
Software Quality Enhancement Through Software Process
Optimization Using Taguchi Methods

B. Kanchana
Indian Institute of Science, Bangalore, India.

Cen tre for AirBorne Systems, Defense Research and Development Organization
E-mail: kanchana@cabs.ernet.in

and
V. V. S. Sarma

Indian Institute of Science, Bangalore, India.
E-mail: vvs@csa.iisc.ernet.in

Abstract
This paper presents a methodology for selection of optimal softu’are design parameters using the experimental
design. When an organization is at the point of taking up a new project with an objective of improving the software
quality, Taguchi method is appliedfor the software design process with an objective that not more than one error
is found per software module. The strategy in robust design is to conduct off-line experiments using orthogonal
arrays (OA) and to optimize the design by maximizing performance measures with respect to design parameters.
Towards this a cause and effect diagrams for design errors was drawn with opinions from customer, production,
quality personnel and engineers. This diagram gave three most likely parameter.s as candidate.for sofhzlare design
error. they are coupling, number of requirements per module and McCabe’s cyclomatic comple,xi(v. It was planned
to consider coupling parameter at two levels as low coupling at level 1 and high coupling at level 2. in case of
number of requirements per module parameter three levels were considered they are one requirement per module
at level I, two requirements per module at level 2 and greater than two requirements per module as the level 3. In
case of McCabe S complexit?, value<5 is set at level I, value 5 to 10 is set at level 2 and value >I0 is set at level 3.
The possible number offactorial experiment required be conducted for levels selected for the threee parameters is
18. The appropriate orthogonal array based on the guidelines of Taguchi is Lg that is nine experiments need to be
conducted to find the optimal software design parameters.
Keywords : Quality assurance, software quality, software metrics, software process improvement, design of
experiments and Taguchi methods.

1. Introduction
Recent literature on quality control in

manufacturing has recognized the method of quality-
based design as a more efficient alternative to the
traditional approach of acceptance sampling. In
particular, interest has been growing in the use of the
concepts of robust design, which are attributed to the
Japanese quality engineer, G.Taguchi [I]. Even though
Taguchi’s methods of data analysis have been under the
scrutiny of statisticians [2], they are being applied with
a fair degree of success in many industrial experiments
[3] [4]. Robust design addresses two major concerns
faced by all product/process designers: i) how to
economically reduce the variation of a
product’s/process’ function in the user’s environment,
and ii) how to ensure that decisions found to be optimal
during laboratory experimentation will prove to be

so in the anufacturing and the customer environments.
The strategy in robust design is to

conduct off-line experiments using orthogonal arrays,
and to optimize the design by maximizing performance
measures, termed signal-to-noise ratios, with respect to
thedesign parameters.

In this paper, we attempt to show the
applicability and relevance of Taguchi methods to
engineer quality and performance into new software
products and software development process. While
applying these methods some characteristics of the
software development process and its similarities and
differences with the traditional manufacturing scenario
are to be noted. Firstly, like in manufacturing software
is a product; but unlike in manufacturing it involves
development and not production. We do not reproduce
the same object, but each product and each of its

O-7695-0028-5/99 $10.00 0 1999 IEEE
188

versions are different from the previous versions,
Models for statistical quality control are considerably
different and there is lack of usehI models that allow
us to reason about the software process, the software
product and the relationship between them [5] [6].

In this preliminary paper, we demonstrate the
application of Taguchi methods, to optimize the
software architecture design parameters in the software
development process especially in the design phase of
its life cycle. If the software user is experiencing an
unacceptable number of faults, the common solution
would be to improve the underlying software
development process. But if the project manager wants
to incur this extra expense, he might have to justify it
quantitatively. Problems of this nature constantly arise
in software industry. Before such large investments are
made, one ought to see if the errors can be reduced
through better design decisions. Software system
developers are skillful in approximately setting of
software design parameter values. Considerable
additional experimentation is necessary, to obtain the
information needed to do a design optimization.
Classical statistical experiments, called full factorial
designs requires trials under all combinations of
factors. Taguchi has shown that if one runs
orthogonally designed experiments instead, many
product and process designs can be optimized
economically and effectively [7].

