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Abstract: We study local quenches in 1+1 dimensional conformal field theories at large-c

by operators carrying higher spin charge. Viewing such states as solutions in Chern-Simons

theory, representing infalling massive particles with spin-three charge in the BTZ back-

ground, we use the Wilson line prescription to compute the single-interval entanglement

entropy (EE) and scrambling time following the quench. We find that the change in EE is

finite (and real) only if the spin-three charge q is bounded by the energy of the perturbation

E, as |q|/c < E2/c2. We show that the Wilson line/EE correlator deep in the quenched

regime and its expansion for small quench widths overlaps with the Regge limit for chaos

of the out-of-time-ordered correlator. We further find that the scrambling time for the two-

sided mutual information between two intervals in the thermofield double state increases

with increasing spin-three charge, diverging when the bound is saturated. For larger values

of the charge, the scrambling time is shorter than for pure gravity and controlled by the

spin-three Lyapunov exponent 4π/β. In a CFT with higher spin chemical potential, dual

to a higher spin black hole, we find that the chemical potential must be bounded to ensure

that the mutual information is a concave function of time and entanglement speed is less

than the speed of light. In this case, a quench with zero higher spin charge yields the same

Lyapunov exponent as pure Einstein gravity.
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1 Introduction

The incorporation of ideas from quantum chaos is an exciting development in the study of

real time dynamics of quantum field theories (QFTs) and its implications for gravitational

systems which are holographically dual to them [1–7]. In particular, the bound proposed

in [1, 2] identifies black holes in Einstein gravity as possessing the fastest possible scram-

bling time which controls the onset of chaotic exponential decay of correlators in large-N

quantum field theories with gravity duals. This proposal, which is fascinating in its own

right, also has implications for theories of gravity which are potentially dual to conformal

field theories (CFTs) at large-N or large central charge c.

This work was motivated in part by the observations of [8] wherein restrictions on

theories of gravity containing higher spin fields were deduced by analysing the temporal

behaviour of out-of-time-ordered (OTO) correlators. In particular, it was argued that

for CFTs with only a finite number of higher spin currents, OTO correlators can exhibit

unbounded growth in time and violation of the proposed lower bound [1, 2] on scrambling

times. The conclusions were drawn by computing correlators of two heavy (H) and two

light (L) operators using the semiclassical WN conformal blocks at large c [9–12].

In this paper we focus attention on the temporal behaviour of entanglement entropies

in CFT2 following a local quench [13–18] by a CFT primary O carrying higher spin charge.

In the local quench the equilibrium density matrix ρβ = e−βH of the CFT at some tem-

perature β−1 is perturbed locally at time t = 0:

ρβ → O(iε) ρβ O†(−iε) , (1.1)

and the state then evolved in time. The parameter ε controls the width of the excitation

produced by the perturbation. Our approach is to adapt the holographic AdS3 calculation

in Einstein gravity of [19, 20] to higher spin theory; specifically, the SL(3,R) × SL(3,R)

Chern-Simons theory which extends Einstein gravity to include a spin three field. The local

quench of the CFT in a thermal state is described in Einstein gravity by the backreacted

geometry due to a particle (conical deficit) freely falling into the BTZ black hole. This

geometry can be obtained by a coordinate transformation and boost [14, 19] on a static

conical deficit state in global AdS3. The bulk diffeomorphism acts as a conformal trans-

formation on the boundary. In the higher spin theory, formulated as Chern-Simons theory,

there is no gauge-invariant notion of geometry. Boundary CFT entanglement entropies are

computed by Chern-Simons Wilson lines [21, 22] anchored to the endpoints of intervals on

the conformal boundary of AdS3. We compute such Wilson lines in a static, spin-three

charged, conical deficit state, characterised by a flat Chern-Simons connection, and act

on the result by the same boundary conformal transformation which maps the uncharged

deficits to infalling massive particles in the BTZ background. This is then interpreted

as a finite width local quench by an operator carrying spin-three charge, with the CFT

originally in the zero charge thermal ensemble.1 The generalisation of this approach to

local quenches in a grand canonical ensemble for higher spin charge is not straightforward.

1It is expected that the Wilson line/EE computation should be equivalent to the evaluation of HHLL

correlators using conformal blocks at large c [11, 12].
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We can, however, use existing CFT results for finite spin-three chemical potential [23, 24]

and properties of HHLL correlators to infer what happens in the grand canonical ensem-

ble when the perturbing operator O carries no higher spin charge. Our main findings are

summarised below:

• The quench generated by the operator O with conformal dimension ∆O and spin-

three quantum number2 W is a pulse of width ε � β. It carries an energy density

〈T00〉 ∼ ∆O/ε
2 and spin three charge density 〈W 〉 ∼ W/ε3. In order to keep the

total energy and charge of the pulse fixed in the small ε limit, we take ∆O = εEπ
and W = ε2 4q

π2 . Furthermore, to ensure that the effect of the quench remains non-

vanishing, we also need to keep E/c and q/c fixed in the large-c limit. In this

double-scaled limit, the Wilson line computation of the single interval entanglement

entropy following the quench then yields a finite “jump” in the entanglement entropy

∆SEE when the pulse enters the interval of interest. We find that with non-zero spin

three charge, ∆SEE is not positive definite, and furthermore, remains real and finite

only if the condition,
|q|
c
<

E2

c2
(1.3)

is satisfied.

• The temporal regime wherein the excitation is deep in the interval of interest, and

∆SEE has saturated, can be accessed by a small width expansion of the Wilson line

correlator in the double-scaled limit explained above. We find that this expansion

when expressed in terms of the conformal cross-ratio z, coincides with the expansion

of the OTO correlator in the Regge limit for chaos in [8]. Although it is no surprise

that the Wilson line coincides with the HHLL correlator in the large c semiclassical

limit, it is interesting that the two physically distinct phenomena originate from

the same expansion of the correlator when expressed in terms of the appropriate

conformal cross-ratio z. Put differently, while ∆SEE and the late time OTO correlator

have different time dependence, both are determined by the small z expansion of a

particular branch of the same analytic function of z.

• We use the Wilson line correlator to calculate the scrambling time following the ap-

proach of [20]. Specifically, this involves taking the CFT in the thermofield double

state and calculating the mutual information of two intervals, one on each copy of

the CFT, in the presence of the local quench perturbation introduced on one copy.

Again, we use the SL(3,R) Wilson line for the charged conical deficit to calculate

the mutual information in the thermofield double state. This is achieved by iden-

tifying the correct conformal transformations which map boundary points in global

2W may be viewed as a dimensionless number appearing in the OPE of the spin three current W with

O, assuming that the latter transforms as a primary under the spin three current

W (x)O(y, ȳ) ∼ W
(x− y)3

O(y, ȳ) . (1.2)
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AdS3 to the two sets of boundary points in the Kruskal extension of the eternal BTZ

black hole [20]. The mutual information then receives connected and disconnected

bulk contributions, and the time at which it vanishes is identified as the scrambling

time (3.28) which is evaluated in the double-scaled limit we have described previ-

ously. The result has the feature that for small spin three charge q, the scrambling

time increases beyond its pure Einstein gravity value until it diverges precisely when

|q|/c = E2/c2. Interestingly, the formula (3.28) continues to makes sense also above

this bound, so that in the limit that the spin three charge dominates, the scrambling

time is shorter than pure gravity and the associated Lyapunov exponent is 4π/β, in

line with the arguments of [8] where a Lyapunov exponent 2π(N−1)/β was obtained

in the presence of a spin-N charge.

• A question of particular interest is how the computations above (and the arguments

of [8]) generalise to the situation where the CFT is held at a chemical potential for

higher spin charge. One reason this is nontrivial from a bulk perspective is that,

in the absence of an invariant geometrical picture in the Chern-Simons formulation,

it is not known whether the putative backreacted shockwave solution in the higher

spin black hole background [25, 26] can be obtained by systematically transforming a

conical deficit solution. We do not attempt this generalisation in this work. Instead,

we focus our attention on two questions which can both be answered with currently

known CFT and bulk results at finite spin three chemical potential. The first of these

is to consider the thermofield double state for the spin three black hole (without any

external perturbation or quench) of [25, 26] and find the time evolution of mutual

information for two intervals in the two different copies under forward time evolution

of both copies [27, 28]. This can be obtained without explicit knowledge of the

Kruskal extension of the spin three black hole [29], by simply analytically continuing

CFT results of [23, 24] and by doing the same to the time coordinates of the endpoints

of bulk Wilson lines to go between the two copies of the thermofield double. Using

the holomorphic Wilson line [21] which agrees with CFT results [23, 24], we find

that there is a critical value of the spin three chemical potential beyond which the

mutual information ceases to be a concave function of time and simultaneously, the

speed of growth of entanglement entropy of the intervals exceeds unity. Moving to

the situation with a local quench, using the known results for CFT entanglement

entropy at finite µ and properties of HHLL correlators where the heavy operator O
carries no spin three charge, we argue that the Lyapunov exponent retains its value

in Einstein gravity while the scrambling time receives some µ-dependent corrections.

The paper is organised as follows. In section 2, we review the Wilson line prescription

for evaluating entanglement entropy in SL(2,R) Chern Simons theory in the presence of

a local quench. We point out the connection of the quenched regime in the small width

expansion, with the OTO correlator and its Regge limit for chaos. In section 3 we repeat

the exercise of for the quench with spin three charge. We further find the scrambling

time by computing the two-sided mutual information. We study the situation in section 4

when the local quench is generated by an ensemble of operators carrying higher spin charge.

– 4 –
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Section 5 is devoted to aspects of the CFT dynamics in the presence of higher spin chemical

potential. In a fairly extensive appendix, we present detailed clarifications, derivations of

various technical points in the text. We also include two sections which outline aspects of

the bulk quench and scrambling calculations in Chern-Simons language.

2 Wilson lines, local quenches and OTO correlators

The primary objects of our interest are correlators involving heavy (H) and light (L) op-

erators which yield the time evolution of entanglement in CFT2 at finite temperature in

the presence of a local excitation. In CFT2, entanglement/Rényi entropies are computed

by the insertion of local twist fields. The latter are “light” in the limit that the number of

replicas approaches unity.

In the limit of large central charge c, when a dual gravity description becomes appro-

priate, the entanglement entropy is computed by the Ryu-Takayanagi prescription [30]. In

the case of AdS3/CFT2 duality, gravity and its higher spin generalisations are naturally

recast in the language of SL(N,R)× SL(N,R) Chern-Simons theory. The Ryu-Takayanagi

prescription then generalises to a Wilson line in an appropriate representation anchored at

the endpoints of the interval whose entanglement entropy is being evaluated [21, 22].

The four-point correlators of interest are of the form

F (x1, x2, x3, x4) = 〈O†(x1, x̄1) T (x2, x̄2) T̃ (x3, x̄3)O(x4, x̄4)〉 , (2.1)

where O is the heavy operator and T represents the light operator. Such correlators are

natural when one considers the time evolution of quantum entanglement after a “quench”

by some (heavy) local operator O(x, t) [16, 18–20]. Following the conventions of [20] for

example, we may take

x1 = −iε , x̄1 = +iε , (2.2)

x2 = `1 − t , x̄2 = `1 + t ,

x3 = `2 − t , x̄3 = `2 + t ,

x4 = iε , x̄4 = −iε .

Here (`1, `2) represent the spatial coordinates of the entangling interval of length ` ≡ `2−`1,

and ε > 0 denotes the “width” of the local quench [18, 19]. In addition to controlling the

physical width of the pulse set up by the local perturbation, the width ε serves to regulate

the operator product and, importantly, allows us to track changes in the temporal behaviour

of the correlator when the excitation crosses the lightcone of the nearest endpoint of the

interval.

In the bulk gravity dual picture (for a large-c CFT), the effect of the local quench

is reproduced by a shockwave background generated by a massive particle freely falling

from the AdS3 boundary towards the interior. The excitation about the thermal state in

the CFT is represented by the particle falling towards the horizon of a BTZ black hole in

the bulk. The width of the excitation ε is related to an appropriately defined coordinate

distance of the point of release of the particle from the boundary of AdS3 [1, 19].

– 5 –
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The four-point correlator of the type (2.1) which yields the single interval entangle-

ment entropy in the locally quenched quantum state is computed by a Wilson line in the

asymptotically AdS3 shockwave background . Given the pair of flat connections (A, Ā)

valued in sl(N,R)⊕ sl(N,R), the entanglement entropy of a single interval (with endpoints

P and Q on the conformal boundary of AdS3) is given by the Wilson line representation

R joining the endpoints:

SEE(P,Q) = kcs ln

[
lim

ρP,Q→∞
WR(P,Q)

]
, (2.3)

WR(P,Q) ≡ TrR

[
P exp

(∫ Q

P
Ā

)
exp

(∫ P

Q
A

)]
.

