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Introduction

In tropical ecosystems, termites undoubtedly play an impor-
tant role in influencing several key ecological functions such 
as those regulating soil dynamics, nutrient cycling and lit-
ter decomposition (e.g., Black and Okwakol 1997; Holt 
and Lepage 2000). Their ecological success relies on their 
ability to consume ligno-cellulosic substrates, produce soil 
biogenic structures (e.g., mounds and sheetings) and their 
complex social organization. Indeed, termites are euso-
cial insects and their colonies are composed of individuals 
divided into well-differentiated castes where each group has 
specific tasks (workers search for food, build or repair the 
termitaria, care for eggs and siblings, etc. while soldiers are 
devoted to protecting the colony) (e.g., Grassé and Noirot 
1947; Badertscher et al. 1983; Thorne 1997; Roisin 2000; 
Ajayi 2012; Chouvenc et al. 2015). The role of polyethism, 
or division of labor, has been reported for several termite 
species, including fungus-growing termite species, where 
physiological differences in gut contents and labial gland 
depend on the age of individuals and are task-related (Hinze 
et al. 2002). For instance, Badertscher et al. (1983) sug-
gested that a widespread rule in social insects is that young 
major and minor workers share the interior tasks while the 
older workers perform tasks outside the nest. Although sol-
diers and workers share numerous activities, including fluid 
transfer via trophallaxis (Spragg and Paton 1980; Cabrera 
and Rust 1999; Suarez and Thorne 2000; Machida et al. 
2001; Nalepa 2015), differences in the nutritional physiol-
ogy and chemical content (e.g. protein digestibility, tannin 
content) among termite castes have also been shown (Roisin 
2000; Suarez and Thorne 2000; Ajayi 2012). Consequently, 
it is commonly assumed that the biochemical and organiza-
tional properties of termite colonies evolve with time, among 
castes and are influenced by the environment (Luykx 1986; 
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Darlington and Dransfield 1987; Waller and La Fage 1988; 
Hinze and Leuthold 1999; Liu et al. 2005a; Chouvenc and 
Su 2014).

Infrared spectroscopy is rapidly gaining popularity among 
biologists for estimating soil properties (e.g., Rossel et al. 
2006; Reeves et al. 2010; Cécillon et al. 2008; Gobrecht 
et al. 2014; Conforti et al. 2015; Clairotte et al. 2016; Mad-
havan et al. 2016), determining the origin of soil biogenic 
aggregates produced by termites and earthworms (Hedde 
et al. 2005; Velasquez et al. 2007; Jouquet et al. 2010; Bot-
tinelli et al. 2013) or characterizing soil nematode communi-
ties and differentiating termite species (Barthes et al. 2011; 
Jouquet et al. 2014) based on their specific biochemical 
fingerprints. The success of this approach relies in its fast, 
easy and low-cost implementation and because each sample 
is assigned to a specific chemical fingerprint. In this study, 
we examined whether mid-infrared reflectance spectroscopy 
(MIRS) could also be used to differentiate termite colonies 
from the same species, and thus constitute a relevant alter-
native to the traditional approaches which rely on the costly 
and complex study of agonistic behavior, cuticular hydro-
carbon profiles, or the specific genetic fingerprints of termite 
colonies (Thorne and Haverty 1991; Haverty et al. 1999; 
Bulmer et al. 2001; Chouvenc and Su 2017). Our hypothesis 
was that the biochemistry of soldiers and workers’ bodies 
(head versus abdomen) differently reflect the ecology of 
termite colonies such as their age and/or the environment 
where they live.

Materials and methods

Study site and model

Samples were collected in the Mule Hole experimental 
watershed (4.1 km2). This dry deciduous forest is located 
in the Bandipur Tiger reserve in southern India at 11°44′N 
and 76°26′E (Karnataka state, Chamarajanagar district). The 
Mule Hole watershed is located in the sub-humid zone of 
the sharp climatic gradient induced by the Western Ghats. 
As a result of the short-term variability of the southwest 
monsoon, the experimental watershed is characterized by 
rainfall ranging from 700 to 1500 mm year− 1, with an aver-
age over the last 30 years of 1100 mm year− 1. The eleva-
tion of the watershed ranges from 820 to 910 m a.s.l. The 
relief is mostly undulating with gentle slopes. The soil is 
mainly composed of well-drained Ferralsols and imper-
vious Vertisols (Barbiero et al. 2007; Braun et al. 2009). 
In this environment, the fungus growing termite species 
Odontotermes obesus (Isoptera, Macrotermitinae) builds 
abundant and monocalic (i.e. one nest per colony) cathedral 
mound nests with several ridges and conical turrets that are 
very similar in their shapes to those made by Macrotermes 

bellicosus in Africa (Roonwal 1970, 1978; Jouquet et al. 
2015, 2016). Nine termite mounds were randomly selected 
in the study site. Their height and GPS coordinates were 
recorded (Fig. 1).

