Electronic Supplementary Information (ESI)

Electronic and Thermoelectric Properties of Zn and Se Double Substituted Tetrahedrite

Sahil Tippireddy^a, Raju Chetty^b, Krushna Kumari Raut^b, Mit H. Naik^d, Prashanta K.

Mukharjee^c, Manish Jain^d, R. Nath^c, Krzysztof Wojciechowski^b, Ramesh Chandra Mallik^{*a}

^aThermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore

^bFaculty of Materials Science and Ceramics, AGH University of Science and Technology, Cracow, Poland

^cIndian Institute of Science Education and Research, Thiruvananthapuram, India ^dDepartment of Physics, Indian Institute of Science, Bangalore

* Corresponding author Email id: rcmallik@iisc.ac.in

Figure S1: Refined XRD pattern for Cu₁₁Zn₁Sb₄S_{12.75}Se_{0.25} done using Rietveld analysis.

Figure S2: Refined XRD pattern for Cu₁₁Zn₁Sb₄S_{12.5}Se_{0.5} done using Rietveld analysis.

Figure S3: Refined XRD pattern for Cu₁₁Zn₁Sb₄S_{12.25}Se_{0.75} done using Rietveld analysis.

Figure S4: Refined XRD pattern for Cu₁₁Zn₁Sb₄S₁₂Se₁ done using Rietveld analysis.

Figure S5: Refined XRD pattern for Cu₁₁Zn₁Sb₄S₁₁Se₂ done using Rietveld analysis.

Figure S6: X – ray photoelectron spectroscopy (XPS) spectrum of Cu in Cu₁₁Zn₁Sb₄S_{12.5}Se_{0.5}

Figure S7: X – ray photoelectron spectroscopy (XPS) spectrum of Sb in Cu₁₁Zn₁Sb₄S_{12.5}Se_{0.5}

Figure S8: X – ray photoelectron spectroscopy (XPS) spectrum of S in $Cu_{11}Zn_1Sb_4S_{12.5}Se_{0.5}$

Figure S9: Bandstructure of pristine compound Cu₁₂Sb₄S₁₃

Figure S10: Projected density of states (PDOS) of the pristine compound Cu₁₂Sb₄S₁₃

Figure S11: Bandstructure of Zn only substituted compound Cu₁₁Zn₁Sb₄S₁₃

Figure S12: Projected density of states (PDOS) of the Zn only substituted compound

 $Cu_{11}Zn_1Sb_4S_{13}$

Figure S13: Zn 3d states lying around 7 eV below $E_{\rm F}$

Table S1: XPS	peak assignment	corresponding to the	oxidation states	of individual	elements
---------------	-----------------	----------------------	------------------	---------------	----------

Element	Peak	B.E(eV) ^a	Oxidation state
Cu	2p _{3/2}	931.6 eV	+1
	2p _{3/2}	941.7 eV	+2
	2p _{1/2}	951.8 eV	+1
	2p _{1/2}	962.3 eV	+2
Sb	3d _{5/2}	529.3 eV	+3
	3d _{3/2}	538.9 eV	+3
S	2p _{3/2}	160.2 eV	-2
	2p _{3/2}	161.6 eV	-2

^a The binding energy of the XPS peaks are indexed from the NIST database.

For comparison of the Zn (only) and Se (only) substituted samples, Figures S14 – S18 show the transport properties of $Cu_{11}Zn_1Sb_4S_{13}$ (ref: Tippireddy et al., *J. Phys. Chem. C.*, **122**, 8735 - 8749) and $Cu_{12}Sb_4S_{12}Se_1$ (The data reprinted with permission from Lu et al., *Chem. Mater*, 2016, **28**, 1781-1786. Copyright (2016) American Chemical Society).

Figure S15

300 350 400 450 500 550 600 650 700 Temperature (K)

750

Figure S17

0.5-

Figure S18