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Stability and Convergence of Stochastic Approximation 
using the O.D.E. Method 

V.S. Borkar' 

Abstract 

It is shown here that stability of the stochastic approx- 
imation algorithm is implied by the asymptotic stabil- 
ity of the origin for an associated 0.d.e. This in turn 
implies convergence of the algorithm. Several specific 
classes of algorithms are considered as applications. It 
is found that the results provide 

(i) a simpler derivation of known results for reinforce- 
ment learning algorithms; 

(ii) a proof for the first time that a class of asyn- 
chronous stochastic approximation algorithms are con- 
vergent without using any a priori assumption of sta- 
bility. 

(iii) a proof for the first time that asynchronous adap- 
tive critic and &-learning algorithms are convergent for 
the average cost optimal control problem. 

1 Introduction 

The stochastic approximation algorithm considered in 
this paper is described by the d-dimensional recursion 
given for n 2 0 by 

X(" + 1) = X(n) + a(n)[h(X(n)) + M ( n  + l)], (1) 

where X ( n )  = [X, (n) ; . . ,Xd(n) lT  E IRd, h : IRd + 
IRd, and {U(.)) is a sequence of positive numbers. The 
sequence { M ( n )  : n 2 0) is uncorrelated with zero 
mean. 

Though more than four decades old, the stochastic 
approximation algorithm is now of renewed interest 
due to novel applications to reinforcement learning [20] 
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and as a model of learning by boundedly rational eco- 
nomic agents [19]. Traditional convergence analysis 
usually shows that the recursion (1) will have the de- 
sired asymptotic behavior provided that the iterates re- 
main bounded with probability one, or that they visit a 
prescribed bounded set infinitely often with probability 
one [3]. Under such stability or recurrence conditions 
one can then approximate the sequence X = {X(n) : 
n 2 0) with the solution to the ordinary differential 
equation (0.d.e.) 

i ( t )  = h ( z ( t ) )  (2) 

with identical initial conditions z(0) = X(0). 

The recurrence assumption is crucial, but unfortu- 
nately there is no general scheme for verifying this, 
only a repertoire of special techniques, each with its 
own domain of applicability. To mention just two, one 
has techniques based upon the contractive properties or 
homogeneity properties of the functions involved (see, 
e.g., [20] and [13] respectively). 

The main contribution of this paper is to add to this 
collection another general technique for proving sta- 
bility of the stochastic approximation method. This 
technique is inspired by the fluid model approach to 
stability of networks developed in [lo], [ll], which is it- 
self based upon the multistep drift criterion of [15, 161. 
The idea is that the usual stochastic Lyapunov function 
approach can be difficult to apply due to the fact that 
time-averaging of the noise may be necessary before a 
given positive valued function of the state process will 
decrease towards zero. In general such time averaging 
of the noise will require infeasible calculation. In many 
models, however, it is possible to combine time averag- 
ing with a limiting operation on the magnitude of the 
initial state, to replace the stochastic system of interest 
with a simpler deterministic process. 

The scaling applied in this paper to approximate the 
model (1) with a deterministic process is similar to 
the construction of the fluid model of [lo, 111. Sup- 
Eose that the state is scaled by its initial value to give 
X(n)  = X(n)/rnax(lX(O)l,l),  n 2 0. We then scale 
time to obtain a continuous function 4 : IR+ -+ TRd 
which interpolates the values of {g(n)}: At a sequence 
of times { t ( j )  : j 2 0) we set d ( t ( j ) )  = z(j),  and for 
arbitrary t 2 0 we extend the definition by linear inter- 
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polation. The times { t ( j )  : j 2 0) are defined in terms 
of the const.mts { u ( j ) }  used in (1). For any r > 0 the 
scaled function h, : IRd + IRd is given for 2 E IRd by 

h, (z )  = h ( r x ) / r .  (3) 
Then through elementary arguements we find +at the 
stochastic p:rocess 4 approximates the solution 4 to the 
associated 0.d.e. 

i ( t )  = h r ( x ( t ) ) ,  (4) 

with &(O) = +(O) and r = max(lX(O)I, 1). 