The paper is organized as follows: In section
2, we discuss about robust design. The motivation of
using this method in the context of an existing real-time
software system development is explained in section 3.
The software design parameters and their levels are
described in section 4. Orthogonal array experiment,
preliminary results, experimental verifications from this
study are presented in section 5 and conclusion in
section 6.

2. Parameter design
Robust product design aims at the selection of

proper software design techniques, testing techniques,
management techniques and nominal operating
conditions so that the product will be producible at
minimum cost. The three steps involved in robust
design are [7] are:
1. Planning the statistical experiments is the first step

and includes identification of the product’s main
function(s), constituting failure. This planning step
spells out the quality characteristics Y to be
observed, the control factors { Cl,, 02, Cl,}, the
observable noise factors (wl, WJ, wj}, and the
levels at which they will be set during the various
test runs (experiments). It also states which
orthogonal design will be applied to conduct

2.
3.

3.

statistical experiments and how the observed data {
YI> Y2? YS? Y4, y,,} will be analyzed.
Actual conducting of the experiments.
Analysis of the experimental observations to
determine the optimum settings for the control
factors, to predict product performance at these
settings, and to conduct the validation experiments
for confirming the optimized design and making
plans for future actions. Taguchi has[4], [7]
recommended that one should analyze this, using
specially transformed form of the performance
characteristics Y, known as the signal-to-noise
ratio{S/N(f3),}, rather than using the observed
response { y,} directly.

Motivation
In this section, we describe the real-time computer

system used as on-board system of an Airborne
Surveillance Platform (ASP). The development of an
ASP involves integration of a large number of diverse
subsystems which typical ly include Airborne
Surveillance Sensor 1 which is active, a Navigation
system, Sensor Data Processors, Bus Controller,
Backup Bus Controller, Man Machine Interface (MMI)
and display system as shown in Fig. 1.

1
sen\or I

Man Machine
Interface and

display \y\rem
Diwer

e hnk

Fig. I. ASP System Configuration

Each subsystem is configured as a Remote
Terminal (RT) on the 1553 B bus. In order to develop a
dependable ASP, it is necessary to check the
dependability of the software resident on each
subsystem. Sensor 1 detects targets from an elevated
platform with a certain range. Sensor Data Processor
processes the raw sensor data to give a cumulative
detail of the target and the data is transmitted to the
display system. The Man Machine Interface (MMI) and
display system provide the surveillance scenario to the
operator.

The organization in charge of developing ASP
is presently designing an enhanced version of the ASP
software. The aim is to reduce the number of errors
introduced in the design phase per module. MM1 and

189

display system software architecture is shown in Fig.
2. The total ASP system is controlled by the operator
from the MMI. The MM1 consists of user interface
device to provide various facilities such as, access
protocol, equipment control and operation facility. The
display system provides the air surveillance situation on
a tactical display with appropriate symbology and
colour codes to indicate the sensor correlation and
classification respectively. An interactive menu display
is provided to aid the operator all through the mission.
The surveillance is carried out using a tactical and a
tote display with a target density of the order of a few
hundreds. Target information monitored is in the order
of thousands of words per scan of a few seconds for
period of 4 to 6 hours. This briefly gives us an idea of
the software complexity and the timing requirements of
the MM1 and display subsystem.

4. Quality enhancement through process
optimization

In this paper, our focus is an ensuring
enhanced software product quality by improving the
underlying software development process. There are
many process factors, affecting the product quality. The
product metric that is considered is the number of
defects introduced in the design phase of the software
life cycle. A cause-effect diagram captures the causes
for the same from among the process characteristics. A
cause-effect diagram brings out more clearly the
potential factors than a group discussion. For applying
the Taguchi method in software process for the data
available a representative of this cause effect diagram is
applied which is shown in Fig. 3.

h-l

Fig 2 SoAware Archirecturc ofthe MMI and Display Syucm

4.1 Choice of Process Parameters
Discussion with computer scientists and the

customers led to the selection of three factors listed in
Table. 2. for improving the software modules from the
point of view of quality. The software parameters
selected are coupling, number of requirements per

module, and cyclomatic complexity [g]. The
classification of coupling are data coupling, stamp
coupling, control coupling, common coupling and
content coupling.