Here kcs is the level of the Chern-Simons theory which is related to the central charge of

the asymptotic WN algebra:

c = N(N2 − 1) kcs , (2.4)

and ρP,Q are the radial coordinates of the endpoints of the interval on the boundary, to be

taken to infinity at the end, so that only the leading term in this limit is identified with the

entanglement entropy. The representation R is fixed by requiring the high temperature

limit of the entanglement entropy to agree with the thermal entropy of the interval [21].

We are assuming that gravity is principally embedded in the sl(N,R)⊕ sl(N,R) alge-

bra. Denoting the generators of the irreducible N -dimensional representation of sl(2,R) as

{L0, L±1} with [L0, L±1] = ±L±1 and [L1, L−1] = 2L0, the flat Chern-Simons connections

may be represented in radial gauge as

A = b−1db + b−1 a(x+, x−) b , Ā = bdb−1 + b ā(x+, x−) b−1 , (2.5)

b(ρ) = eρL0 .

Here x± are lightcone coordinates on the boundary, which we will specify precisely below.

Given the connections (A, Ā), the spacetime metric is determined as,

ds2 =
1

4εN
Tr
(
A − Ā

)2
, εN = TrL2

0 =
1

12
N(N2 − 1) . (2.6)

2.1 SL(2,R)× SL(2,R) Wilson line and local quench

As a warmup exercise we first rederive the evolution of EE following a local quench in

pure gravity [19], but using the Wilson line prescription for calculating holographic EE in

a shockwave geometry.

Conical deficit. In [19], the shockwave geometry in the BTZ black hole background was

obtained by considering a conical deficit state in global AdS3 and performing a coordinate

transformation followed by a boost. The metric for the static conical deficit in AdS3 is

given by:

ds2 = −(r2 +R2 − δ) dτ2 +
R2 dr2

r2 +R2 − δ
+ r2 dφ2 , (2.7)

– 6 –
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where R is the AdS radius and φ ∈ [0, 2π]. The mass, m, of the particle producing the

conical deficit is fixed in terms of δ as,

δ = 8 (GNR)mR =
24

c
∆O R

2 . (2.8)

The conical deficit geometry represents a CFT state corresponding to an operator of confor-

mal dimension ∆O = (mR). In order to make contact with the Chern-Simons formulation,

we rewrite the conical deficit metric in terms of lightcone coordinates ξ± on the boundary,

and a new radial coordinate ρ:

r = Re−ρ
(
e2ρ − R2 − δ

4R2

)
, τ =

1

2
(ξ+ + ξ−) , φ =

1

2
(ξ+ − ξ−). (2.9)

This yields a special case of the general form of asymptotically AdS3 solutions [32],

R−2 ds2 =

[
dρ2 +

2π

kcs
L(ξ+) (dξ+)2 +

2π

kcs
L̄(ξ−)

(
dξ−

)2
(2.10)

−
(
e2ρ +

4π2

k2
cs

L(ξ+)L̄(ξ−)e−2ρ

)
dξ+dξ−

]
,

which follows from the flat sl(2,R) Chern-Simons connections as defined in the radial

gauge (2.5),

a =

(
L1 −

2πL(ξ+)

kcs
L−1

)
dξ+ , ā = −

(
L−1 −

2πL(ξ−)

kcs
L1

)
dξ− . (2.11)

The conical deficit state is obtained by setting 2πL = 2πL̄ = kcs(δ −R2)/4R2.

In [19], this conical deficit state was mapped to an exact solution describing a massive

infalling particle in the BTZ geometry. Physical observables in the quenched state can be

obtained by application of the same map. Thus we consider the entanglement entropy of

a single interval with endpoints ξ±P and ξ±Q in the boundary CFT. The radial, holographic

coordinate of the two points are ρP and ρQ, which will eventually be taken to infinity.

Note that for the SL(2,R) Chern-Simons theory, the Wilson line which computes holo-

graphic entanglement entropy is in the defining or fundamental representation [21]. In

terms of the matrices,

g = exp
(
a ξ+

)
b(ρ) , ḡ = exp

(
ā ξ−

)
b−1(ρ) , (2.12)

the fundamental Wilson line connecting the two boundary points P and Q in the conical

deficit state is,

Wfund(P,Q) = Trfund

[
ḡ−1(P ) ḡ(Q) g−1(Q) g(P )

]
. (2.13)

The traces are easily evaluated and we find,

Wfund(P,Q) = 2 cosh(ρP − ρQ) cosh

(√
2πL
kcs

∆ξ+

)
cosh

(√
2πL̄
kcs

∆ξ+

)
(2.14)

−
(

1
2π

kcs√
LL̄

eρP+ρQ + 2π
√
LL̄

kcs
e−(ρP+ρQ)

)
sinh

(√
2πL
kcs

∆ξ+

)
sinh

(√
2πL̄
kcs

∆ξ−
)
,

– 7 –
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where ∆ξ± = ξ±P − ξ±Q . Then taking the limit ρP,Q → ∞, we obtain the expression for

the entanglement entropy of a single interval in the conical deficit state, up to an additive

constant:

SEE(P,Q) =
c

6
ln

[
2eρP+ρQ

α2
sin

(
α

∆ξ+

2

)
sin

(
α

∆ξ−

2

)]
, (2.15)

α ≡
√

1− 24∆O
c .

This is the expected result for the single-interval covariant entanglement entropy in the

conical deficit state.

Infalling particle. The backreacted geometry associated to an infalling particle of mass

m in the BTZ background with temperature β−1 is obtained by a coordinate transformation

and boost on the conical deficit state. When δ = 0, the map simply transforms global AdS3

to the BTZ black hole. The explicit form (A.1) of the coordinate transformation in [19],3

also includes a boost parameter ε̃ that is directly related to the ‘width’ ∼ ε of the local

quench [18, 19]. For the holographic entanglement entropy, calculated using the Wilson

line prescription, we only need to know how the coordinates of the endpoints of the Wilson

line on the conformal boundary transform under this map:

eρP,Q = (2.16)

ΛRβ

2π

√√√√sinh2

(
2π xP,Q

β

)
+

(
β

2πε̃
cosh

(
2πt

β

)
−
√(

β
2πε̃

)2
− 1 cosh

(
2πxP,Q
β

))2

tan (τP,Q) =
2πε̃

β

sinh
(

2πt
β

)
cosh

(
2π xP,Q

β

)
−
√

1−
(

2πε̃
β

)2
cosh

(
2πt
β

)
tan (φP,Q) =

2πε̃

β

sinh
(

2π xP,Q
β

)
cosh

(
2πt
β

)
−
√

1−
(

2πε̃
β

)2
cosh

(
2π xP,Q

β

) .
Λ is the location of the AdS boundary which provides the UV cutoff in the CFT. The

spatial coordinates of the endpoints of the Wilson loop in the shockwave background must

be identified with endpoints of the entangling interval in the quenched state, xP = `1 and

xQ = `2. The parameter ε̃ is related to the width ε of the quench via

2πε̃

β
= sin

2πε

β
. (2.17)

The coordinate transformations above are simply conformal transformations on the bound-

ary acting as,

eiξ
±

= e2πiε/β
sinh π

β (t ± x− iε)
sinh π

β (t ± x+ iε)
. (2.18)

3Recently, these coordinate transformations have been applied to study evolution of entanglement in

holographic bilocal quenches in CFT2 [33].
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Figure 1. Left: the change in the entanglement entropy as a function of time at β = 0.5 with

`1 = 0.2, `2 = 1.8, following a quench by an operator with ∆O/c = 0.01 and quench width

ε = 0.005. Right: the cross-ratio z traverses clockwise around the branch point at z = 1, crossing

the branch cut, and moving to the next sheet when the excitation enters the light cone of the

endpoint at x = `1.

These extend into the bulk as diffeomorphisms which act as the diagonal subgroup of

SL(2,R)× SL(2,R) gauge transformation on the Chern-Simons connections. The diagonal

subgroup leaves the Wilson line (2.3) invariant. The transformation (2.16) is explored in

more detail in appendix E.

Substituting the transformed coordinates into the expression (2.15) we obtain the time

dependence of the single interval entanglement entropy in the presence of a local quench. An

important point here is that the global coordinates (τP,Q, φP,Q) are multivalued functions

of (t, xP,Q), and it is necessary to identify and choose the branches which are appropriate

for describing early times (t < `1), intermediate times (`1 < t < `2) and late times t > `2,

following the local quench. Figure 1 shows the behaviour of the change in the entanglement

entropy as a function of time.

The entanglement entropy (2.15) is best expressed in terms of the conformal cross-

ratios z and z̄ involving the locations of the two heavy
(
O†, O

)
and two light (T , T̃ )

operators:

z ≡ (z2 − z3)(z1 − z4)

(z2 − z1)(z3 − z4)
, zi ≡ e

2π
β
xi , i = 1, 2, 3, 4 , (2.19)

where the insertion points {xi} are defined in (2.2). The anti-holomorphic cross-ratio z̄ is

defined in the same way using “barred” or anti-holomorphic coordinates on the thermal

cylinder. In terms of these cross-ratios we then have,

Wfund = exp

(
6

c
SEE(PQ)

)
(2.20)

=
8(RΛ)2β2

π2α2
sinh2

[
π
β (`2 − `1)

] (1 − (1− z)α) (1 − (1− z̄)α)

(1− z)
α−1

2 (1− z̄)
α−1

2 z z̄
.

In obtaining the final form of this expression, an overall factor ∼ exp(2π (`1 + `2)/β) has

been accounted for by the covariant tensor transformation law for the twist field correlators

– 9 –
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under the exponential map from the plane to the (thermal) cylinder. Holographically, this

is understood as a rescaling of the location of the UV-cutoff/boundary to which the Wilson

line is anchored. The SL(2,R) Wilson line computes the length of the geodesic joining the

two endpoints on the boundary, in the background generated by the infalling massive

particle. Within the standard AdS/CFT dictionary, this provides the four-point correlator

(Wfund)−2∆T =
〈O†(x1, x̄1) T (x2, x̄2) T̃ (x3, x̄3)O(x4, x̄4)〉

〈O†(x1, x̄1)O(x4, x̄4)〉
. (2.21)

Here ∆τ is the scaling dimension of the operator T . For twist fields computing the entan-

glement entropy of the interval PQ we need to take T = c
24

(
n− 1

n

)
in the limit n→ 1.

Out-of-time ordering. The key feature of this expression which is responsible for non-

trivial time dependence in the entanglement entropy when the local perturbation enters

the interval PQ, is the presence of a branch point at z = 1. In particular, when the exci-

tation enters the lightcone of one of the endpoints of the interval, the cross-ratio traverses

clockwise around the branch-point so that

(1− z) → (1− z) e−2πi . (2.22)

For ε� β, this is shown in figure 1. This does not affect z̄. In fact, as explained in [8], this

rotation of the cross-ratio z yields precisely the out-of-time ordered (OTO) configuration

of the four operators. Explicitly, the cross-ratio z, as a function of (real) time t is

z =
i sin

(
2πε
β

)
sinh π

β (`2 − `1)

sinh π
β (`1 − t+ iε) sinh π

β (`2 − t− iε)
. (2.23)

Therefore, for generic t, the cross-ratio z is O(ε) in the limit of small ε. It is useful to define

the quantity,

Z`1,`2(t) ≡
sinh π

β (`2 − `1)

sinh π
β (t− `1) sinh π

β (`2 − t)
. (2.24)

This function will appear repeatedly at various points below, when we consider the limit

of small ε. We can now calculate the change in the Wilson line correlator or equivalently,

the change in the entanglement entropy ∆SEE. We will compute this in a double scaling

limit such that,
∆O
c

=
E

πc
ε � 1 , ε� β , (2.25)

with E/πc fixed in the large-c limit. Using this scaling, we perform an expansion in powers

of ε and find:

6

c
∆SEE

∣∣
`2>t>`1

= lnWfund − lnWfund|t=0 (2.26)

= ln

(
1 + 12

(
βE

π c

)
Z−1
`1,`2

(t)

)
+ O(ε) .

The height of the jump in ∆SEE is thus positive and in the limit of large interval length

(`2 →∞), it asymptotes to the late time value,

∆SEE

∣∣∣
`2→∞, t�`1

=
c

6
ln

(
1 +

6β

πc
E

)
=

c

6
ln

(
1 +

2E

Sβ

)
. (2.27)
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The jump is positive definite, and its magnitude is determined by the ratio of the injected

energy E to the thermal entropy density Sβ = πc/3β. The size of the jump displayed in

figure 1 is in agreement with the value obtained above. In fact, precisely the same ratio

enters in the scrambling time [1, 2]. As explained below, this is not a coincidence.