With our attention on stability considerations, we are 
most interested in the behavior of X when the magni- 
tude of the initial condition IX(0)l is large. Assuming 
that the limiting function h ,  = lim,.+, h, exists, for 
large initial conditions we find that 4 is approximated 
by the solution 4, of the limiting 0.d.e. 

k ( t )  = h,(x(t)). (5) 
where again we take identical initial conditions 
4, (0) = 4(0). 

So, for largt: initial conditions all three processes are 
approximately equal, 

$%&%qP 

Using these observations we find in Theorem 2.1 that 
the stochastic model (1) is stable in a strong sense pro- 
vided the origin is asymptotically stable for the limiting 
0.d.e. (5). EIquation (5) is precisely the fluid model of 
[lo, 111. 

Thus, the major conclusion of this paper is that the 
0.d.e. method can be extended to establish both the 
stability and convergence of the stochastic approxima- 
tion method, as opposed to only the latter. Though 
the assumptions made in this paper are explicitly mo- 
tivated by applications to reinforcement learning algo- 
rithms for Markov decision processes, this approach is 
likely to find a broader range of applications. 

2 Main Results 

Here we collect together the main general results 
concerning the stochastic approximation algorithm. 
Proofs not included here may be found in [5]. 

We shall impose the following additional conditions on 
the functions { h ,  : r 2 1) defined in (3), and the se- 
quence M == { M ( n )  : n > 1) used in (1). Some relax- 
ations of the assumption (Al)  are discussed in [5]. 

(Al) The function h is Lipschitz, and there exists a 
function h ,  : Etd + IRd such that for all 2, 

lim h, (x )  = h,(x). 
r+w 

Furthermore, the origin in Rd is an asymptoti- 
cally stable equilibrium for the 0.d.e. (5). 

(A2) The sequence {M(n) ,Fn  : n 2 l}, with Fn = 
a ( X ( i ) ,  M ( i ) ,  i I n) ,  is a martingale difference 
sequence. Moreover, for some CO < 00 and any 
initial condition X ( 0 )  E Etd,  n 2 0, 

E [ I I M ( ~  + l)IIz I F ~ I  I C O ( ~  + IV(n)IIZ). 

The sequence { U ( . ) }  is deterministic and is assumed 
to satisfy one of the following two assumptions. Here 
TS stands for ‘tapering stepsize’ and BS for ‘bounded 
stepsize’. 

(TS) The sequence { u ( n ) }  satisfies 0 < U(.) 5 1, n 2 
0, and 

n n 

(BS) The sequence { U ( . ) }  satisfies for some constants 
1 > E > > 0, and all n 2 0, 

- CY 5 U(.) 5 E. 

2.1 Stability and convergence 
The first result shows that the algorithm is stabilizing 
for both the bounded and tapering step size algorithm. 

Theorem 2.1 Assume that ( A l ) ,  (A.2) hold. Then, 

( i )  Under (TS), for  any initial condition X ( 0 )  E IRd, 

s u p ( ( X ( n ) l l  < CO U.S. 
n 

( i i )  Under (BS) there exists CY* > 0 and C1 < 00 such 
that f o r  all 0 < Z < CY* and X ( 0 )  E Etd ,  

limsupE[IIX(n)l12] 5 CI. 
n+m 

0 

An immediate corollary to Theorem 2.1 is convergence 
of the algorithm under (TS). The proof is a stan- 
dard application of the Hirsch lemma (see Theorem 1, 
pp.339, [12], or a complete proof in [5]). 

Theorem 2.2 Suppose that ( A l ) ,  (AZ), (TS)  hold 
and that the 0.d.e. (2) has a unique globally asymp- 
totically stable equilibrium x* .  Then X ( n )  + x* a.s. 
as n + 00 for any initial condition X ( 0 )  E IRd. 0 

We now consider (BS), focusing on the absolute error 
defined by 

e(n)  := IlX(n) - t*II, n 2 0. (6) 
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Theorem 2.3 Assume that ( A l ) ,  (A2)  and (BS) hold, 
and suppose that (2) has ( I  globally asymptotically stable 
equilibrium point x* .  

