in progress
for the same bu�er at the same time. To allow only one
brelse() to do re�lling, a new
ag (char b re�ll) is provided
in the bu�er structure. Before re�lling, this
ag is set for
the bu�er and is reset after completion of the re�ll. If the

ag is already set, re�lling is not done.
5. Lock for unused bu�er head list: New bu�ers are
created as they are needed. Bu�er heads are created from
a free page. From the other pages, space for data area of
bu�er is created. Depending on the size of the data of the
bu�er, number of data areas created can be di�erent from
the bu�er head number. Bu�er heads are always more in
number than data areas. So unused bu�er heads are kept
in a separate list pointed to by unused list. These bu�er
heads are used later when more bu�ers are needed. To
avoid corruption of unused list, it is locked before use.
6. Lock for b count in each bu�er: b count gives
number of references to the bu�er which are active. It is
incremented in the getblk() function and decremented in
the brelse() function. More than one instances of these
functions can be in execution for the same bu�er at the
same time. So a lock is provided to keep the count correct.
Apart from the above bu�er management locks, the

bu�er lock, b lock, has been changed so that bu�er can
be locked in either shared or exclusive mode. Whenever
the bu�er is written to/read from disk, it is locked and lock
is released when write or read is complete. In the multi-
processor system, while one system call on one processor

is updating the bu�er, an another processor can write it
to disk if dirty. In this case partial modi�cations from �rst
processor can go to disk. To prevent bu�er to be written to
the disk while it is being updated, it is locked exclusively
while the update is in progress.
A few structures like group descriptors are kept in

bu�ers and accessed using proper type cast. We can lock
a group descriptor exclusively so that only one thread can
use it. But there are more than one group descriptors in
one bu�er page. Hence, to allow simultaneous processing
of di�erent group descriptors, we need to lock the bu�er in
shared mode. For this, one more counter is used per bu�er
which indicates number of references in the shared lock
mode (b lshare). Each thread locking a bu�er in shared
mode also increments b lshare and decrements it while un-
locking along with setting/resetting b lock. While thread
locking bu�er in exclusive mode sets only b lock.

3.3.2 Local Bu�er Cache

A local bu�er cache has the following structure: hash buck-
ets (bu�er hashed using the same algorithm as that of
global cache), one LRU list, free list of bu�ers (one free
list for each bu�er size) and unused bu�er head list. A
new �eld (struct g bu�er head * b g bh) has been added to
the bu�er head structure that points to the corresponding
global bu�er. The b count indicates number of references
to the given bu�er currently active from the processes on
that processor.

3.3.3 Maintaining Consistency

A new �eld (unsigned long b version) has been added to
both l bu�er head and g bu�er head structures for consis-
tency. Whenever a thread updates a bu�er, it increments
the version number for the global as well as local bu�er on
that processor. At a time only one thread can update a
particular bu�er due to the exclusive lock whereas readers
use a shared lock. Bu�ers containing super block, group
descriptors, inodes are kept in global cache only and are
updated there. They are not moved to the local caches.
This is required because of the following reasons:
� super block can be updated by more than one thread si-
multaneously due to the updates to local free block counts
and free inodes count on allocation or deallocation of
blocks or inodes. However, bread() and brelse() functions
for super block are needed only during mount and unmount
system calls.

� group descriptor bu�ers We lock one group de-
scriptor at a time. As one bu�er page contains more than
one group descriptor, more than one thread can be up-
dating the bu�er simultaneously. Bu�ers containing group
descriptors and bitmaps are also kept in memory perma-
nently. bread() and brelse() are also used only at the time
of mount and unmount.
� inode bu�ers: While writing inode back to the disk,
inode is locked and copied to the bu�er. Lock is released
when writing is complete. One bu�er contains more than

one inode. So a bu�er can be updated simultaneously by
more than one thread.
To get access to the bu�ers containing inodes, sep-

arate bread(), brelse() and mark bu�er dirty() functions
are used, which work with global bu�ers instead of local
bu�ers. Due to lack of space, we provide simpli�ed al-
gorithms for bu�er cache management for a subset here
(with type of gbh struct g bu�er head* and lbh struct
l bu�er head*):

wait_on_buffer_local_read(lbh){

gbh = lbh->b_g_bh;

wait_on_buffer_read(gbh);