We may consider a particular limit of the expression (2.26) which brings us to the

Regge limit of the OTO correlator discussed in [8]. In this context we note the following

two points: (i) The rotation of the cross ratio about the branch point at z = 1 yields the

out-of-time ordering of the operators in question. (ii) In addition, once within the regime

`2 > t > `1 we also naturally have z � 1 since z ∼ O(ε). Therefore this branch of the

correlator and its small ε expansion has an overlap with the Regge limit of large times

discussed in [8].

In the regime of intermediate times `2 > t > `1, the cross ratio z is small, and pure

negative imaginary,

z ≈ −2πiε

β
Z`1,`2(t). (2.28)

In order to see the onset of chaos we require the Regge limit |z| � 1, and t � `2 on the

second sheet. For simplicity, we also take `2 � `1, but this is not really necessary. In

this limit,

z ≈ 4πiε

β
e
− 2π
β

(t−`2)
. (2.29)

The continuation from Im(z) < 0 to Im(z) > 0 appears to be a simple phase rotation of z.

However, this is not completely straightforward when z is viewed as a function of time. To

get to the chaos regime on the second sheet we cannot simply take t to be large, since we

must avoid the singularity at t = `2. In appendix B it is shown how this can be achieved

by adding an imaginary part to t so that t→ t+ iε1 where ε1 is parametrically larger than

ε. We may then take the limit |t| � `2, and subsequently `2 � `1, whilst remaining on the

second sheet, yielding

Wfund

∣∣∣
OTO

→ 8(RΛ)2β2

π2
sinh2 π

β (`2 − `1)

(
1 − 6βE

π c
e

2π
β

(t+ iε1−`2)
)
. (2.30)

We thus identify the Lyapunov exponent λL = 2π
β which controls the late time, exponential

departure of the OTO correlator from its constant value.4 Note that this does not dictate

the behaviour of the single interval entanglement entropy following the local quench. The

time evolution of the physical ∆SEE for times t > (`1 + `2)/2 is obtained by reversing the

rotation of z around the branch point at z = 1 as the excitation exits the interval and

we obtain the form depicted in figure 1. What we have described above is a particular

analytic continuation of the single-sided Wilson line correlator to the second sheet, which

yields the chaotic behaviour of the OTO correlator in the late time limit. When ε̃ = β/2,

we obtain the expression for the two-sided correlator in the thermofield double state, and

4Note that correlators of operators which are computed holographically by geodesics or Wilson lines, are

obtained from the geodesic actions Sgeo = lnW (P,Q) by exponentiating the latter ∼ e−(2∆)Sgeo(PQ) where

∆ is the operator dimension. The analogous expression for the Wilson line is ∼ W (P,Q)−2∆. Therefore

the exponential growth in time of the Wilson line implies a decaying correlation function.
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our expressions may then be matched with the corresponding ones in [1, 8]. The scrambling

time t∗ also follows from the analytically continued single-sided Wilson line. It is given by

the time scale at which the exponentially growing term becomes of order one, characterising

the decay time of the OTO correlation functions,

t∗ = `2 +
β

2π
ln

(
Sβ
2E

)
. (2.31)

3 Quench with spin three charge

In SL(N,R)× SL(N,R) Chern-Simons theory with N > 2 the Wilson line which computes

entanglement entropies is defined in a representation R, whose dimension rises exponen-

tially with N [21],

dim[R] = 2N(N−1)/2 . (3.1)

For the case N = 3, the appropriate representation is the 8 dimensional or adjoint repre-

sentation.

Spin-three conical deficit. In the SL(3,R) theory the conical deficit state can be en-

dowed with spin three charge, and we can then analyse its effect on the single interval

entanglement entropy and the OTO correlator. We will do this first in the canonical en-

semble with fixed spin-three charge. The constant flat connections relevant for a charged,

conical deficit state are:

a = a+ dξ
+ , ā = a− dξ

− , (3.2)

a =

(
L1 −

πL
2kcs

L−1 −
πW
8kcs

W−2

)
dξ+ ,

ā = −
(
L−1 −

πL̄
2kcs

L1 −
πW
8kcs

W2

)
dξ− .

Here W and W are the spin three charges in each sector, and W±2 are generators of the

SL(3,R) (appendix C). We will restrict ourselves to the so called non-rotating background

with L = L̄ and W = −W. As in the pure gravity case, the conical deficit states have

negative energy, so that L < 0 and,

πL
2kcs

= − 1

4
α2 = − 1

4

(
1 − 24∆O

c

)
, c = 24 kcs . (3.3)

Here ∆O is the dimension of the heavy operator which now also carries spin three chargeW.

The computation of the Wilson line requires us to exponentiate the constant connec-

tions. This is best done in the diagonal basis and subsequently relating to the original

basis via a similarity transformation. The eigenvalues of a± in the defining representation

are given by the roots {νi} of the cubic equation,

ν3 + α2 ν +
πW
kcs

= 0 . (3.4)
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The form of the cubic immediately implies that the three roots must satisfy the constraints,

ν1 + ν2 + ν3 = 0 , ν1ν2 + ν2ν3 + ν3ν1 = α2 , ν1ν2ν3 = − πW
kcs

. (3.5)

The eigenvalues for the matrices in the adjoint representation are then {±λ1, ±λ2, ±λ3,

0, 0} where we have defined

λ1 = ν1 − ν2 , λ2 = ν2 − ν3 , λ3 = ν3 − ν1 . (3.6)

We can then compute (see appendix D) the SL(3,R)× SL(3,R) Wilson line in the adjoint

representation, and we find,

lim
ρ→∞

WAd(P,Q) = (3.7)

256 e4(ρP+ρQ)

(λ1λ2λ3)2

[
3∑
i=1

λ−1
i sinh2

(
λi
2

∆ξ+

)][ 3∑
i=1

λ−1
i sinh2

(
λi
2

∆ξ−
)]

.

3.1 Wilson line in charged shockwave background

We expect that the effect of the local quench by the charged operator O should follow from

the corresponding boosted, transformed conical deficit state discussed above. We note

that in a higher spin theory the spacetime metric is not gauge-invariant and therefore the

operations on the bulk geometry do not have an obvious invariant meaning. It would be

interesting to understand the generalisation to the higher spin situation (in Chern-Simons

language) of the coordinate transformations that map the conical deficit in AdS3 to the

infalling shockwave geometry. Nevertheless, given that the corresponding transformations

are defined as before in the boundary CFT, we use the transformations (2.16) to evaluate

the higher-spin Wilson line correlator in the charged quenched state. The SL(3,R) Wilson

line can be rewritten in terms of the cross ratio z as in the pure gravity theory:

WAd(P,Q) =
214(RΛ)8β8

π8
sinh8 π

β (`2 − `1)× (3.8)

(λ1λ2λ3)−2(z z̄)−4

 3∑
j=1

1

λj

(
(1− z)iλj − 1

(1− z)iλj/2−1

)2
 3∑

j=1

1

λj

(
(1− z̄)iλj − 1

(1− z̄)iλj/2−1

)2
 .

The roots νi of the cubic (3.4) are complicated functions of the mass α and the spin-three

charge W. However, as we saw in the pure gravity situation, we will be interested in a

double scaling limit, where the deficit angle and spin-three charge are both small in the

limit of small ε:
∆O
c

=
E

πc
ε , W = ε2

4q

π2
, ε� β . (3.9)

We view this as a double scaling limit because in the holographic gravity description which

applies in the limit c→∞, we are also keeping ∆O/c and q/c fixed. With this scaling, the

roots of the cubic (3.4) are,

ν1,2 ' ±i
[
1− 12E

πc
ε− 72E2

π2c2
ε2
]

+
48

π

q

c
ε2 , ν3 ' −

96

π

q

c
ε2 (3.10)
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When the charged excitation generated by operator O enters the interval PQ, for interme-

diate times `2 > t > `1, the cross-ratio traverses clockwise around the branch point of the

Wilson line at z = 1, bringing us into the out-of-time-ordered configuration,

(1− z) → (1− z) e−2πi . (3.11)

Following this, we expand the Wilson line in the small ε limit. As explained previously,

z ∼ O(ε). Therefore, at the leading order ∼ O(ε0), the adjoint Wilson line is,

WAd(P,Q) ' 212(RΛ)8β8

π8
sinh8 π

β (`2 − `1)

[(
1− 24iE

c

ε

z

)4

− q2

c2

(
24ε

z

)4
]

+O(ε) . (3.12)

Substituting the expression for z as a function of real time (2.23) in the interval `2 > t > `1
we find the change in entanglement entropy of the interval PQ, following the spin-three

local quench (note that c = 24kcs for the SL(3,R)× SL(3,R) theory):

∆SEE(PQ) =
c

24
(lnWAd − ln WAd|t=0) (3.13)

=
c

24
ln

[(
1 +

12βE

πc
Z−1
`1,`2

(t)

)4

− q2

c2

(
12β

π
Z−1
`1,`2

(t)

)4
]

+ O(ε).

The result reveals some important features. For large intervals `2 � `1, the change in the

entanglement entropy following the entry of the perturbation into the interval saturates to

a maximal value given by,

∆SEE

∣∣∣
`2→∞, t�`1

=
c

24
ln

[(
1 +

6βE

πc

)4

− q2

c2

(
6β

π

)4
]
. (3.14)

Since q is a dimension two charge, obtained by integrating a dimension three current, all

terms within the argument of the logarithm are dimensionless. Further, we are taking

E/c and q/c to be fixed in the large-c, classical gravity limit. For vanishing q, eq. (3.14)

matches the pure gravity value (2.27). With q 6= 0, the argument of the logarithm is no

longer positive definite. Requiring that the result for ∆SEE be physically sensible (i.e.

avoiding divergent or complex values), we obtain a restriction on the spin-three charge

that the perturbing operator/state can carry:√
|q|
c
<

E

c
+
Sβ
2c

, Sβ =
πc

3β
. (3.15)

Multiplying through by the width ε of the quench and taking the limit ε/β → 0, this yields

the bound, √
|W|
c

<
2∆O
c

, (3.16)

where it is understood that the both quantities ∆O/c and W/c are fixed and small (O(ε)

and O(ε2) respectively) in the large c limit. There is no independent reason to expect

generic charged operators in a large-c CFT withW3 symmetry to respect this requirement.
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Figure 2. The change in holographic entanglement entropy following a local quench by an operator

carrying spin-three charge in SL(3,R) × SL(3,R) Chern-Simons theory. The quench width is ε =

0.008, β = 5.5, `1 = 0.2, `2 = 1.8, and ∆O/c = 0.5. The figure on the left has q/c = 0, the central

one corresponds to q/c = 2.884 whilst the rightmost one depicts the onset of a divergence at a

critical value q/c ≈ 2.904.

If such bound is not realised, one would have to conclude that corresponding theories are

unphysical.

Figure 2 shows the behaviour of the change in the single interval entanglement entropy

for a local quench carrying spin-three charge. The introduction of the spin-three charge

has the effect of decreasing the height of ∆SEE for a given energy E, eventually driving it

negative and unbounded from below at a critical value of q.

As in the pure gravity case described in section 2.1, we can take the Wilson line

correlator in the second sheet and make contact with the Regge limit of small z and late

times, by appropriate analytic continuation. We find,

WAd

∣∣∣
OTO

→ 212(RΛ)8β8

π8
sinh8 π

β (`2 − `1) (3.17)[(
1 − 2E

Sβ
e

2π
β

(t+ iε1−`2)
)4

−
(

36qβ2

π2c
e

4π
β

(t+ iε1− `2)
)2
]
.

Comparing with corresponding expressions in [8], we identify the spin-three Lyapunov

exponent as λ
(3)
L = 4π

β . The expression for the two-sided correlator in the thermofield

double state follows upon setting ε1 = β
2 . This phase rotation changes the sign of the

coefficient of E, but not that of q2, and the spin-three charge is then the source of singular

behaviour of the corresponding OTO correlator, causing it to diverge at some finite late

time, as also argued in [8]. For generic ε1, if the spin-three charge q is dominant compared

to E, we obtain a scrambling time given by

t∗ ' `2 +
β

4π
ln

(
π2c

36|q|β2

)
, (3.18)

when the OTO correlator becomes vanishingly small.