4.1.1 Number of requirements per module
The software architecture of two main modules of

MM1 and Display software is shown in Fig. 4. The
Receive_plot_data() module displays the plot data
received after converting the data to the screen
coordinates. It addresses one functional requirement.
The Commandgroc_task() receives the range ring,
azimuth display and maximum range change command
and displays the range rings, azimuth strobes and
toggles the maximum range between 100 and 200
Kms respectively. This module addresses three
function requirements. They are azimuth display, range
ring display and maximum range selection. Based on
the number of requirements the module address the
requirement classification is carried out in this study.

Spcciticar~~~ Phare

Fig. 3. A Representative Cause-and Effect Diagram for Design
Faults used for design of experiments

Fig. 4. Software Architecture of Disp_initial_task()

4.1.2 Coupling between modules

190

As long as a simple module parameter list is
present i.e. simple data are passed, data coupling is
exhibited in this portion of the software structure [9]. A
variation of data coupling is called stump coupling is
found when a portion of a data structure is passed via a
module interface. Control coupling is characterized by
passage of control between modules by a flag on
which decisions are made in a subordinate or
superordinate module. Common coupling occurs when
number of modules reference a global data area.
Diagnosing problems in structures with considerable
common coupling is time consuming and difficult.
Content coupling occurs when one module makes use
of data or control information maintained with the
boundary of another module. Secondarily content
coupling occurs when branch are made into the middle
of the module.

4.1.3 Cyclomatic complexity
McCabe’s classic cyclomatic complexity

metric simply evaluates the control graph of the module
given the source code as input [8]. Cyclomatic
complexity is a software metric that provides a
quantitative measure of the logical complexity of a
program.

The three parameters a re number of
requirements per module, coupling and cyclomatic
complexity and the various levels used are displayed in
Table. 2. This design parameters is broken down into
either two or three levels as shown in the Table. 2.
The first control factor is number of requirements per
module which is set at three levels. At level 1 the value
set is one requirement per module, at level 2 the
number of requirements is set to 2 and at level 3 the
number of requirements is set to greater than 2. The
second control factor is cyclomatic complexity which is
set at three levels. At Level 1 the modules with
cyclomatic complexity less than five are considered, at
level 2 the modules with cyclomatic complexity
between 5-10 is considered and at level 3 the modules
whose cyclomatic complexity is greater than 10 is
considered. In any application it is very difficult to
program without any coupling hence at level 1 the data,
stamp and control coupling are considered and
common and content coupling is considered at level 2.

Table. 2. Control Factors and their Levels

Label Factor Name Level I Level 2 Level 3
A Number of I 2 >2

Requirements
per module I

B 1 Cyclomatic <5 1 5-10 >I0 I
Complexity

C Coupling Data, Commo Commo
Stamp n and n and

and
Control

Content Content

5.0 Taguchi Design based on orthogonal
array

Details of Taguchi method and other possible
application in software engineering are discard in the
Ph.D thesis of the first author [lo]. The factorial
experiment to explore all possible factor level
combinations would require 2*3’ = 18 experiments
because the control factor A is at 3 levels, B is at 3
levels and C is at 2 levels. It is unnecessary to perform
ml1 factorial experiment; a system’s behavior can
usually be adequately characterized by relatively a few
parameters. A number of orthogonal arrays have been
tabulated along with associated linear graphs which
can be used conveniently to construct orthogonal
designs for any experimental solution [7]. The
appropriate

Table. 3. Experimental design LS array

orthogonal array selected for the parameters in Table. 2
is Lg array. This array is shown in Table. 3. The
assignments to the columns are shown in the Table. 3.
The table has nine rows, each row showing different
characteristics. For instance, row 1 composed of level 1
for each of the three control factors. As only two levels
are identified for factor C, in Table. 2 and level 3 is
taken to be at level 2.

The experimental procedure followed in each
of the nine experiments is next described. For each
experiment 3 or 4 modules were tested. The outcome of
the testing process is the identification of presence of
errors. The errors encountered in each module during
the testing process is recorded. The errors encountered
for various experiment is listed in Table. 4 the
modules selected were from the real-time metric
software and MM1 and Display software written for
iRMX environment and DOS environment. The
modules are written in C- language and by the
programmers who have an experience of 5 to 10 years.