Then for any 0 < a 5 a*, where a* is introduced in 
Theorem 2.1 (ii), 

(i) For any E > 0 ,  there exists b l  = b l ( ~ )  < CO such 
that 

lim inf P(e(n)  >_ E )  5 blE. 
n + w  

( i i )  If x* is ( I  globally exponentially asymptotically sta- 
ble equilibrium for the 0.d.e. (2), then there ex- 
ists b2 < 00 such that for every initial condition 
X ( 0 )  E E t d ,  

limsup E[e(n)’] 5 bzZ. 
n+oo 

U 

A uniform bound on the mean square error E[e(n)’] 
for n 2 0 can be obtained under slightly stronger con- 
ditions on M via the theory of +irreducible Markov 
chains. We find that this error can be bounded from 
above by a sum of two terms: the first converges to zero 
as a -1 0, while the second decays to zero exponentially 
as n + CO. 

To illustrate the nature of these bounds consider the 
linear recursion 

X ( n + l )  = X(n)+a[- (X(n) -z*)+W(n+l)] ,  12 2 0,  

where { W ( n ) }  is i.i.d. with mean zero, and variance 
U’. This is of the form ( 1 )  with h ( x )  = - ( x  - z*) and 
M ( n )  = W ( n ) .  The error e(n + 1) efined in (6) may be 
bounded as follows: 

2.2 The asynchronous case 
The conclusions above also extend to the model of 
asynchronous stochastic approximation analysed in [7]. 
We now assume that each component of X ( n )  is up- 
dated by a separate processor. We postulate a set- 
valued process {Y(n)} taking values in the set of sub- 
sets of { l 1 2 , . . . , d } ,  with the interpretation: Y ( n )  = 
{ indices of the components updated at  time n}. For 
n 2 0 , l L  i 5 d ,  define 

n 

m=O 

the number of updates executed by the i-th processor 
up to time n. A key assumption is that there exists a 
deterministic A > 0 such that for all i ,  

lim inf 2 A a.s. 
n+w n 

This ensures that all components are updated compa- 
rably often. 

At time n, the kth processor has available the following 
data: 

(i) Processor (k) is given v(lc,n), but it may not have 
n, the ‘global clock’. 

( i i )  There are interprocessor communication delays 
r k j ( n ) ,  1 5 k , j  5 d ,  n 2 0 ,  so that at time n, 
processor (k) may use the data X j ( r n )  only for 
m 5 n - r k j ( n ) .  

We assume that r k k ( n )  = 0 for all n,  and that { r k j ( n ) }  
have a common upper bound 7 < CO ([7] considers a 
slightly more general situation.) 

To relate the present work to [7] ,  we recall that the 
‘centralized’ algorithm of [7] is 

E[e(n + l)’] 5 a’u’ + ( 1  - a)’E[e(n)’] 
5 a u 2 / ( 2  - a )  + exp(-2an)E[e(O)’], n 2 0.  X ( n  + 1) = X ( n )  + a ( n ) f ( X ( n ) ,  W ( n  + 1 ) )  

where { W ( n ) }  are i.i.d. and F ( z )  := E[f(z, W ( l ) ) ]  is 
Lipschitz, The correspondence with the present set-up 
is obtained by setting h(z )  = F ( x )  and 

For a deterministic initial condition X ( 0 )  = z, and any 
E > 0, we thus arrive at the formal bound, 

. .  
where B1 , B2 and E O  are positive-valued functions of a. 
The bound ( 7 )  is of the form that we seek: the first term 
on the r.h.s. decays to zero with a, while the second de- 
cays exponentially to zero with n. However, the rate of 
convergence for the second term becomes vanishingly 
small as a -1 0. Hence to maintain a small probability 
of error the variable a should be neither too small, nor 
too large. This recalls the well known tradeoff between 
mean and variance that must be made in the applica- 
tion of stochastic approximation algorithms. A bound 
of this form carries over to the nonlinear model under 
some additional conditions (see [5]) .  

for n 2 0. The asynchronous version then is X i ( n  + 
1) = 

Xi(.) + a ( . ( i , n ) ) f ( X i ( n  - r i i ( n ) ) , . . .  (8) 
. . . ,  X d ( n  - m ( n ) ) , W ( n +  l ) ) I { i  E Y(n)}, 

for 1 5 i 5 d .  Note that this can be executed by the i- 
th processor without any knowledge of the global clock 
which, in fact, can be a complete artifice as long as 
causal relationships are respected. 