// shared lock on data buf

// excl lock on local/global buf hdrs here

if(gbh->b_uptodate) {

copy global buffer header to local

lbh->b_uptodate = 1

lbh->b_version=gbh->b_version

}

// excl lock on local/global buf hdrs dropped

}

uptodate(lbh) {

gbh = lbh->b_g_bh;

lock_buffer_hdr(gbh);

return (lbh->b_version == gbh->b_version);

}

struct l_buffer_head *bread(){

lbh = getblk();

if uptodate(lbh) return lbh;

unlock_buffer_hdr(gbh);

wait_on_buffer_local_read(lbh);

if uptodate(lbh) return lbh;

brelse(lbh);// releases both hdr locks also

return NULL;

}

mark_buffer_dirty_local(lbh){

gbh=lbh->b_g_bh;

lock_buffer_hdr(gbh)

gbh->b_version++;

lbh->b_version=gbh->b_version;

unlock_buffer_hdr(gbh)

mark_buffer_dirty(gbh);

}

3.4 File Table Management

The �le table is maintained as a link list. Each time a new
�le table entry is required, the link list is searched and the
�rst entry with f count zero is returned. For the multi-
processor system, the �le table is kept per processor along
with one global free list. Free �le pointers are kept in local
lists. Following procedures are followed while allocating
and deallocating the �le pointer:
1. Get new �le pointer in open() Whenever a free
�le pointer is needed it is taken from the local free list. If
local free list is empty, it tries to get NR GET FILE �le
pointers from the global free list. If global list is empty

and total number of �le pointers in the system is less than
NR FILES, it creates new �le pointers and gets required
number of free �le pointers.
2. Releasing �le pointer from close() File pointer
with f count zero is returned to the free list. If number
of �le pointers in the local free list reaches upper thresh-
old (NR MAX FILE PER PROC), some of the free �le
pointers are returned to the global free list. The following
variables are used: �rst �le (global free list of �le point-
ers), lock for �rst �le (to make global list accesses mutu-
ally exclusive), nr free �les (number of free �le pointers in
global list), free �les[NR PROCS] (free list of �le pointers
for each processor), and nr free �le per proc[NR PROCS]
(number of free �le pointers in local lists)
Each time free �le pointers from the global list are re-

quired, the thread �rst gets the lock, removes free �le
pointers from the free list and releases the lock. Addi-
tional locks are also provided for the following �elds of the
�le pointer: f count (number of fd's pointing to this entry,
0 indicating free entry), and f pos (o�set in the open �le).

3.5 Directory Cache Management

Linux maintains a cache of frequently used directory en-
tries. The replacement policy for the cache is a two level
LRU policy. Whenever a directory entry is to be searched
(in the namei() routine) directory cache is �rst looked up.
If the entry is not found, the directory is searched. We can
provide a local directory cache per processor along with
the global directory cache which contains all the entries
kept in local caches. Advantage of keeping local directory
caches is that more than one thread can search directory
cache simultaneously without locking the cache. Corre-
sponding to each local cache entry there is one entry in
the global cache. The size of the global cache is the total
size of all the local caches. Each entry keeps track of num-
ber of local caches that contain this entry alongwith an
array with processor numbers. To prevent other threads
from using invalid entries, each time a thread marks the
entry invalid, it has to inform all other processor caches
about this invalid entry. For this purpose, a stale entry
queue is provided per local cache. This is a circular queue
which contains the invalid entries.
To maintain the caches uptodate and to prevent pro-

cesses from using invalid entries, procedures for searching
a directory cache (invalidate stale entry, dcache lookup),
adding new entry (dcache add) and marking an entry stale
in a directory cache (mark entry stale) are provided but
omitted here due to lack of space.

