ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

GenLR-Net: Deep framework for very low resolution face and object recognition with generalization to unseen categories

Mudunuri, Sivaram Prasad and Sanyal, Soubhik and Biswas, Soma (2018) GenLR-Net: Deep framework for very low resolution face and object recognition with generalization to unseen categories. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), JUN 18-22, 2018, Salt Lake City, UT, pp. 602-611.

[img] PDF
Pro_Cvf_Con_Com_Vis_Pat_Rec_Wor_602_2018.pdf - Published Version
Restricted to Registered users only

Download (981kB) | Request a copy
Official URL: https://doi.org/10.1109/CVPRW.2018.00090

Abstract

Matching very low resolution images of faces and objects with high resolution images in the database has important applications in surveillance scenarios, street-to-shop matching for general objects, etc. Matching across huge resolution difference along with variations in illumination, view-point, etc. makes the problem quite challenging. The problem becomes even more difficult if the testing objects have not been seen during training. In this work, we propose a novel deep convolutional neural network architecture to address these problems. We systematically introduce different kinds of constraints at different stages of the architecture so that the approach can recognize low resolution images as well as generalize well to images of unseen categories. The reason behind each additional step along with its effect on the overall performance is thoroughly analyzed. Extensive experiments are conducted on two face and object datasets which justifies the effectiveness of the proposed approach for handling these real-life challenging scenarios.

Item Type: Conference Poster
Additional Information: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, JUN 18-22, 2018
Department/Centre: Division of Electrical Sciences > Electrical Engineering
Depositing User: Id for Latest eprints
Date Deposited: 21 Feb 2019 05:09
Last Modified: 21 Feb 2019 05:09
URI: http://eprints.iisc.ac.in/id/eprint/61780

Actions (login required)

View Item View Item