The analysis presented in [7] depends upon the follow- 
ing additional conditions on {.(.)}: 
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(i)  a ( n  + 1) 5 a(.) eventually; 

(ii) For x E (0, l ) ,  

(iii) For,x E (0, l),  

supa([zn])/a(n) < CO; 
n 

where [ . ]  stands for ‘the integer part of ( . )’. 

A fourth condition is imposed in [7], but this becomes 
irrelevant when the delays are bounded. Examples of 
{U(.)} satisfying the (i)-(iii) are a(.) = l / ( n  + l ) ,  or 
1 / ( 1 +  nlog(n + 1)). 

As a first simplifying step, it is observed in [7] that 
{ Y ( n ) }  ma:y be assumed to be singletons without any 
loss of generality. We shall do likewise. What this 
entails is simply unfolding a single update at time n 
into lY(n)I separate updates, each involving a single 
component. This blows up the delays at most d-fold, 
which does not affect the analysis in any way. 

The main result of [7] is the analog of our Theorem 2.2 
given that the conclusions of our Theorem 2.1 hold. 
In other words, stability implies convergence. Under 
( A l )  and (A2),  our arguments above can be easily 
adapted to show that the conclusions of Theorem 2.2 
also hold for the asynchronous case. One argues ex- 
actly as above and in [7] to conclude that the suitably 
interpolated and rescaled trajectory of the algorithm 
tracks an appropriate 0.d.e.. The only difference is a 
scalar facto:r l / d  multiplying the r.h.s. of the 0.d.e. (i.e., 
i ( t )  = -h(x( t ) ) ) .  This factor, which reflects the asyn- 
chronous sampling, amounts to a time scaling that does 
not affect the qualitative behavior of the 0.d.e. 

1 
d 

Theorem :2.4 Under the conditions of Theorem 2.2 
and the above hypotheses on { ~ ( n ) } ,  { Y ( n ) }  and 
{ ~ i j ( n ) } ,  the asynchronous iterates given b y  (10) re- 
main a . ~ .  bounded and (therefore) converge to x* a . ~ .  

0 

3 Reinforcement learning 

As both an illustration of the theory and an important 
application in its own right, in this section we analyse 
reinforcement learning algorithms for Markov decision 
processes. The reader is referred to [4] for a general 
background of the subject and to other references listed 
below for further details. 

3.1 Markov decision processes 
We consider a Markov decision process CP = { @ ( t )  : 
t E Z+} taking values in a finite state space S = 

{ 1 , 2 ,  . . . , s} and controlled by a control sequence Z = 
{ Z ( t )  : t E ++} taking values in a finite action space 
A = {ao ,  . . . , U,.} .  We assume that the control sequence 
is admissible in the sense that Z ( n )  E r{(a(t) : t 5 n }  
for each n. We are most interested in stationary poli- 
cies of the form Z ( t )  = w(@(t)), where the feedback law 
w is a function w:S + A .  The controlled transition 
probabilities are given by p ( i , j ,  U )  for i, j E S,  a E A.  

Let c : S x A + R be the one-step cost function, and 
consider first the infinite horizon discounted cost con- 
trol problem of minimizing over all admissible 2 the 
total discounted cost 

where ,f3 E ( 0 , l )  is the discount factor. The minimal 
value function is defined as 

V(i) = minJ(i ,  Z), 

where the minimum is over all admissible control se- 
quences 2. The function V satisfies the dynamic pro- 
gramming equation 

i E S, and the optimal control minimizing J is given 
as the stationary policy defined through the feedback 
law w* given as any solution to 

In the average cost optimization problem one seeks to 
minimize over all admissible 2, 

- n-I 

(9) 

3.2 Q-learning 
If we define Q-values via 

Q(i, a)  = c ( i ,  a)  + P x p ( i ,  j ,  a)V(j), 

then V ( i )  = mina Q(i,  a)  and the matrix Q satisfies 

i E S, a E A ,  
j 

for i E S,a E A.  If the matrix Q can be computed via 
value iteration or some other scheme then the optimal 
control is found through a simple minimization. If tran- 
sition probabilities are unknown so that value iteration 
is not directly applicable, one may apply a stochastic 
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approximation variant known as the Q-learning algo- Here {Vn} are s-vectors and for each i, { G n ( i ) }  are 
rithm of Watkins [l, 20, 211. This is defined through r-vectors lying in the simplex {z E IR' I x = 
the recursion Qn+l(i ,  U )  = [xl,...,zr],zi 2 O,Cizi 5 1). r ( . )  is the projection 