4 Implementation

Source code of the Linux 1.x �le system has been used
for the work. As a multiprocessor system is not avail-
able, we decided to do simulation at the implementation
level. Actual code has been used as is except for hard-
ware dependent part. The device driver has been replaced

with simpli�ed code, which writes into the simulated disk
instead of actual disk. Memory management has been re-
placed by simple page management routines. We assume
that threads do not migrate and that threads know the id
of the processor on which it is executing.

4.1 Simulated Disk

The disk has been simulated using multiple UNIX regular
�les. Layout of the disk is similar to the layout used by
the second extended �le system (Section 2.1). The disk
used for the simulation consists of the following �les: The
disk �le stores all the metadata (i.e. super block, group
descriptors, inode and block bitmaps and inode table). For
regular �les, only indirect blocks are stored in a �le having
block number as the �lename (i.e. block number 251 is
stored in �le 251). For a directory, all the blocks are stored.

4.2 Simulation of Multiple Processors

A separate process is created using fork() for each thread.
More than one thread is assumed to be running on a single
processor. One separate process is used to schedule them.
At a time, only one thread (process) is allowed to run on
a given processor. There are maximum of N threads (pro-
cesses) running simultaneously if there are N processors in
the system. Once a thread (process) terminates or waits
for some resource, the next thread from the ready queue
of that processor is activated.

4.3 Sharing Kernel Variables of FS

As threads are simulated using processes, mmap() has been
used for sharing of kernel variables of the simulated system.
All the variables used by the �le system are mapped to a
character array (i.e. each variable is `#de�ne` as an o�set
in the large character array). Portions of the header �les
used for mapping of variables are shown below

char * mp_ptr;

#define SZ_NR_BUFFER_HEADS (sizeof(int))

#define SZ_BUF_HASH_TABLE (NR_HASH*

sizeof(struct buffer_head *))

#define AD_NR_BUFFER_HEADS (mp_ptr)

#define AD_BUF_HASH_TABLE (AD_NR_BUFFER_HEADS+

SZ_NR_BUFFER_HEADS)

#define nr_buffer_heads

(*(int *)AD_NR_BUFFER_HEADS)

#define buf_hash_table

((struct buffer_head **)AD_BUF_HASH_TABLE)

whereas actual variable declarations are shown below:

int nr_buffer_heads;

struct buffer_head * buf_hash_table[NR_HASH];

The character array is a UNIX �le of required size, which
is mapped using mmap() system call for each process and
is accessed through variable mp ptr.

4.4 Locking

Each thread is simulated using a di�erent UNIX process
and variables are mapped to a �le. So it is now possible
to simulate locking using record locking (i.e. using fcntl()
call). O�sets of all the variables in the �le are available
and are used for locking portions of �le whenever locking
is needed.

5 Validation

To validate the �le system, we have to show the following:
No meta-data corruption: Multiple threads must be

able to update same meta-data without corruption. This
indicates that the locking design is sound.
No deadlocks: Some operations require more than one

lock to be obtained before they can continue. This may
lead to the deadlock if proper care is not taken in locking
and unlocking.
Apart from the above two points, lock frequencies for

following structures are measured:
� The global bu�er cache hash table buckets: Two
di�erent designs of bu�er cache are considered: single
global bu�er cache, distributed bu�er cache. In the �rst
case bu�er cache is kept only in global shared memory.
Whenever a bu�er is needed, process accesses global cache
of bu�ers. The second option is the bu�er cache design
given in Section 3.3.
� The �le table: Number of accesses to the global free
list of �le table and number of accesses to the local �le
tables are measured.
� The directory cache: Number of accesses to the global
directory cache and number of accesses to the local direc-
tory caches are measured. Number of global accesses is
the total number of times di�erent hash buckets of global
cache are locked. Number of local accesses is the sum of
two counts for each processor: number of time hash buck-
ets of local cache are accessed and number of times LRU
list of local cache is used. Due to the cache management
algorithms for local cache, both the counts, hash bucket
accesses and LRU accesses, are considered. The locks re-
quired will be at least equal to local access count if we use
these cache algorithms for a global cache.
To validate above points, we can use a parallel applica-

tion which requires meta-data to be updated from multiple
threads simultaneously. Correct output of the application
is obtained only if data is not corrupted. File system code
was tested using following two applications :
� dining philosophers problem (5 philosophers)
� readers and writers problem (8 readers and 1 writer)
None of the above applications is related to the �le sys-

tem. We have modi�ed the locking/unlocking mechanisms
used by these applications such that locking/unlocking op-
erations require �le system calls. Both applications require
binary semaphores. In the dining philosophers problem,
there is one common semaphore and one semaphore for
each philosopher. Semaphore for each philosopher is the