3.2 Mutual information

The determination of scrambling time can be performed elegantly in a large-c CFT within

the holographic setup by computing the mutual information of two entangled subsystems
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A and B [20]. Specifically, we may take the two intervals to reside in the two different

copies of the CFT, prepared in the thermofield double state. A local perturbation of

the thermofield double state by a primary operator created at some time in the past

destroys the correlations between the two copies. This is clearly seen by calculating the

mutual information between the intervals A and B. The time scale at which the mutual

information,

IA:B = SEE(A) + SEE(B) − SEE(A ∪B) , (3.19)

vanishes was calculated and identified with the scrambling time in [20].

In this section we will consider the infalling massive particle with spin-three charge,

which starts its motion close to the left boundary of the thermofield double obtained by

Kruskal extension of the BTZ black hole. As in the previous sections, the black hole itself

does not carry spin-three charge and therefore it should be viewed as the standard BTZ

black hole embedded in the SL(3,R) × SL(3,R) Chern-Simons framework. The infalling

particle background is inferred by the coordinate transformation and boost on the conical

deficit state in global AdS3. This is done separately for the two AdS-Schwarzschild patches

of the eternal BTZ geometry [20]. For the spin-three charged state, our strategy is to com-

pute the Wilson line EE for the conical deficit state and to use coordinate transformations

to map the endpoints of the interval to corresponding endpoints of the intervals on the two

boundaries of the BTZ black hole.

The two intervals L and R are chosen to lie on the left and right boundaries of the

extended BTZ geometry, respectively. The endpoints of the intervals are taken to be at

(tL, `1,2) for the interval L and at (tR, `1,2) for the right interval R. The transformations

from the conical deficit to the BTZ coordinates of the boundary on the left patch are (in

the limit of small width ε):

DL,i =
∣∣∣cosh

(
2π
β `i

)
− cosh

(
2π
β tL

)∣∣∣ eρL,i =
RΛβ2

4π2ε
DL,i i = 1, 2 .

tan (τL,i) =
2πε

β

sinh
(

2π
β tL

)
DL,i

, tan (φL,i) = −2πε

β

sinh
(

2π
β `i

)
DL,i

. (3.20)

These are just the leading small-ε limits of the complete transformations in eq. (2.16). The

corresponding transformations for the right boundary are,

DR,i =
∣∣∣cosh

(
2π
β `i

)
+ cosh

(
2π
β tR

)∣∣∣ eρR,i =
RΛβ2

4π2ε
DR,i i = 1, 2 .

tan (τR,i) = −2πε

β

sinh
(

2π
β tR

)
DR,i

, tan (φR,i) = −2πε

β

sinh
(

2π
β `i

)
DR,i

. (3.21)

Note that these can be obtained from the left side transformations by the replacement

tL → tR + iβ/2. The mutual information,

IL:R(tL, tR) = SEE(L) + SEE(R) − SEE(L ∪R) , (3.22)

is computed by “connected” and “disconnected” configurations of the bulk Wilson lines.

The former corresponds to two bulk Wilson lines, WLR,1
Ad and WLR,2

Ad , joining the endpoints
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(tL, `i) of the left interval L with corresponding endpoints (tR, `i) of the interval R on the

right boundary. The disconnected contribution is simply the entanglement entropy of each

individual interval, given by the Wilson lines WL
Ad and WR

Ad between the two endpoints of

the interval on a given boundary,

IL:R(tL, tR) =
c

24

(
lnWR

Ad + lnWL
Ad − lnWLR,1

Ad − lnWLR,2
Ad

)
. (3.23)

The calculation of each Wilson line proceeds exactly as in the single-sided case analysed

above, with the only difference arising in the coordinates of the endpoints.

To calculate the scrambling time, we need the mutual information at late times, i.e.

tL, tR > `1,2. Thus we evaluate the Wilson lines for tL, tR > `1,2. For such times, in the

limit of small ε, the EE of each interval will relax to its equilibrium value, as any local

perturbation would already have exited the interval. Thus, we have

WL
Ad = WR

Ad =
28(RΛ)8β8

π8
sinh8 π

β (`2 − `1) , tL,R > `1,2 . (3.24)

The connected Wilson lines can each be expressed in terms of the appropriate cross-ratio

z which yields, in the small-ε double-scaled limit,

WLR,i
Ad =

214(RΛ)8β8

π8
cosh8 π

β (tL − tR)× (3.25)[(
1 − 12Eβ

πc
Ti(tL, tR)

)4

− q2

c2

(
12β

π
Ti(tL, tR)

)4
]
.

where

Ti(tL, tR) =
sinh π

β (`i − tL) cosh π
β (`i − tR)

cosh π
β (tL − tR)

. (3.26)

In terms of the cross-ratio (2.19) the small-ε connected Wilson lines are given by the general

formula (3.12), with x1 = −iε, x2 = `i − tL, x3 = `i − tR − iβ/2, x4 = iε. The simplest

configuration to consider is with tL = tR = t. The resulting cross-ratio z rotates clockwise

around z = 1 when the excitation on the left boundary enters the interval (see figure 3) at

t = `1.

The scrambling time t∗ when the mutual information vanishes then yields the condition

sinh16 π
β (`1 − `2) = (3.27)[(

1− 12βE
πc T1(t∗)

)4
− q2

c2

(
12β
π T1(t∗)

)4
] [(

1− 12βE
πc T2(t∗)

)4
− q2

c2

(
12β
π T2(t∗)

)4
]
.

This can be solved easily when t∗ � `i so that Ti ' −1
4e

2π(t−`i)/β and we find the expression

for the scrambling time:

t∗ =
`1 + `2

2
+
β

π
ln
[
sinh π

β (`2 − `1)
]

+
β

2π
ln

∣∣∣∣∣E4

S4
β

− 9q2β2

π2S2
β

∣∣∣∣∣
− 1

4

, (3.28)

where Sβ = cπ/(3β) is the thermal entropy density. When the spin-three charge is van-

ishing we recover the known scrambling time from pure gravity. As q is increased from
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Figure 3. The cross-ratio z = (z14z23)/(z21z34) as a function of t, where zi = exp(2πxi/β),

x1 = −iε, x2 = `1 − t and x3 = `1 − t− iβ/2, x4 = iε. Setting ε = 0.005, β = 0.5 and `1 = 0.2, we

see that the cross-ratio goes around z = 1 clockwise as the excitation on the left boundary enters

the interval at t = `1.

zero, the scrambling time actually increases until it diverges at a critical value given by,

|q|/c = E2/c2. The critical value is in fact what we have already encountered above in

eq. (3.16). Beyond this critical value the scrambling time decreases. When E is negligible,

the scrambling time matches what we expect for a Lyapunov exponent of λ
(3)
L = 4π/β

(see eq. (3.18)).

After this work was completed, [40] appeared which obtains constraints on the higher

spin charges from unitarity and modular invariance for CFTs with WN symmetry. For the

specific case of N = 3, we can identify the spin three charge W in this paper with the

corresponding quantity q3 in [40]. Then taking the large-c limit, with ∆/c and W/c fixed,

we find that our bound (3.16) is consistent with the bounds obtained in [40], i.e. once the

latter bound is satisfied, the bound (3.16) is guaranteed to hold. This conclusion appears

to depend delicately on the numerical coefficient (the factor of two on the right hand side)

appearing in the inequality (3.16). Thus, unitarity which resulted in the bound of [40]

ensures that there is no pathology in the behaviour of the EE.

4 Conical defect deformed by HS chemical potential

The local quench above is holographically described by a particle carrying higher spin

charge falling into the horizon of a bulk (uncharged) black hole. From this bulk perspective

it is also possible to consider charged conical deficit states in the higher spin grand canonical

ensemble i.e. with a chemical potential for higher spin charge. After computing the Wilson

line in such a background we will transform the boundary endpoints so the resulting state

describes an infalling charged configuration in a black hole or thermal state. From a CFT

viewpoint, such a state may be viewed as the density matrix:

ρ̂ε = N e−iHt

(∑
n

eµOβWOn On(x1, x̄1) e−βH O†n(x4, x̄4)

)
eiHt . (4.1)

Here WOn represents the spin-three charge of a local operator On generating the local

excitation. The state is therefore not in a grand ensemble for the full CFT, but only for
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the local quench operators. This means that the bulk black hole state in question does

not carry spin-three hair and must be viewed as the BTZ black hole embedded in the

SL(3,R) × SL(3,R) connections. As we will see below the results for the change in EE

and scrambling time are the same as in the basic charged conical deficit example, with the

value of the charge replaced by its ensemble expectation value.

4.1 Conical deficit connections with chemical potential

The SL(3,R) × SL(3,R) gauge connections for a charged state with higher spin chemical

potential are [25, 26],

a =

(
L1 −

πL
2kcs

L−1 −
πW
8kcs

W−2

)
dξ+ + (4.2)

+µO

(
W2 −

πL
kcs

W0 +
π2L2

4k2
cs

W−2 +
πW
kcs

L−1

)
dξ− ,

ā = −
(
L−1 −

πL̄
2kcs

L1 −
πW
8kcs

W2

)
dξ−

− µ̄O
(
W−2 −

πL̄
kcs

W0 +
π2L̄2

4k2
cs

W2 +
πW
kcs

L1

)
dξ+ .

The SL(3,R) generators are specified in appendix C. We set µO = − µ̄O, W = −W
and L = L̄. It is well known that the higher spin chemical potential has the effect

of altering the asymptotics of the spacetime metric (in radial gauge) following from the

connections above. However, this is not a problem, particularly if we need to study the

system perturbatively in the chemical potential deformation. This is in fact what we will

need to do in the double-scaled, small-ε limit. An important aspect of the perturbative

corrections in µO to the physical observables in the CFT is that they are only correctly

described holographically by the so-called “holomorphic” formulation of thermodynamics

and of the EE/Wilson line observables [21, 23, 24, 31]. The holomorphic prescription to

evaluate the Wilson line in the presence of higher spin chemical potential is,

W hol
Ad (P,Q) = Tr

[
P exp

(∫ Q

P
Ā− dξ

−
)
P exp

(∫ P

Q
A+ dξ

+

)]
. (4.3)

The conical deficit solution with spin-three charge is specified by requirements on the

holonomy of the flat connections (4.2). Analogous to the case of the spin-three black hole

of [25, 26], for a conical deficit state, the holonomy of the connection in the spatial (φ)

direction must satisfy

eval

(∮
aφ dφ

)
= (0,±2πiα) , α =

√
1− δ

R2
. (4.4)

These are algebraic conditions which can be solved to yield L andW as nontrivial functions

of µO and δ. The holonomy conditions lead to two branches of solutions (a similar situation

was seen for higher spin black holes in [34] and for higher spin version of global AdS [35]), of

which the one smoothly connected to global AdS3 has lower free energy and is relevant for
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the present discussion. In the small width limit we will only need the leading corrections

in µO. We find:

L = −α
2 kcs

2π

(
1 − 20

µ2
O α

2

3R2

)
+ O(µ2

O) , W = µO
4α4kcs

3πR
. (4.5)

We have already seen in the fixed charge setup that we must have δ ∼ O(ε) andW ∼ O(ε2)

in small width limit. This implies µO ∼ O(ε2) in the grand canonical ensemble for the

conical deficit states. In terms of CFT quantities, to leading order in the small width ε,

we have
µO
R

= ε2
72

π

q

c
. (4.6)

For the holomorphic Wilson lines we only need the forms of the connection components a+

and ā−. Therefore, the calculation of the entanglement entropy following the local quench

proceeds in exactly the same way as in the fixed charge case. One additional comment

that we make in this regard is that the coordinate transformations which map the conical

deficit to the infalling particle state are diagonal SL(2,R)×SL(2,R) gauge transformations

embedded in SL(3,R)×SL(3,R), and therefore solutions (flat connections) remain solutions

under the map.

The results of the entanglement entropy ∆SEE, mutual information and scrambling

time t∗ are all given by the same formulae we encountered in section 3, with q/c replaced

by the chemical potential µO as dictated by eq. (4.6)

5 Scrambling time from CFT with higher spin charge

In this section we turn to the CFT in the grand canonical ensemble with higher spin charge.

Such a state is dual to a black hole with higher spin hair [25, 26]. The backreacted solutions

for infalling shockwaves which are generalizations of [1] and [19] to the charged higher spin

case are not known. However, we can use existing results from CFT to understand the

time evolution of entanglement for certain situations where the CFT is held at finite higher

spin chemical potential. In the Lagrangian formulation we view this as the (holomorphic)

deformation ,

SCFT → SCFT −
∫
d2z µW (z) + h.c. (5.1)

where µ is the chemical potential for the higher spin current W (z).