onto this simplex. The sequences { ~ ( n ) } ,  {b(n)} satisfy 
Qn(i,a)+a(n)[pm~Qn(W,+i(i ,a) ,b)+c(i ,a)-Qn(i,a)] ,  C n a ( n )  = C,b(n) = ~ ; ) , C , a ( n ) ~  < ~ ; ) , C , b ( n ) ~  < 

co,a(n) = o ( b ( n ) ) .  The rest of the notation is as fol- 
i E s, a E A, where Wn+l (i, a)  is an independently lows: For 1 5 C 5 r,  et  is the unit r-vector in the t-th 
simulated S-valued random variable with law p ( i ,  ., U ) .  coordinate direction. 

i E S,a E A. The martingale is given by M ( n  + 1) = 
Given rn(i) ,  ~ * ( i )  is an A-valued random variable 
independently simulated with law rn (i). Likewise, 
Wn(i,$n(i)) are S-valued random variables which 
are independently simulated (given &(i)) with law 
p ( i ,  ., &(i)) and {qn(i ,  a t ) }  are S-valued random vari- 
ables independently simulated with law p ( i ,  ., at )  re- 
spect ivel y. 

The different choices of stepsize schedules for the two 
iterations ( l l ) ,  (13) induces the 'two time-scale' effect 
discussed in [6]. Thus the first iteration sees the policy 
computed by the second as nearly static, thus justify- 

[Mia(n + l ) ] i ,a  with Mia(n + 1) = 

P(+nQn(Wn+l(i,a),b)-~p(i,j,a)(m~nQn(j,b))), 
j 

i E S,a E A.  Define F ( Q )  = [Fia(Q)]i,a by 

Pia (&)  = P C p ( i , j , a ) y i n & ( j , b )  + c(i ,a).  
j 

Then h(&) = F(Q)  - Q and the associated 0.d.e. is 

Q = F(Q)  - Q := h(Q). (lo) 

The map F : IR"(r+l) + I R s x ( r + l )  is a contraction 
w.r.t. the max norm 11 . 11,. The global asymptotic 
stability of its unique equilibrium point is a special case 
of the results of [ g ] .  This h( . )  fits the framework of our 
analysis, with the (i, a)-th component of h,(Q) given 

i E S , a  E A. This also is of the form h,(Q) = 
F,(Q) - Q where F,( . )  is an 11.11,- contraction, and 
thus the asymptotic stability of the unique equilibrium 
point of the corresponding 0.d.e. is guaranteed (see [9] ) .  
We conclude that assumptions (Al) and (A2) hold, and 
hence also Theorems 2.1-?? hold for the Q-learning 
model. 

ing viewing it as a fixed-policy iteration. In turn, the 
second sees the first as almost equilibrated, justifying 
the search sheme for minimization over A. See [14] for 
details. 

The boundedness of {??in} is guaranteed by the projec- 
tionl?( .). For {Vn},  the fact that b(n) = .(U(.)) allows 
one to treat Z n ( i )  as constant, say ?i(i) - see, e.g., [14]. 
The appropriate 0.d.e. then turns out to be 

where the ith component of G : IR3 -+ IRs is defined 
by : 

3.3 Adaptive critic algorithm 
Next we shall consider the adaptive critic algorithm 
which may be considered as the reinforcement learning 
analog of policy iteration (see [2, 141 for a discussion). 
There are several variants of this, one of which, taken 
from [14], is as follows: For i E S ,  Vn+l(i) = 

Once again, G( . )  is an 11 .)I,-contraction and it follows 
from the results of [9] that (14) is globally asymptot- 
ically stable. The limiting function h,(z) is again of 
the form h,(z) = Gm(z) - z with G,(z) defined so 
that its i-th component is 
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Analogous results have been obtained for the average 
cost optimd control problem. Asynchronous versions 
of all the above can be written down along the lines of 
(10). Then by Theorem 2.4, they have bounded iterates 
a s .  The important point to note here is that to date, 
a s .  boundedness for &-learning and adaptive critic is 
proved by &her methods for centralized algorithms [l], 
[13], [20]. For asynchronous algorithms, it is proved 
for the discounted cost only [l], [14], [20]. See [5] for 
further details. 
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