Termite sampling and MIRS analyses

Two turrets in each mound were broken to stimulate termite 
building activity. Termites were then collected after 5, 10 
and 15 min and preserved in 80% alcohol. In total, approxi-
mately 800 individuals were sampled per colony (n = 9). 
They were later sorted into soldiers, major and minor work-
ers in the laboratory and the proportion of each category 
was counted. For each group, half of the individuals were 
kept intact and half were separated into head or abdomen 
samples. Termite individuals or their head or abdomen were 
dried at 30 °C for two weeks and then were manually ground 
to a powder < 1 mm. Individuals weighed 0.40, 0.26 and 
0.52 mg on average, and the head of individuals represented 
37, 28 and 46% of the body mass, for soldiers, minor and 
major workers, respectively. Composite samples from mul-
tiple individuals or their head or abdomen (w ~ 25–50 mg) 
were scanned with a spectrometer (FTIR 660, Agilent ex-
Varian) in the mid-infrared (MIR) spectral range from 400 to 
4000 cm− 1 with a KBr separator and a Silicon detector. The 
reflectance measurements were made at 2 cm− 1 intervals but 
a 20 cm− 1 interval was considered in the analysis. Diffuse 
reflectance (DR) was transformed to the second derivative 
according to general procedures recommended to remove 
baseline shifts and separate overlapping absorption (Reeves 
et al. 2002).

Statistical analyses

Principal component analyses (PCA) were carried out to 
compare colonies based on the spectral profiles of their 
soldiers, minor and major workers [n = 9 colonies × 3 cat-
egories (soldiers, minor and major workers)]. Monte-Carlo 
permutation tests were used to assess the statistical sig-
nificance of differences between colonies from their PCA 
scores with 999 simulations. ANOVA were then carried out 
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Fig. 1   Distribution of the termite mounds (colonies 1–9) in the study 
site
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to determine significant differences between colonies based 
on their projections on the first axis of the PCA (since this 
axis explained most of the variation).

The influence of the environment on the spectral signature 
of colonies was then tested by comparing the Euclidean dis-
tances between colonies from the PCA to their geographical 
distances using a Mantel test. Because the precision of the 
GPS was approximately 7 m, the Euclidean distances were 
averaged for geographical distances < 10 m. A regression 
model was then carried out to assess significant relationships 
between Euclidean distances in the PCA and geographical 
distances, with n = 16.

Relationships between termite mound height and MIRS 
variables were tested using Partial Least Squares Regres-
sions (PLSR, Mevik and Wehrens 2007). PLSR were used 
to fit linear regression models by projecting predicted and 
observable variables from the MIRS data as a function of 
the termite mound height. The most important MIR wave-
lengths were determined using the variable importance on 
the projection (VIP) method, which computes scores to each 
wavelength (Tenenhaus 1998; Cécillon et al. 2008). Models 
were then tuned to minimize the Root-Mean-Square Error of 
Cross-Validation (RMSECV) and to maximize the Q2 value 
(cross-validated R2, which gives the predicting ability of the 
model). VIP wavelengths (n = 5) were then used to carry out 
another PCA comparing colonies based on the spectral pro-
files of their soldiers, minor or major workers (n = 9 samples 
in all cases). For the best PLSR model, a linear regression 
was finally used to assess the relationships between the coor-
dinates of the samples on the first axis of the PCA and the 
height of their termite mounds.

All statistics were calculated using R studio and R version 
3.2.1. (R Development Core Team 2012) with the ade4, pls 
and mdatools packages for PCA, PLSR, Mantel and VIP test 
analyses, respectively. Differences were declared significant 
at the 0.05 probability level.

Results

Differentiation of termite colonies

A large number of the individuals collected were soldiers 
(45.9%, Standard Error SE = 4.5) or minor workers (42.9%, 
SE = 5.0), and only a small proportion were major workers 
(11.2%, SE = 2.2). The proportion of soldiers, minor and 
major workers in each mound was constant across the study 
site and termite mound height did not influence community 
structure (P > 0.05 in all cases, data not shown).