191

In Table. 4 for instance experiment type 1 which refer
to modules with McCabes complexity less than 5, the
modules have data coupling or stamp or control
coupling only and they address one requirement per
module. Experiment type 1 was conducted on 5
modules and only 1 error was found from these
modules on testing. Experiment type 2 was conducted
on 5 different modules and 3 errors were found on
testing of these modules. Experiment type 3 was
conducted on 5 modules and 10 errors were found
when they were tested. Experiment type 4 was
conducted on 2 modules and 1 error was found when
the modules were tested. Experiment type 5 was
conducted on 3 modules and 4 errors was found when
the modules were tested. Experiment type 6 was
conducted on 2 modules and 4 errors was found when
the modules were tested. Experiment type 7 was
conducted on 3 modules and 3 error was found when
the modules were tested. Experiment type 8 was
conducted on 3 modules and 4 errors was found when
the modules were tested. Experiment type 9 was
conducted on 3 modules and 10 errors was found when
the modules were tested.

To seek robustness one should measure
performance by software ratios. If the performance
characteristics y happens to be such that the smaller it
is the better, then one express the signal to noise ratio
as follows

r i
S/N@>= -10 log, cy2 / n ,

1. i
where 8 is the vectorlof control parameter [4], [7].
Where one repeats observation n times at each selected
combination of design parameter sets in the control
orthogonal array. In design optimization one attempts
always to maximize the S/N ratio. The best setting of
the design parameter is at that setting where the S/N
ratio is maximum. The optimum parameter
configuration needed for developing a reliable
software module from Table. 4 after the analysis on
the signal to noise ratio we see that the experiment type
1 gives maximum S/N ratio. Therefore in order develop
a quality software it is necessary that the cyclomatic
complexity should be maintained at level 1, coupling
also be kept level 1 and number of requirement per
module at level 1. Because of the special structure of
orthogonal array used here and the manner in which
one assigned the control factors A to C to OA columns,
it was not difficult to calculate the effects of each of the
control factors, assuming that additivity (separability)
of the main effects held and there were no factor-factor
interaction effects. The additive results are given is
Table. 5 at the various levels. From Table. 5, we get a
similar result i.e. cyclomatic complexity should be kept
less than 5, number of requirement for a module should

be one and the coupling should be low, for an
objective function not more than one error per module.
The results obtained confirm the ordinary software
practices of cyclomatic complexity should be less than
10, number of requirements module be one or two and
the coupling should be less.

5.2 Experimental verification
To illustrate the effectiveness of the

methodology proposed, we have undertaken the
following experiment. As an example, we considered a
particular modules of the MM1 and display system
software i.e. set_mission_time() and Security_check().

Table. 4. Experimental results.

9

Name ofthe Module,

Rc\torc_~ntcnupt(,
Azimuth()
Draw_rect_bordcr(,
Drawbordel-()
Calculatc_xyJ”*(1
Cm_“pt_“ptl”no
Del_com()
Ncw,p_coord\(1
Sect”rgroc()
EndgrocC ,

Glb3_var()
Fan_out()
Fan_ln()
Tx_sect_menuJl “c()
Securlty_clcarancc(,

Tlme_dtsplayO
Sys_data_in_ourO

Plot_d@ay()
Prev_curr_\can_di\p(,
Dafc_nme_inputl)

Elapsed_tux()
Modl_nam()

Rccei\c_dataO
Di\play()
Currcnt_mtu\()
Peridoc_hlth_uk()
Handle_dbit_PRF()
Gct_dblt_PRF_ack()

Err”, \

06 0

2.0 -6 02

05 3.01

I 33 -5 224

2 0 -6 9x

1.0 -2 2

I 66 -3 010

3 33 -II x9

Set_mission_time()
In the present version , the characteristics of

this module is as follows: cyclomatic complexity is 18,
corresponds to level 3 of this control parameter.
Number of requirements are setting time and setting
date corresponds to level 2 of requirements control
parameter (2 requirements per module) and the
coupling used is common coupling corresponds to level
2 of coupling control parameter. In version 1, the top

192

level designs obviously done in an ad hoc manner. In
order to increase the software quality this module is
split into six modules using the optimal design
parameters derived and t hey a r e get-input0
validate_month(), validate_year(), vaildate_date(),
Validate_min_sec() and validate_hr() in version 2. The
version 2 modules are tested and one error is found as
against six in version 1. This confirms the orthogonal
array optimized parameter when applied leads to less
error prone modules.