5.1 Thermofield double and entanglement growth

A particularly simple application involves the computation of the rate of growth of entan-

glement [27] in the thermofield double state [28]. We may consider a large interval of length

` � β (e.g. the half-line) in the CFT and its thermofield double, and take time evolution

to go forward in both copies. In a conformal field theory the entanglement entropy for the

two copies (L) and (R) is expected to grow linearly at late times with an entanglement

velocity v = 1, and saturate at the thermal value at t ' `/2. The entanglement velocity is

defined through the relation (for large intervals),

SEE(L ∪R) ' 4Sβ v t . (5.2)
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where Sβ is the thermal entropy density. We first verify whether this relation is affected

by the presence of a higher spin chemical potential.

To calculate the connected contribution to the entanglement entropy of the two copies

of the interval, L∪R, we need the correlation functions twist field operators, each inserted

at an endpoint of the two copies so that

SEE(L ∪R) =
∑
i=1,2

lim
n→1

1

n− 1
ln
〈
Tn(tR, `i) T̃n(tL, `i)

〉(µ)
. (5.3)

The spatial endpoints of the two copies are at `1 and `2 with ` = `2 − `1. The correlator

is evaluated in the CFT perturbed by the chemical potential µ at finite temperature. In

the spin-three case, this was evaluated at O(µ2) for equal times and unequal spatial points

in the thermal state [23, 24]. The calculation generalises straightforwardly, by analytic

continuation, to the situation when the twist operators are inserted at points (z1, z̄1) and

(z2, z̄2). The result for the Rényi entropy using this correlator is given at order µ2 by,

S(n) =
c(1 + n)

6n
ln
∣∣∣sinh π

β (z1 − z2)
∣∣∣ (5.4)

+µ2 5c

12π2(n− 1)
{S(z1 − z2) + S(z̄1 − z̄2)} .

When zi and z̄i are complex conjugates of each other, the expression is mani-

festly real. The function S is the result of integrating the four point correlator ∼∫
d2y1 d

2y2〈TnW (y1)W (y2)T̃n〉 which arises at second order in the perturbation by the

spin three current:

S(z1 − z2) = f1 I1(z1 − z2) + f2 I2(z1 − z2) . (5.5)

with

I1 (z) =
4π4

3β2

(
4πz

β
coth

(
πz
β

)
− 1

)
+ (5.6)

+
4π4

β2
sinh−2

(
πz
β

) {(
1− πz

β
coth

(
πz
β

))2

−
(
πz
β

)2
}
,

I2 (z) =
8π4

β2

(
5 − 4πz

β
coth

(
πz
β

))
+

+
72π4

β2
sinh−2

(
πz
β

) {(
1− πz

β
coth

(
πz
β

))2

− 1

9

(
πz
β

)2
}
,

and

f1 =
n2 − 1

4n
, f2 =

(n2 − 1)2

120n3
− n2 − 1

40n3
. (5.7)

The calculation of the connected left-right correlator (5.3) is then achieved by setting

(z
(i)
1 , z̄

(i)
1 ) = (`i − tR, `i + tR) , (z

(i)
2 , z̄

(i)
2 ) =

(
`i − tL − iβ2 , `i + tL + iβ2

)
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and then substituting into (5.4). The resulting EE for the two copies of the half-line in the

(forward) time evolved thermofield double state is,

1

2
SEE(L ∪R) =

c

3
ln
[
cosh π

β (tL − tR)
]

(5.8)

− cµ
2π2

18β4
sech4 π

β (tL − tR)
[
8πβ(tL − tR)

(
sinh 2π

β (tL − tR) − sinh 4π
β (tL − tR)

)
+
(
8β2 + 6π2

(
β2 − 4(tL − tR)2

))
cosh 2π

β (tL − tR) + 5β2 cosh 4π
β (tL − tR) + 3β2

]
.

This result for the entanglement entropy can also be reproduced by the holomorphic Wilson

line proposal [23, 24] in the holographic dual, with one added subtlety. As usual for

the SL(3,R) Wilson line we need to work in the adjoint representation where WAd =

WfundWfund. For the two-sided Wilson line, the coordinates of the endpoints are complex.

In order to obtain real results which match with the CFT prediction, the anti-fundamental

Wilson lines also need to be complex conjugated. Therefore, Wfund connects points xR± =

tR ± x and xL± = tL + iβ
2 ± x, while Wfund is anchored to the points xR± = tR ± x

and x∗L± = tL − iβ
2 ± x. It will be interesting to carry out this analysis to higher order in

perturbation theory in the chemical potential using the results of [36].

5.2 Scrambling time and entanglement speed

Small µ. Taking both copies of the thermofield double to have evolved forward for a

time t, we set tL − tR = 2t in our result for SL∪R and then take the large t limit:

SEE(L ∪R)→ 4

(
πc

3β
+

32cπ3µ2

9β3

)
t = 4Sβ t . (5.9)

where Sβ is precisely the thermal entropy density at order µ2 (see [23, 24]). This imme-

diately implies that the entanglement speed v = 1 at this order in µ. In Einstein gravity

this growth of entanglement is given a geometric interpretation in terms of the growth of

the “nice slice” regions in the interior of the BTZ black hole [28]. In the presence of higher

spin hair, it would be fascinating to understand how such notions are generalised, given

that any geometric interpretation is no longer obvious (see [29] for investigations in this

direction).

Let us note that the mutual information for the two large intervals is

IL:R ' 2Sβ ` − SEE(L ∪R) . (5.10)

On the right hand side we have replaced the entanglement entropy of each interval with

the thermal entropy at large `. Therefore, the mutual information vanishes at t∗ ' `/2,

and remains zero beyond that point, since the disconnected contribution to SEE(L ∪ R)

dominates.

Exact result. We know that the holomorphic Wilson line, appropriately defined,

matches the CFT result for entanglement growth at order µ2, and also yields v = 1 at

late times. We can now use the complete holomorphic Wilson line, to all orders in µ, eval-

uated on the bulk spin three black hole solution, to calculate entanglement growth in the
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Figure 4. The speed of entanglement entropy growth v for three values of µ/β with β = 1 for

convenience, and taking the interval length `� 1. When µ > 0.033, v approaches unity from above.

The blue curve is for µ = 0 and the red curve is for µ 6= 0.

time evolved thermofield double state. The holomorphic component of the Chern-Simons

connection a+ retains the form displayed in eq. (4.2), and the expression for the holomor-

phic Wilson line in terms of the eigenvalues of a+ is given by eq. (D.4). The values of the

charges L and W are determined by the solutions to the black hole holonomy conditions

and we pick the roots corresponding to BTZ-branch of [34], which is smoothly connected

to the BTZ black hole and dominates the grand canonical ensemble. Crucially, the BTZ

branch only exists for low values of µ/β and disappears above the critical value

µc
β

=
3

16π

√
2
√

3− 3 ≈ 0.04066 . (5.11)

In the absence of a clean closed form analytical expression, we plot the result for the

entanglement growth numerically. Figure 4 shows the rate of growth of SEE(L ∪ R) as

a function of time. For low values of µ we see that v approaches unity from below for

large times, whereas when µ & 0.033β, dSEE/dt experiences an overshoot and eventually v

approaches 1, but from above. Interestingly, the overshoot decreases and seems to disappear

as µ approaches µc. Thus there are times at which entanglement speed is greater than the

speed of light which is the natural bound obtained in Einstein gravity in AdS3, see [37] for

a review of these bounds. The significance of this is unclear. This behaviour for large times

is simultaneously accompanied by equally puzzling short time features. For µ & 0.033β,

the growth rate goes negative at early times, which means that SEE(L ∪R) decreases first

before growing linearly at late times and approaching the thermal value as shown in figure 5.

Therefore SEE(L ∪R) not a monotonically increasing function of time at early times and

large enough chemical potential.5 This points to a violation of the strong sub-additivity

property of entanglement entropy which has been observed when the null energy condition

is violated [38]. Evaluating the mutual information, one sees that it is no longer a concave

function in time. To conclude there exists a bound on the chemical potential µ ∼ 0.033β,

below which the mutual information and entanglement speed are well behaved.

5It is worth noting that the single-interval entanglement entropy given by the holomorphic Wilson line

at µ 6= 0 is a monotonically increasing function of the interval length, which is consistent with the strong

subadditivity property.
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Figure 5. The entanglement entropy of L ∪ R as a function of time. The blue curve is for µ = 0

and the red curve is for µ 6= 0.

5.3 HHLL correlator at finite µ

While we do not have the holographic description of a quench when the CFT is in the

grand canonical ensemble with higher spin chemical potential, we can shed light on some

aspects of such a setup from purely field theoretic considerations. In particular, we will

argue that when the quenching operator O does not carry a higher spin charge, the change

in the single interval entanglement entropy following the quench is unaffected by the higher

spin chemical potential µ, at order µ2. We will also find the change in the scrambling time

due to the chemical potential at this order in µ.

Let us consider the correlator between the two heavy (O†,O) and the two light twist

field operators which compute Rényi/entanglement entropies,

Sn(t) =
〈O†(x1, x̄1) Tn(x2, x̄2)T̃n(x3, x̄3)O(x4, x̄4)〉(µ)(

〈O†(x1, x̄1)O(x4, x̄4)〉(µ)
)n . (5.12)

The positions of the operator insertions are precisely those given in the beginning of this

paper (see eq. (2.2)). The correlators are evaluated on the thermal cylinder and the field

theory is held at finite higher spin chemical potential µ. As usual, the correlator above

can be viewed as 2n insertions of the quenching operator on the replica geometry. In the

replica geometry the numerator of eq. (5.12) can be rewritten as,

〈O†(x1, x̄1) Tn(x2, x̄2) T̃n(x3, x̄3)O(x4, x̄4)〉(µ)

〈Tn(x2, x̄2) T̃n(x3, x̄3)〉(0)
=

〈
n∏
j=1

O(x
(j)
4 , x̄

(j)
4 )O†(x(j)

1 x̄
(j)
1 )

〉(µ)

n

,

where the denominator of the left hand side is evaluated at zero chemical potential. Now

we may view the right hand side as a perturbative expansion in µ, where each individual

term is evaluated in the µ = 0 theory,〈
n∏
j=1

O(x
(j)
4 , x̄

(j)
4 )O†(x(j)

1 x̄
(j)
1 )

〉(µ)

n

= C(0) + µ C(1) +
µ2

2
C(2) . . . (5.13)

C(0) is the 2n-point correlator in the replica geometry for vanishing µ, and the first putative
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correction C(1) is given by

C(1) =
n∑
i=1

∫
d2y

〈
W (y(i))

n∏
j=1

O(x
(j)
4 , x̄

(j)
4 )O†(x(j)

1 x̄
(j)
1

〉(0)

n

. (5.14)

If the operator O carries no charge under W , then the three-point functions essentially

factorise on general grounds. In particular, if O carries some charge W under W , then its

OPE with W takes the form

W (z)O(x, x̄) ∼ W
(z − x)3

O(x, x̄) . (5.15)

If we takeW = 0, then in the limit ε→ 0, the operators O† and O are close and their OPE

is dominated by the stress tensor [18]. Given that W is a chiral primary, the correlator

vanishes because the one-point function of W in the µ = 0 theory must vanish. The first

non-vanishing contribution thus appears at order µ2, and in the small-ε limit, we find that

the leading contribution again appears from the disconnected term:

C(2) =
1

2

n∑
i,k=1

∫
d2y1d

2y2〈W (y
(i)
1 )W (y

(k)
2 )〉n ×

〈
n∏
j=1

O(x
(j)
4 , x̄

(j)
4 )O†(x(j)

1 x̄
(j)
1

〉(0)

n

= K × J . (5.16)

The second factor, J , is the 2n-point correlator in the undeformed replicated theory,

which can be rewritten in terms of the twist operator. Since this is evaluated at zero

chemical potential, we may use the results of [20] for the heavy-heavy-light-light limit of

this correlator. The first factor K in eq. (5.16) was computed exactly in [23, 24] for a

spin-three chemical potential. Now we turn to the denominator in (5.12). Using similar

arguments for small ε we get,

〈O†(x1, x̄1)O(x4, x̄4)〉(µ) (5.17)

= 〈O†(x1, x̄1)O(x4, x̄4)〉(0)

(
1 +

µ2

2

∫
d2y1d

2y2〈W (y1)W (y2)〉 + . . .

)
.