�le with philosopher number as the �lename. For readers
and writers problem, there are two semaphores which are
used by readers and one of them is also used by writer. So
two di�erent �les are used, one for each semaphore, which
are common for all readers and writers.
A binary semaphore is implemented using creat() system

call. Using os creat(), os close() and os unlink() system
calls of the multiprocessor �le system, down() and up()
can be realized as follows:

down(char *file){

int fd;

while((fd = os_creat(file,0)) < 0) sleep(1);

os_close(fd);

}

up(char *file){

if(os_unlink(file) < 0)

printf("unlink error for %s", file);

}

6 Results and Conclusion

Bu�er Cache Performance Table 1 and Table 2 show
the lock frequencies of hash buckets in both the applica-
tions for global bu�er cache and distributed bu�er cache.
The block number 251 is the �rst block of "/" directory.
Files used for semaphores in both the applications are cre-
ated in this directory. This block maps to bucket number
250 The lock frequency for this block in both applications
is reduced for distributed bu�er cache as once a processor
has a bu�er header locally, it doesn't need to lock global
bu�er hash bucket to access the block bu�er.

Hash Bkt # Global Buf Cache Distr Buf Cache
Mean Mean

Lock Wait Time Lock Wait Time
Freq (�sec) Freq (�sec)

0 8 7.125 8 7.125
3 8 11.125 8 10.625
4 236 27.542 236 27.932
5 8 19.250 8 17.875
250 246 30.529 12 22.167

Table 1: Lock Frequency for Bu�er Hash Buckets in Dining
Philosophers Problem

Other hash buckets have blocks which contain meta-
data: super block (block number 1), group descriptor block
(block number 2), inode bitmap for group 1 (block number
4) and �rst inode table block for group 1 (block number
6). The lock frequencies of these blocks are the same as
meta-data is kept globally in both the designs.
File Table and Directory Cache Performance The
number of accesses to the global free list of �le pointers
and the global directory cache get reduced in both the ap-
plications (from 130 to 5 and 535 to 335 for dining philoso-

Hash Bkt # Global Buf Cache Distr Buf Cache
Mean Mean

Lock Wait Time Lock Wait Time
Freq (�sec) Freq (�sec)

0 8 7.375 8 6.875
3 8 11.625 8 10.375
4 255 28.510 250 28.160
5 8 17.750 8 17.125
250 275 30.520 16 25.313

Table 2: Lock Frequency for Bu�er Hash Buckets in Read-
ers and Writers Problem

phers problem and from 226 to 9 and 850 to 465 for readers
and writers problem). Each processor accesses global free
�le pointer list only once in both the applications. All
remaining accesses are satis�ed in their local list only.
In this paper, a redesign for a multiprocessor Linux �le

system was presented. While some design decisions were
straightforward (like for a �le table), others (like for bu�er
cache and directory cache) were not so. More detailed
study can be done by actual implementation in the kernel.

References

[Bac86] Maurice J. Bach. The Design of the UNIX Op-
erating System. Prentice Hall, EngleWood Cli�s,
New Jersey, 1986.

[Car95] Remy Card. The Second Extended File Sys-
tem - Current State, Future Developement. In
Second International Linux and Internet Confer-
ence, Berlin, 1995.

[GC94] Berny Goodheart and James Cox. The Magic
Garden Explained : The Internals of UNIX Sys-
tem V Release 4. Prentice Hall, 1994.

[McK95] Marshall Kirk McKusick. The Virtual Filesys-
tem Interface in 4.4BSD. The USENIX As-
sociation,Computing Systems, 8(1):3{25, Winter
1995.