Table. 5 Control Parameter details.

Security_clearance()
In the present version , the characteristics of

this module is as follows: cyclomatic complexity is 12,
corresponds to level 3 of this control parameter.
Number of requirements is security clearance,
corresponds to level 1 (1 functional requirements per
module) and the coupling used is common coupling
corresponds to level 2 of this control parameter. In
version 1, the top level designs obviously done in an ad
hoc manner. In order to produce a reliable module this
module was split into 5 modules in version 2 keeping
the module complexity less than 5 and avoided the use
of common and content coupling. In version 2 this
module was split into CompilepasswdData(),
CompileUserData(), Del_invalid_user(),
Del_invalidgasswd() and Display_cursor() with
appropriate parameters. The version 2
Security_clearance() module is tested and no errors
were found as against 2 in version 1. This confirms the
orthogonal array optimized parameter when applied
leads to less error prone modules.

5. Conclusion
Understanding the functional software design

parameter is an essential step in the improvement in the
software quality. The Taguchi method of experimental
design for the software recommends that optimal
design parameter are one requirement per module, low
coupling and cyclomatic complexity should be less
than 5 in order to reduce the number of errors per
module to one or less. Most notable of all this study
demonstrates that high quality can be obtained at a low
cost, by avoiding the faults to be identified at the later
stages of the development phase, which was the central
theme of Taguchi quality philosophy. Philosophically
speaking , the software programmer can do very little
alone, it is the process that has to be improved and this
requires action from management. This method could

be applied to any radial dimension of the spiral model
to obtain the optimized parameter and to improve the
quality of the final product.

Acknowledgements
The support and encouragement given by Dr

K. Ramchand, Director, at Centre for AirBomc
Systems (CABS), Bangalore is acknowledged with
gratitude. Thanks are also due to Dr A Pedar of
National Aerospace Laboratories, Bangalore for useful
suggestion on an earlier draft of the paper. The authors
thank the MM1 and the display group of CABS for
their support in collecting the defect data.

References
[I] Song, A. A., Mathur, A. and Pattipati , K. R., ”
Design of Process Parametes Using Robust Design
Techniques and Multiple Criteria Optimization”, IEEE
Trans on Systems, Man and Cybernetics, Vol. 25,
No. 11, November 1995.
[2] Nair, V. N., “ Taguchi’s Parameter design: A panel
Discussion”, Technometrics, vol. 34, no. 2, pp.127-
161, May 1992.
[3] Bendell, A., Disney, J., and Pridmore, W. A., Eds,
“Taguchi Methods: Applications in world industry,”
New York: IFS Publications and Springer-Verlag,
1989.
[4] Phadke, M. D., “Quality Engineering Using
Robust Design “, Englewood Cliffs, NJ: Prentice-Hall,
1989.
[5] Boehm, B., ” A Spiral Model for Software
Development and Enhancement”, IEEE Computer, vol.
21, no. 5, May 1988, pp. 61-72.
[6] Kan, S. H., ” Metrics and Models in Software
Quality Engineering”, Massachusetts: Addison-
Wesley, 1995.
[7] Bagchi, T. P., “Taguchi methods Explained:
Practical step to Robust Design,” India: Prentice-Hall,
1993.
[8] McCabe, T., “A Software Complexity Measure,”
IEEE Trans. So&are Engineering, Vol. 2, NO . 6,
December 1976, pp. 308-320.
[9] Pressman, R., S., 1992, “Soffivare Engineering a
Practitioner’s Approach”, Mcgraw-Hill, New York.
[lo] Kanchana, B., 1998, “Software Quality and
Dependability Issues for the Airborne Surveillance
Platform: A Systems Engineering Study”, Ph.D
dissertation submitted to the dept. of Computer
Science and Automation, Indian Institute of Science,
Bangalore, India.

193