PCA of the spectral signatures of the nine colonies were 
carried out on the whole body, or the head and abdomen only 
(Fig. 2a, b, c). Samples (soldiers, minor and major workers) 
were distributed along the first two axes which on average 

only explained ~ 30% of the total variability (~ 20% for the 
first axis and ~ 10% for the second). Individual colonies 
could not be differentiated according to MIR fingerprints 
of whole bodies (P > 0.05). In contrast, some colonies were 
separated mainly along the first axis of the PCA when analy-
ses were carried out on the head or abdomen data, with less 
overlap when abdomen data were considered alone (ANOVA 
models from the projection of the samples on the first axis, 
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Fig. 2   Projections of the samples (soldiers, minor and major work-
ers from the nine colonies) on the first (F1) and second (F2) princi-
pal components showing their explained variance when termites were 
considered as a whole (a) or their head (b) or abdomen (c) analyzed 
separately
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P < 0.001 for both the head and the abdomen). Specific MIR 
signatures were found for most of the colonies when abdo-
men data were used, with the exception of colonies 1, 3 and 
5 on the one hand and colonies 9 and 7 on the other hand.

Influence of the distance between colonies

The observed overlaps in MIR fingerprints for colonies, as 
shown in Fig. 2b, c, could not be explained by their geo-
graphical proximity (Mantel test, P > 0.05), except when the 
spectral signatures of minor workers’ heads were considered 
(P < 0.05, Table 1). Indeed, a linear regression model was 
measured for the geographical distance matrix between colo-
nies and the Euclidean distance matrix of their minor work-
ers’ heads (y = 0.034 x + 7.76, R2 = 0.32, P = 0.021, Fig. 3).

Relationship between termite colony and mound height

With a RMSECV between 30 and 45 and Q2 from − 0.94 to 
0.06, the worst PLSR models (lowest R2 and highest RMSE 

values) were obtained with soldier and major worker heads 
and with the whole body of major workers (Table 2). Inter-
mediate models were obtained with the other treatments 
with a Q2 from 0.29 to 0.55 and RMSECV ~ 25. The best 
PLSR model was measured with major worker abdomens 
where the RMSECV and Q2 reached 14.81 and 0.79, respec-
tively (Fig. 4). The VIP wavelengths used for the best PLSR 
model were from the MIR regions at 960, 1540, 1680, 1700 
and 1720 cm− 1. Those VIP wavelengths were then used to 
carry out a PCA. Coordinates of colonies on the first axis 
of this PCA, which explained 87.2% of the total variability, 
were then linearly related to mound height (h (cm) = 42.45 
x + 95.18, R2 = 0.46, P = 0.046, Fig. 5).

Discussion

The recent and growing literature on the application of infra-
red spectroscopy in ecology has shown that this technique 
is useful for differentiating species (Jouquet et al. 2014) and 
the specific soil properties of soil biogenic structures (Hedde 
et al. 2005; Velasquez et al. 2007; Cécillon et al. 2008; Jou-
quet et al. 2009, 2010; Bottinelli et al. 2013). In this study, 
we examined whether this approach could also be useful for 
differentiating colonies from the same species, namely, O. 
obesus.

Table 1   Results of the Mantel test measuring correlations (r and P) 
between the geographical distance matrix from the nine termite col-
onies (in m, see Fig. 1) and the Euclidean distance matrix obtained 

from the first and second axes of the PCA representing the spectral 
fingerprints of soldiers, major and minor workers from the nine colo-
nies (see Fig. 2)

The whole body, the head or the abdomen of soldiers, minor or major workers were considered separately (n = 9 in all cases). Significant results 
are highlighted in bold

Full body head Abdomen

Soldiers r = − 0.32, P = 0.983 r = 0.01, P = 0.324 r = − 0.12, P = 0.711
Minor workers r = − 0.16, P = 0.870 r = 0.30, P = 0.032 r = − 0.11, P = 0.764
Major workers r = − 0.01, P = 0.508 r = − 0.06, P = 0.693 r = − 0.26, P = 0.958
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Fig. 3   Relationship between the geographical distance matrix 
between colonies and the Euclidean distance matrix of their minor 
worker heads from the PCA shown in Fig. 2. The regression line is 
represented, n = 16

Table 2   Main results of the best PLSR models testing relationships 
between the measured and predicted termite mound heights from 
the spectral signatures of soldiers, minor workers or major workers 
(n = 9) and after selection of the five most important variables on the 
projections (VIP)

R2 coefficient of determination, RMSE root mean squared error

Full body Head Abdomen

Soldiers R2 = 0.53
RMSE = 22.10

R2 = 0.06
RMSE = 31.21

R2 = 0.42
RMSE = 23.51

Minor workers R2 = 0.29
RMSE = 27.29

R2 = 0.48
RMSE = 22.94

R2 = 0.55
RMSE = 21.31

Major workers R2 = − 0.45
RMSE = 38.96

R2 = − 0.94
RMSE = 44.82

R2 = 0.79
RMSE = 14.81
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Termite castes

Termites are eusocial insects and their colonies include 
soldiers and workers, which each play specific roles. Most 
termite colonies include specific proportions of soldiers 
and workers (Haverty 1977; Haverty and Howard 1981), 
although these proportions can change according to the 
size and age of the colonies (Badertscher et al. 1983; Luykx 
1986; Chouvenc and Su 2014) or be influenced by the envi-
ronment (Waller and La Fage 1988; Liu et al. 2005a, b). In 
our study, only individuals that were actively contributing 

to repair the broken parts of the mounds were sampled. The 
proportions of soldiers and major or minor workers were 
constant regardless of termite mound height, used here as 
a proxy for colony age (Darlington and Dransfield 1987).