Combining the O(µ2) contributions of the numerator and denominator in eq. (5.12) and

taking the logarithms, and using the results of [20] for the change in the undeformed CFT

entanglement entropy, we find that ∆SEE(t) following the local quench is unchanged from

the CFT result. In particular, the factorisation seen above in the small-ε limit, due to the

fact that the quench operator carries no higher spin charge, only changes the entanglement

entropy of the interval by a constant, time independent amount:

SEE(t) ' S
(0)
EE(t) + µ2K(x3, x̄3;x2, x̄2) . (5.18)

K is independent of time, and for the case of the spin-three chemical potential,

K(x3, x̄3;x2, x̄2) = lim
n→1

5c

12π2(n− 1)
{S(x3 − x2) + S(x̄3 − x̄2)} , (5.19)
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where the function S is defined in eq. (5.5). As a result, at order µ2, the change in the

single interval entanglement entropy following the local quench is,

∆SEE = 0 t < `1 , t > `2 , (5.20)

=
c

6
log

[
β

πε

sinπα sinh π
β (`2 − t) sinh π

β (t− `1)

α sinh π
β (`2 − `1)

]
, `1 < t < `2 .

Here α =
√

1− 24∆O/c. Therefore at quadratic order in µ, a local quench by an operator

O carrying no higher spin charge does not affect the time evolution of the single-interval

entanglement entropy.

5.4 Mutual information

We may now apply the above analysis to the six-point correlation function which com-

putes the mutual information of two intervals (L) and (R), each in one copy of the CFT

constituting the thermofield double state as in [20]. The correlator of interest is given by

S(n)(L ∪R) =
〈O†(x1, x̄1) Tn(x2, x̄2)T̃n(x3, x̄3) Tn(x5, x̄5)T̃n(x6, x̄6)O(x4, x̄4)〉(µ)

〈O†(x1x̄1)O(x4, x̄4)〉(µ)
.

The insertions points of two twist operators and the quenching operators on the left bound-

ary are essentially the same as before, while the two remaining twist fields are inserted on

the second boundary:

x1 = −iε, x2 = `1 − tL, x3 = `2 − tL , x4 = +iε , (5.21)

x̄1 = +iε, x̄2 = `1 + tL , x̄3 = `2 + tL , x̄4 = −iε,

x5 = `2 + iβ2 − tR, x6 = `1 + iβ2 − tR, x̄5 = `2 − iβ2 + tR, x̄6 = `1 − iβ2 + tR .

All correlators above are assumed to be evaluated at finite higher spin chemical potential

µ. We can now apply the S-channel and and T-channel factorizations in the large-c pic-

ture which correspond to the disconnected and connected contributions from bulk gravity

geodesics [20]. From the arguments developed in the previous subsection, we conclude that

at order µ2, the entanglement entropy of L ∪R in the S-channel is

S : S
(µ)
EE (L ∪R) = S

(0)
EE(L) + S

(0)
EE(R) + µ2K(x3, x̄3;x2, x̄2) + µ2K(x6, x̄6;x5, x̄5) .

The order µ2 corrections are simply the contributions to the covariant single-interval EE

at finite µ. Therefore the mutual information IL:R in this channel will continue to vanish

at this order in the chemical potential. In the T-channel or “connected” picture on the

other hand one obtains,

T : S
(µ)
EE (L ∪R) = S

(0)
EE(L ∪R) + µ2K(x3, x̄3;x5, x̄5) + µ2K(x6, x̄6;x2, x̄2) . (5.22)

The mutual information in this channel is not only non-zero but in fact the order µ2

correction is also non-vanishing,

I
(µ)
L:R = I

(0)
L:R − µ2 [K(x3, x̄3;x5, x̄5) + K(x6, x̄6;x2, x̄2) (5.23)

−K(x3, x̄3;x2, x̄2) − K(x6, x̄6;x5, x̄5)] .
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5.5 Scrambling time

It is now a straightforward exercise to calculate the scrambling time and pinpoint the

corrections that arise from the higher spin chemical potential for the spin-three case where

explicit results are available. To calculate the scrambling time we first set tL = tR = t.

With this choice we note that the order µ2 corrections to the mutual information become

time independent:

I
(µ)
L:R(t) = I

(0)
L:R + µ2 g(`, β) , ` ≡ `2 − `1 , tL = tR = t , (5.24)

where, using the definition (5.5) of K,

g(`, β) = 2S
(2)
EE +

2cπ2

9β2
(8 + 3π2) , (5.25)

S
(2)
EE =

2c

β2

[
32π2

9
π`
β cothπ`β −

20π2

9 − 4π2

3 sinh2 π`
β

{(
π`
β cothπ`β − 1

)2
+
(
π`
β

)2
}]

.

Taking the large t limit, we find that the mutual information vanishes at t = t∗,

t∗ =
`2 + `1

2
+

β

2π

6SEE(`)

c
+

β

2π

ln

S(0)
β

πE

 +
16µ2π2

3β2
+ 2π4µ

2

β2

 (5.26)

The single interval entanglement entropy, 6SEE(`)/c = ln sinh2 π`
β + µ2S

(2)
EE, includes the

first nontrivial correction at order µ2 while, S
(0)
β = πc/3β is the conformal result for

thermal entropy density. The correction to the thermal entropy density at order µ2 is

known to be [23, 24],

Sβ =
πc

3β

(
1 +

32µ2π2

3β2
+ . . .

)
. (5.27)

However, the extra terms in the scrambling time are not completely accounted for by this

shift in thermal entropy. It would be interesting to understand the physical interpretation

of the corrections. The coefficient of the term ∼ lnSβ can be identified with the Lyapunov

exponent. We conclude that for perturbations carrying no spin-three charge, the Lyapunov

exponent in the spin-three black hole background is the same as that for pure gravity.

6 Discussions

The main results of this work are the identification of certain features in physical observ-

ables computed in a particular higher spin theory which extends gravity by the inclusion

of one spin three field. One of these features appears in the single interval entanglement

entropy following a local quench by an operator with spin three charge. For large enough

charge the entanglement entropy becomes unbounded from below (turning complex beyond

that value). A similar feature appears in the time dependence of the entanglement entropy

in the forward evolved thermofield double state when the CFT is held at finite chemical

potential for spin three charge. However, in both cases it appears that for sufficiently small
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charge or chemical potential, the physical observables in question are well behaved. This is

also reflected in the scrambling time for mutual information following the local quench. It

is only beyond a critical value of the spin three charge, that the scrambling time decreases

and the Lyapunov index assumes the spin 3 value. Therefore, if we want the chaos bound

to be respected, and avoid accompanying pathological features, there must be bounds on

the higher spin charges carried by states in the putative CFT dual. As remarked earlier,

our bound (3.16) is consistent with the bounds obtained on the general grounds of unitarity

and modularity for WN theories with N fixed in [40].

In this work we have focussed on the CFT with a single higher spin current described

holographically by the SL(3,R) × SL(3,R) Chern-Simons theory. It will be interesting to

see how the observations in this paper generalise to the SL(N,R) × SL(N,R) theory and

obtain the N dependence of the bounds we have found on the higher spin charge and the

chemical potential. From the analysis of [8] using CFT’s withW∞ symmetry, it is expected

that the 3d Vasiliev theory with hs[λ] does not exhibit chaos. It will be interesting to see

this directly in holography.

One situation we did not consider in this paper, is when the CFT is held at finite

higher spin chemical potential and the local quench is induced by an operator which also

has higher spin charge. It will be interesting to generalise the observations of this paper

to this situation. This will involve the study of W3 conformal blocks deformed by higher

spin chemical potential possibly using the methods of [39].

Finally we mention that there is a conceptually simple picture to obtain the back re-

acted geometry of the infalling particle and then study the Lyapunov exponent and the

scrambling time in Einstein gravity [1]. This involves two BTZ geometries of different

masses sewed along a null shell representing the infalling particle and then evaluating

geodesics in this geometry. We have reviewed this approach using Wilson lines instead of

geodesics in appendix G. It will be useful to generalise this picture when the null shell

also carries higher spin charge. This will involve coupling particles to higher spin Chern-

Simons theories and obtaining appropriate junction conditions across the null shell.6 The

behaviour of scrambling time and Lyapunov index in this picture is expected to coincide

with the results obtained in this paper. However performing this calculation in the concep-

tually simple picture will be useful to obtain a gauge invariant formulation of the junction

conditions and the higher spin shock wave in the Chern-Simons language.
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A Transforming conical deficit to infalling shell

In [19] the transformations which map the conical deficit (2.7) in AdS3 to an infalling

particle in the BTZ background were obtained. The transformations map the centre of

the conical deficit to an infalling geodesic in the BTZ background [14]. The mass of the

infalling particle in the bulk is taken to be m = ∆O/R where ∆O is the dimension of the

operator producing the quench. We quote the transformations for completeness:

√
r2 +R2 sin τ =

R√
Mz

√
1−Mz2 sinh

(√
Mt
)
, (A.1)√

r2 +R2 cos τ =
R√
Mz

[
cosh(λ) cosh

(√
Mx

)
−
√

1−Mz2 sinh(λ) cosh
(√

Mt
)]
,

r sin(φ) =
R√
Mz

sinh
(√

Mx
)
,

r cos(φ) =
R√
Mz

[
cosh(λ)

√
1−Mz2 cosh

(√
Mt
)
− sinh(λ) cosh

(√
Mx

)]
.

Here (t, x) are boundary CFT coordinates and z, the radial coordinate (AdS boundary

at z = 0) in the ordinary BTZ black hole geometry which is obtained from the above

transformations on global AdS3 without a defect (m = 0):

ds2 =
R2

z2

(
−(1−Mz2) dt2 +

dz2

(1−Mz2)
+ dx2

)
. (A.2)

The BTZ black hole mass is given by M which is in turn related to the Hawking temperature

as β = 2π/
√
M . The parameter λ generates a boost which is a symmetry of the background

in the absence of the defect. When m 6= 0, the transformed geometry is time dependent

and the boost parameter is linked to the width (ε̃) of the excitation via

tanhλ =
√

1−Mε̃2 . (A.3)

B The Regge limit for chaos

Let us consider the cross-ratio z, as defined in (2.23). As t increases from 0, past t = `1,

to the deep interior of the interval PQ, the cross ratio traverses along the circle |z− 1| = 1

moving to the second sheet (figure 1) of the Wilson line correlator viewed as a function of

z. In order to access the chaos regime of large t whilst staying on the second sheet, at time

t = (`1 + `2)/2 we introduce an imaginary part for t, so that t→ t+ iε̃(t). The imaginary

component ε̃(t) is switched on smoothly at t = (`1 + `2)/2 and increased to a constant

asymptotic value larger than ε, the width of the local quench. The result of this process is

shown in figure 6. If ε1 is not introduced, for time t > (`1 + `2)/2, the cross-ratio z will

retrace its path along the circle |z− 1| = 1 and return to the first sheet, at which point the

excitation would exit the interval.
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Figure 6. The path (in blue) followed by z(t) as t is dialled from 0 to (`1 + `2)/2 with a quench

width ε = 0.005, β = 0.5, `1 = 0.2 and `2 = 1.8. The continuation of the same for t > (`1 + `2)/2

is performed by introducing an imaginary part for t, so that t → t + iε1 where ε1 ≈ 0.02. The

resulting path is shown in red. Importantly, the latter path does not encircle z = 1, and approaches

z = 0 for large t.

C Generators of SL(3,R)

The sl(3,R) algebra is generated by L0, L±1,W0,W±1,W±2. Of these, {L0, L±1} generate

the sl(2,R) subalgebra corresponding to pure gravity:

[Li, Lj ] = (i− j)Li+j , i, j = 0,±1 . (C.1)

The remaining commutation relations are,

[Li,Wm] = (2i−m)Wi+m , m, n = 0,±1,±2 , (C.2)

[Wm,Wn] = −1

3
(m− n)(2m2 + 2n2 −mn− 8)Lm+n .

D Adjoint Wilson line in SL(3,R) × SL(3,R) C-S theory

The Wilson line in the adjoint representation is obtained form the product of the funda-

mental and anti-fundamental Wilson lines:

WAd = WfundWfund . (D.1)

To obtain the entanglement entropy we need to evaluate Wfund in the limit ρP,Q → ∞
and retain the leading term, taking the barred and unbarred eigenvalues to be different for

generality:

lim
ρ→∞

Wfund = lim
ρ→∞

Tr
[
eL0ρQ e−ā−∆ξ− e−2L0ρP ea+∆ξ+

eL0ρQ
]

(D.2)

=
e2(ρP+ρQ)

λ1λ2λ3λ̄1λ̄2λ̄3

(
λ1 e

ν3∆ξ+
+ λ2 e

ν1∆ξ+
+ λ3 e

ν2∆ξ+
)
×(

λ̄1 e
−ν̄3∆ξ− + λ̄2 e

−ν̄1∆ξ− + λ̄3 e
−ν̄2∆ξ−

)
.
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The Wilson line in the conjugate representation is given by the same expression involving

the barred connections, but with the signs of ∆ξ± reversed:

lim
ρ→∞

Wfund = lim
ρ→∞

Tr
[
eL0ρQ eā−∆ξ− e−2L0ρP e−a+∆ξ+

eL0ρQ
]

(D.3)

=
e2(ρP+ρQ)

λ1λ2λ3λ̄1λ̄2λ̄3

(
λ1 e

−ν3∆ξ+
+ λ2 e

−ν1∆ξ+
+ λ3 e

−ν2∆ξ+
)
×(

λ̄1 e
ν̄3∆ξ− + λ̄2 e

ν̄1∆ξ− + λ̄3 e
ν̄2∆ξ−

)
.