Differentiating termite colonies with their specific 
spectral fingerprints

In agreement with our hypothesis, termite colonies dis-
played specific fingerprints, which were mainly observed 
when termite abdomens were analyzed separately from 
heads. Results of the PLSR models showed that mound 
height did affect the specific MIR fingerprints of termite 
colonies, especially when major worker abdomens were 
analyzed. The VIP method stressed the importance of the 
wavelengths from 1540 to 1720 cm− 1 for improving the 
PLSR model. These wavelengths are mainly attributable to 
the double-bond region with carbonyl (C=O) and aromatic 
alkene (C=C) stretching (Stuart 2004; Madari et al. 2006). 
The PLSR model of major worker abdomen data was also 
performed with wavelength values at 960 cm− 1, which is 
characteristic of the ‘fingerprint region’ with single bond 
bending (e.g., C–H, C–C–C) or stretching (e.g., C–C, C–O, 
C–N, N–O) (Stuart 2004). In our study the origin of the 
molecules involved in the PLSR model was not determined. 
However, despite the fact that a very low number of sam-
ples was used (n = 9 colonies), our model made accurate 
predictions of termite mound height and a significant linear 
regression was measured when termite mound height was 
plotted as a function of the first PCA axis obtained from the 
spectral signatures of major worker abdomens. As observed 
in Africa and the Amazon, termite mound size and proper-
ties can be considered as a proxy for termite colony size and 
age (Darlington and Dransfield 1987; Josens and Soki 2010; 
Pequeno et al. 2013). Although this relationship has never 
been shown for O. obesus, our results suggest that the chemi-
cal fingerprints of colonies are not constant but evolve with 
the aging of the colonies and their exo-symbiotic fungus, 
together with the growth of their mound nests. However, 
we cannot discard the hypothesis that the MIR fingerprints 
of termite colonies also reflect their food resources, and that 
termites adapt the size of their mounds correspondingly (e.g. 
for controlling humidity and temperature) (Turner 2004). 
This hypothesis is in agreement with Nutting (1969) who 
showed that termite colonies can follow their own timetables 
for development and reproductive cycles. It is also consist-
ent with Li et al. (2015) who showed that the biochemical 
composition of insects is highly variable and reflects their 
developmental stage and diet. Obviously, these hypotheses 
do not contradict each other and they rather confirm the 
close relationship between the ecology of termites and their 
specific biochemical signatures.
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The spectral signatures of minor worker heads were also 
useful for differentiating colonies based on their geographi-
cal distances. This result suggests that the environmental 
properties (e.g., microclimate and type and availability of 
food) and possibly intra- and inter-specific competition for 
food and space (Korb and Linsenmair 2001; Davies et al. 
2003) also influence the biochemical fingerprints of termite 
colonies. Interestingly, this relationship was only measured 
when the data for the heads of minor workers were used in 
the analysis. Thus this finding suggests that this part of the 
body better reflects the influence of the environment than 
the abdomen.

Conclusion

This study highlights the interest of using MIRS for dif-
ferentiating termite colonies. The identification of termite 
biochemical fingerprints is undoubtedly easier, faster and 
cheaper than using DNA to study termite populations 
(Attignon et al. 2005). This finding is important because it 
offers a new perspective for studying the ecology of termites 
and potentially other social insects.

In our experiment, analyses were carried out on a large 
number of samples (> 30 individuals per MIRS analysis), 
due to the low weight of individual termites. Therefore, a 
future perspective of this study would be to determine if 
the MIRS signature of individual termites can reliably be 
assigned to those of colonies. If so, this method would be 
useful for identifying the origin of termites that are observed 
foraging outside of nests, and especially those from colonies 
that are close to one another.

Another important conclusion of this study is that it pro-
vides further evidence for a link between the physiological 
states of termite populations, their environment and their 
mound properties (their height in this case). As outlined by 
Pequeno et al. (2013), the termite colony-nest system can be 
seen as a cohesive phenotype at the core of termite ecology 
and evolution. Further studies are now needed to understand 
the physiological mechanisms behind the models used in this 
study. We are especially interested in examining why models 
of data from minor worker heads appear to better reflect the 
termite colony environment whereas models of abdomen 
data from major workers better reflects their age.
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