Multiplying out the expressions for Wfund and Wfund, we obtain

lim
ρP,Q→∞

WAd(P,Q) =
64 e4(ρP+ρQ)

(λ1λ2λ3)2 × (D.4)[
λ2

1 + λ2
2 + λ2

3

2λ1λ2λ3
+

cosh (λ1∆ξ+)

λ1
+

cosh (λ2∆ξ+)

λ2
+

cosh (λ3∆ξ+)

λ3

]
×[

λ2
1 + λ2

2 + λ2
3

2λ1λ2λ3
+

cosh (λ1∆ξ−)

λ1
+

cosh (λ2∆ξ−)

λ2
+

cosh (λ3∆ξ−)

λ3

]
.

Using λ1 + λ2 + λ3 = 0 yields the form displayed in eq. (3.7).

E Gauge transformation of the BTZ connection

In this appendix, we explore the coordinate transformation from the conical deficit in global

AdS to BTZ viewed as a gauge transformation in Chern-Simons theory. First we consider

the coordinate transformation (A.1) in the zero boost limit (λ = 0) (see also eq. (E.8)),

and apply it to the global AdS connection, AAdS(x),

A′µ(x′) =
∂xν

∂x′µ
AAdS
ν (x(x′)) . (E.1)

The connection A′(x′) is then a BTZ connection. However, it is a gauge transformed

version of the usual BTZ connection A(0)BTZ(x′) (equation (E.11)). We want to evaluate

the gauge transformation U which relates these two connections,

A′(x′) = UA(0)BTZ(x′)U−1 − dU U−1 . (E.2)

Below we will be able to evaluate the gauge transformation at O
(

1
r̂2

)
in the large-r̂ expan-

sion. In the following subsection, we will apply the same coordinate transformation (E.8)

to the conical defect connection,

Ãµ(x′) =
∂xν

∂x′µ
Acon
ν (x(x′)) . (E.3)

This gives a BTZ connection, Ã(x′). We then assume that the same gauge transformation

in eq. (E.2), relates Ã(x′) to the following BTZ connection,

Ã(x′) = UABTZ(x′)U−1 − dU U−1, (E.4)

– 31 –



J
H
E
P
1
0
(
2
0
1
7
)
1
5
6

where

ABTZ = A(0)BTZ + ∆ABTZ . (E.5)

The above equations are used to determine ∆ABTZ, which is given in equation (E.24).

This essentially gives the conical defect correction ∼ O(δ) to the usual BTZ connection.

In the final subsection of this appendix, we repeat the above steps for the case when the

coordinate transformation has non-zero boost, (λ 6= 0) (equation (E.25)) which corresponds

to a finite width quench. Again, we derive the gauge transformation U at order O
(

1
r̂2

)
.

E.1 AdS3 to BTZ

Consider the transformation from the AdS3 metric,

ds2 = −(r2 +R2)dτ2 +
R2dr2

r2 +R2
+ r2dφ2, (E.6)

to the BTZ metric,

ds2 = R2

(
−
(
r̂2 −M

)
dt2 +

dr̂2

r̂2 −M
+ r̂2dx2

)
, (E.7)

where, r̂ has dimensions of inverse length. The following transformation relates the AdS3

coordinates to the BTZ coordinates when boost is zero,

r =
R
√

(r̂2 −M) cosh2
√
Mt+ r̂2 sinh2

√
Mx

√
M

, (E.8)

τ = tan−1

(√
r̂2 −M sinh

√
Mt

r̂ cosh
√
Mx

)
, φ = tan−1

(
r̂ sinh

√
Mx√

r̂2 −M cosh
√
Mt

)
.

The AdS3 connections,

AAdS
r =

L0√
r2 +R2

, AAdS
τ =

L−1R
2 exp(−ρ) + L1 exp(ρ)

2R
, (E.9)

AAdS
φ =

L−1R
2 exp(−ρ) + L1 exp(ρ)

2R
,

are transformed to the BTZ connection using the transformation in equation (E.8),

A′µ(x′) =
∂xν

∂x′µ
AAdS
ν (x(x′)) , (E.10)

where x = (τ, r, φ) and x′ = (t, r̂, x). Here, the connections A′µ(x′) are related to the usual

BTZ connections A
(0)BTZ
µ (x′) ,

A
(0)BTZ
r̂ =

1√
r̂2 −M

L0 , A
(0)BTZ
t = A

(0)BTZ
φ =

1

2

(
eρ̂L1 −Me−ρ̂L−1

)
, (E.11)

by a gauge transformation, U , such that

A′(x′) = UA(0)BTZ(x′)U−1 − dU U−1 . (E.12)
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The matrix U has determinant 1. The following gauge transformation is obtained as a

series expansion in 1
r̂ ,

U =

u(0)
11 +

u
(2)
11

r̂2

u
(1)
12
r̂

u
(1)
21
r̂ u

(0)
22 +

u
(2)
22

r̂2

+ O

(
1

r̂3

)
, (E.13)

where,

u
(0)
11 = 2−

1
4

√
sech
√
M(t− x), u

(0)
22 =

1

u
(0)
11

, (E.14)

u
(1)
12 =

√
M

2

sinh
√
M(t+ x)

cosh
3
4

√
M(t+ x) cosh

1
4

√
M(t− x)

,

u
(1)
21 =

√
M

2

sinh
√
M(t− x)

cosh
1
4

√
M(t+ x) cosh

3
4

√
M(t− x)

,

u
(2)
11 =

M

25

sinh
√
M(t+ x)

[
3 sinh

√
M(t− 3x)− sinh

√
M(3t+ x)

]
cosh

7
4

√
M(t+ x) cosh

9
4

√
M(t− x)

,

u
(2)
22 =

M

23

sinh
√
M(t+ x) sinh

√
M(t− x)

cosh
5
4

√
M(t+ x) cosh

3
4

√
M(t− x)

.

The above gauge transformation was obtained by demanding that the dreibein,

e′µ =
1

2
(A′µ − Ā′µ) , (E.15)

transforms homogeneously under the gauge transformation,

e′(x′) = Ue(x′)U−1 , (E.16)

where e(x′) is the dreibein corresponding to the usual BTZ connection of equation (E.11).

The dreibeins as series expansion around r̂ →∞ are,

e′t =

(
at −br̂ + c(x)

r̂
b−1

4 r̂ − c(−x)
r̂ −at

)
, e′x =

(
ax br̂ − axd(x)

r̂
b−1

4 r̂ + axd(−x)
r̂ −ax

)
, (E.17)

e′r̂ =

(
1
2r̂ −d(x)

r̂2

d(−x)
r̂2 − 1

2r̂

)
,

and,

er̂ =

(
1

2
√
r̂2−M 0

0 − 1
2
√
r̂2−M

)
r̂→∞−−−→

(
1
2r̂ 0

0 − 1
2r̂

)
, (E.18)

et =

(
0 −1

2

√
r̂2 −M√

r̂2−M
2 0

)
r̂→∞−−−→

(
0 M

4r̂ −
r̂
2

r̂
2 −

M
4r̂ 0

)
, ex =

(
0 r̂

2
r̂
2 0

)
.
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Here,

at =

√
M sinh 2

√
Mt

2
(

cosh 2
√
Mt+ cosh 2

√
Mx

) , ax =

√
M sinh 2

√
Mx

2
(

cosh 2
√
Mt+ cosh 2

√
Mx

) ,
b =

1

2

√
cosh

√
M(t+ x)

cosh
√
M(t− x)

, c(x) =
M
(

3 cosh
√
M(t−x) + cosh

√
M(t+3x)

)
4
√

2
(

cosh 2
√
Mt+ cosh 2

√
Mx

)3/2
,

d(x) =

√
M sinh

√
M(t+ x)

√
2
√

cosh 2
√
Mt+ cosh 2

√
Mx

. (E.19)

E.2 Conical defect to BTZ

Let us consider the transformation from the conical defect metric of eq. (2.7) to the BTZ

metric. Using the transformation (E.8), and the following connections in conical defect

geometry,

Acon
r =

L0√
r2 − T

, Acon
τ = − L−1T exp(−ρ) + L1 exp(ρ)

2R
, (E.20)

Aconφ = − L−1T exp(−ρ) + L1 exp(ρ)

2R
,

where,

T = δ −R2, (E.21)

the following BTZ connection is obtained,

A′µ(x′) =
∂xν

∂x′µ
Aconν (x(x′)). (E.22)

Under the gauge transformation of equation (E.12), the above connection becomes the

usual BTZ connection of (E.11) plus a correction proportional to the deficit δ,

ABTZ = A(0)BTZ + ∆ABTZ, (E.23)

where

∆ABTZ =
−Mδ

4R2r̂
(dt+ dx)

[
L1sech

(√
M(t+ x)

)
sech

(√
M(t− x)

)
(E.24)

+ L−1sech2
(√

M(t+ x)
) ]
.
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E.3 Finite λ

The following transformation between the set of coordinates, x = (τ, r, φ) and x′ = (t, r̂, x),

is used when λ 6= 0,

√
r2 +R2 sin τ̃ =

R√
M

√
r̂2 −M sinh

(√
Mt
)
, (E.25)√

r2 +R2 cos τ̃ =
R√
M

[
r̂ cosh(λ) cosh

(√
Mx

)
−
√
r̂2 −M sinh(λ) cosh

(√
Mt
)]
,

r sin(φ) =
R√
M
r̂ sinh

(√
Mx

)
,

r cos(φ) =
R√
M

[
cosh(λ)

√
r̂2 −M cosh

(√
Mt
)
− r̂ sinh(λ) cosh

(√
Mx

)]
.

The gauge transformation is of the form (E.13), where the components of the matrix are,

u
(0)
11 =

√
2b, u

(0)
22 =

1

u
(0)
11

, u
(1)
12 = u

(0)
11 (at + ax) , (E.26)

u
(1)
21 =

at − ax
u

(0)
11

, u
(2)
11 =

2u
(0)
11 (axu

(0)
11 u

(1)
12 + bu

(1)
12 u

(1)
21 − axd(x))

2b+ u
(0)
11

2 ,

u
(2)
2 =

−2axu
(0)
11 u

(1)
12 + u

(0)
11

2
u

(1)
12 u

(1)
21 + 2axd(x)

2bu
(0)
11 + u

(0)
11

3 .

where,

at =

√
M coshλ sinh

√
Mt

(
coshλ cosh

√
Mt− sinhλ cosh

√
Mx

)
2

((
coshλ cosh

√
Mt− sinhλ cosh

√
Mx

)2
+ sinh2

√
Mx

) , (E.27)

ax =

√
M coshλ sinh

√
Mx

(
coshλ cosh

√
Mx− sinhλ cosh

√
Mt
)

2

((
coshλ cosh

√
Mt− sinhλ cosh

√
Mx

)2
+ sinh2

√
Mx

) ,

b = 2−
1
2 coshλ cosh

√
M(t+x)−sinhλ

(cosh 2λ+cosh2 λ(cosh 2
√
Mt+cosh 2

√
Mx)−2 sinh 2λ cosh

√
Mt cosh

√
Mx−1)

1
2
,

d(x) = 2−
1
2
√
M coshλ sinh

√
M(t+x)

(cosh 2
√
Mt+cosh 2

√
Mx) cosh2 λ+cosh 2λ−2 cosh

√
Mt cosh

√
Mx sinh 2λ−1

.

The dreibeins e′t, e
′
x and e′r̂ are as in equation (E.17).

F Conical defect with higher spin chemical potential

In this apendix we study various aspects of a conical defect geometry with chemical po-

tential for spin-3 charge.
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Figure 7. Left: plot of free energy for the two sets of solutions of holonomy equations. The free

energy is exact in µ, and is plotted for k = 1. Right: plot of µ versus C. µ is a single valued

function for C = (−∞, 3
2

(
2−
√

3
)
]. For these values, µ = (0, −38

√
3 + 2

√
3].

F.1 Free energy

The following are the holonomy conditions for conical defect with higher spin chemical

potential,

Tr
(
a2
φ

)
= −2

(
1− δ

R2

)
, det (aφ) = 0 , (F.1)

where the eigenvalues of holonomy along the φ direction are,

eval(ωφ) =

(
0, ±2πi

√
R2 − δ
R

)
. (F.2)

Solving these holonomy conditions gives two sets of solutions for L,W. The solution in

equation (4.5) is chosen because it has lower free energy. The free energy is evaluated using

F = L − µW. (F.3)

Figure 7 gives the plot of free energy for the two sets of solutions of holonomy equations.

The blue curve with lower free energy corresponds to solution in equation (4.5). In this

plot, the free energy is exact in µ, and is plotted for k = 1.

F.2 Entanglement entropy for static case

The entanglement entropy for conical defect with higher spin chemical potential is,

SA =
c

3
log

2Λ sin
(√

R2−δ
R

φ
2

)
√
R2 − δ

 (F.4)

+
c

72

µ2

R2

R2 − δ
R2

cosec4

(√
R2 − δ
R

φ

2

)[
3− 2

(
3
R2 − δ
R2

φ2 + 4

)
cos

(√
R2 − δ
R

φ

)

+4

√
R2 − δ
R

φ

(
sin

(√
R2 − δ
R

φ

)
+ sin

(
2

√
R2 − δ
R

φ

))
+ 5 cos

(
2

√
R2 − δ
R

φ

)]
.

Here, τ1 = τ2 = 0 and φ = (φ2 − φ1)/2. The δ → 0 limit of this result matches with

entanglement entropy of AdS3 with higher spin chemical potential given in [35]. Here Λ is

the UV cutoff.
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F.3 Solving holonomy equations in terms of C

Solving the φ holonomy conditions of equation (F.1), the following equations are obtained,

where for convenience we use k = 4kcs,

256π2µ2L2 + 24πkL+ 72πkµW + 3k2 = 0 , (F.5)

2048π2µ3L3 − 576πkµL2 − 864πkµ2WL− 864πkµ3W2 − 27k2W = 0 .

We define the parameters,

ζ =

√
k

32πL3
W, γ =

√
2πL
k
µ , (F.6)

to write the holonomy conditions as,

1728γ3ζ2 + (432γ2 + 27)ζ − 128γ3 + 72γ = 0, (F.7)

k

8π
+

(
1 +

16

3
γ2 + 12γζ

)
L = 0.

Substituting,

ζ =
1− C
C3/2

, (F.8)

in the first of the above equations, the expression for γ is,

γ =

√
C

4(2C − 3)
. (F.9)

Thus,

W =
4(1− C)

C3/2
L
√

2πL
k
, µ =

√
C

4(2C − 3)

√
k

2πL
, (F.10)

and using the second equation of equation (F.7), µ is obtained entirely as a function of C,

µ = −3(C − 3)
√

3− 4C

2(3− 2C)2
. (F.11)

µ is a single valued function for C = (−∞, 3
2

(
2−
√

3
)
]. For these values, µ runs from

µ = (0, −3
8

√
3 + 2

√
3], that is roughly, µ ∼ (0, −0.953]. Figure 7 gives the plot for µ

versus C.

The relation between µ and C for conical defect with higher spin chemical potential is

given by,

µ

R
= − 3(C − 3)

√
3− 4C

2
√

1− δ(3− 2C)2
. (F.12)
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G Another setup for infalling particle in eternal BTZ

This section follows the analysis of [1]. Consider the Kruskal extension of BTZ blackhole,

the BTZ metric transforms to the following metric in light cone coordinates,

ds2 =
−4R2dudv + r2

H(1− uv)2dφ2

(1 + uv)2
, (G.1)

using the transformation,

t =
β

4π
log

(
−v
u

)
, r = rH

1− uv
1 + uv

. (G.2)

The right region is (u < 0, v > 0) and the left region is (u > 0, v < 0). The left asymptotic

region can be reached from right asymptotic region by translating the time as t→ t+ iβ/2.

We want to study this geometry when a massive particle is added at time −tw at the

left boundary and it falls towards the horizon. This gives rise to a backreacted geometry.

This backreacted geometry is modelled by gluing together a BTZ solution of mass M (right

region) to a BTZ solution of mass M +E (left region), along the null surface uw = e−
2πtw
R2 .

Here E is the energy of the infalling perturbation and is considered to be much smaller

than M . The radius of horizon is different in the two regions and is related by,

r̃H =

√
M + E

M
rH . (G.3)

The right region has the coordinates (u, v), and left region has coordinates (ũ, ṽ). The

following matching conditions relate these sets of coordinates:

• ũw = uw = e−
2πtw
l2 . This is true in the limit E/M → 0 followed by tw →∞.

• The coefficient of dφ2 in the metric is continuous across the shell.

r̃H
1− ũṽ
1 + ũṽ

= rH
1− uv
1 + uv

. (G.4)

Solving this equation in the limit E/M → 0,

ṽ = v +
E

4M

(
e

2πtw
β − v2e

−2πtw
β

)
, (G.5)

next the limit tw →∞ is taken,

ṽ = v + α, α =
E

4M
e

2πtw
β . (G.6)

We now proceed to evaluate the Wilson line from a point (ρP , tL, φ) at the left boundary to

a point (ρQ, tR, φ) at the right boundary. In order to do this we first evaluate the geodesic

length from the point (ρQ, tR, φ) at the right boundary to an intermediate point (ρS , tS , φ)

at the shell at uw. This is obtained by taking, 2πL
kcs

= 2πL̄
kcs

= π2R2

β2 , and ρQ → ∞ in the

Wilson line of equation (2.14),

WR
fund =

r∞
R

[
e−ρS cosh

(
π

β
∆ξ+

)
cosh

(
π

β
∆ξ−

)
− eρSβ2

π2R2
sinh

(
π

β
∆ξ+

)
sin

(
π

β
∆ξ−

)]
,

(G.7)
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where, ξ± = t±Rφ. Using the transformation of equation (G.2) and the following equation,

ρ = log

[
1

2R

(
r +

√
r2 − r2

H

)]
, (G.8)

(ρS , tS) is substituted in terms of (uw, v). Taking the limit uw → 0, we obtain,

logWR
fund = log

(
r∞β

πR2

)
+ log

(
1− v e−

2πtR
β

)
. (G.9)

The Wilson line from the point at the left boundary (ρP , tL, φ) to the point at the shell

(ρS , tS , φ), is obtained by performing the following shift in equation (G.9): v → v+α, and

tR → tL + iβ
2 ,

logWL
fund = log

r∞β

πR2
+ log

(
1 + (v + α)e

− 2πtL
β

)
. (G.10)

To obtain the Wilson line from the left to right boundary, minimize the function

log
(
WR

fundW
L
fund

)
over v. The value of v at the minimum is,

vmin =
1

2

(
−e

2πtL
β + e

2πtR
β − α

)
. (G.11)

Thus, the Wilson line from the left to right boundary is,

logWfund = log
(
WR

fundW
L
fund

)
|vmin (G.12)

= 2 log
r∞β

πR2
+ 2 log

(
1

2
e
− 4π
β

(tL+tR)
(
e

2π
β
tL + e

2π
β
tR + α

))
.

The mutual information is evaluated at tL = tR = 0, and the scrambling time t∗w is obtained

by setting mutual information to zero, I(A;B)(t∗w) = 0. The mutual information is,

I(A;B) = log sinh
πRφ

β
− log

(
1 +

Eβ

4S
e

2πtw
β

)
,

where, SA, SB are entanglement entropies of regions of size Rφ on the two boundaries,

SA = SB =
1

4

(
2 log

r∞β

πR2
+ 2 log sinh

πRφ

β

)
, (G.13)

SA∪B =
1

2
logWfund = log

r∞β

πR2
+ log

(
1 +

α

2

)
.

Thus the scrambling time is,

t∗w =
φR

2
+

β

2π
log

(
2S

βE

)
. (G.14)
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[32] M. Bañados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484

(1999) 147 [hep-th/9901148] [INSPIRE].

[33] I. Ya. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Thermalization after holographic

bilocal quench, JHEP 09 (2017) 115 [arXiv:1706.07390] [INSPIRE].

[34] J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D,

JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].

[35] S. Datta, Relative entropy in higher spin holography, Phys. Rev. D 90 (2014) 126010

[arXiv:1406.0520] [INSPIRE].

[36] J. Long, Higher spin entanglement entropy, JHEP 12 (2014) 055 [arXiv:1408.1298]

[INSPIRE].

[37] J. Erdmenger, D. Fernandez, M. Flory, E. Megias, A.-K. Straub and P. Witkowski, Time

evolution of entanglement for holographic steady state formation, JHEP 10 (2017) 034

[arXiv:1705.04696] [INSPIRE].

[38] A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012)

102 [arXiv:1110.1607] [INSPIRE].

[39] B. Chen and J.-q. Wu, Higher spin entanglement entropy at finite temperature with chemical

potential, JHEP 07 (2016) 049 [arXiv:1604.03644] [INSPIRE].

[40] N. Afkhami-Jeddi, K. Colville, T. Hartman, A. Maloney and E. Perlmutter, Constraints on

Higher Spin CFT2, arXiv:1707.07717 [INSPIRE].

– 41 –

https://doi.org/10.1007/JHEP04(2014)089
https://arxiv.org/abs/1306.4347
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4347
https://doi.org/10.1007/JHEP10(2013)110
https://arxiv.org/abs/1306.4338
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4338
https://doi.org/10.1007/JHEP06(2014)096
https://arxiv.org/abs/1402.0007
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.0007
https://doi.org/10.1103/PhysRevD.90.041903
https://arxiv.org/abs/1405.0015
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.0015
https://doi.org/10.1007/JHEP05(2011)022
https://arxiv.org/abs/1103.4304
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4304
https://doi.org/10.1088/1751-8113/46/21/214001
https://arxiv.org/abs/1208.5182
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.5182
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://arxiv.org/abs/cond-mat/0503393
https://inspirehep.net/search?p=find+EPRINT+cond-mat/0503393
https://doi.org/10.1007/JHEP05(2013)014
https://arxiv.org/abs/1303.1080
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1080
https://doi.org/10.1007/JHEP08(2016)022
https://arxiv.org/abs/1602.09057
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.09057
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1007/JHEP01(2014)023
https://doi.org/10.1007/JHEP01(2014)023
https://arxiv.org/abs/1302.0816
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0816
http://dx.doi.org/10.1063/1.59661
http://dx.doi.org/10.1063/1.59661
https://arxiv.org/abs/hep-th/9901148
https://inspirehep.net/search?p=find+EPRINT+hep-th/9901148
https://doi.org/10.1007/JHEP09(2017)115
https://arxiv.org/abs/1706.07390
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07390
https://doi.org/10.1007/JHEP11(2012)135
https://arxiv.org/abs/1210.0284
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0284
https://doi.org/10.1103/PhysRevD.90.126010
https://arxiv.org/abs/1406.0520
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0520
https://doi.org/10.1007/JHEP12(2014)055
https://arxiv.org/abs/1408.1298
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.1298
https://doi.org/10.1007/JHEP10(2017)034
https://arxiv.org/abs/1705.04696
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.04696
https://doi.org/10.1007/JHEP01(2012)102
https://doi.org/10.1007/JHEP01(2012)102
https://arxiv.org/abs/1110.1607
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1607
https://doi.org/10.1007/JHEP07(2016)049
https://arxiv.org/abs/1604.03644
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03644
https://arxiv.org/abs/1707.07717
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.07717

	Introduction
	Wilson lines, local quenches and OTO correlators
	SL(2,R)xSL(2,R) Wilson line and local quench

	Quench with spin three charge
	Wilson line in charged shockwave background
	Mutual information

	Conical defect deformed by HS chemical potential
	Conical deficit connections with chemical potential

	Scrambling time from CFT with higher spin charge
	Thermofield double and entanglement growth 
	Scrambling time and entanglement speed
	HHLL correlator at finite mu
	Mutual information
	Scrambling time

	Discussions
	Transforming conical deficit to infalling shell
	The Regge limit for chaos
	Generators of SL(3,R)
	Adjoint Wilson line in SL(3,R)xSL(3,R) C-S theory
	Gauge transformation of the BTZ connection
	AdS(3) to BTZ
	Conical defect to BTZ
	Finite lambda

	Conical defect with higher spin chemical potential
	Free energy
	Entanglement entropy for static case
	Solving holonomy equations in terms of C

	Another setup for infalling particle in eternal BTZ

