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Abstract

We study the Nernst effect in fluctuating superconductors by calculating the transport coefficient c,,
in a phenomenological model where the relative importance of phase and amplitude fluctuations of
the order parameter is tuned continuously to smoothly evolve from an effective XY model to the more
conventional Ginzburg-Landau description. To connect with a concrete experimental realization we
choose the model parameters appropriate for cuprate superconductors and calculate v, and the
magnetization M over the entire range of experimentally accessible values of field, temperature and
doping. We argue that a,, and M are both determined by the equilibrium properties of the
superconducting fluctuations (and not their dynamics) despite the former being a transport quantity.
Thus, the experimentally observed correlation between the Nernst signal and the magnetization arises
primarily from the correlation between Oy and M. Further, there exists a dimensionless ratio
M/(Ta,) that quantifies this correlation. We calculate, for the first time, this ratio over the entire
phase diagram of the cuprates and find it agrees with previous results obtained in specific parts of the
phase diagram. We conclude that there appears to be no sharp distinction between the regimes
dominated by phase fluctuations and Gaussian fluctuations for this ratio in contrast to ,, and M
individually. The utility of this ratio is that it can be used to determine the extent to which
superconducting fluctuations contribute to the Nernst effect in different parts of the phase diagram
given the measured values of magnetization.

1. Introduction

The Nernst effect is the phenomenon of the production of an electric field E in a direction perpendicular to an
applied temperature gradient V T under conditions of zero electrical current flow. This is only possible when
time reversal symmetry is broken, and thus in the most common setting the sample is placed in an external
magnetic field B. The Nernst effect is particularly pronounced in type-II superconducting systems [ 1-4]. Such
systems possess mobile vortices for certain ranges of values of applied magnetic field and temperature. These
vortices can move under the influence of a temperature gradient inducing a transverse electric field through
phase slips. The vortices move in the direction of — V T. However, since they carry no charge they do not
produce an electric current, giving rise to the Nernst effect. The Nernst signal is proportional to the vortex
entropy. In contrast, for systems in which the elementary mobile degrees of freedom are charged quasiparticles,
the condition of zero electrical current implies an equal and opposite flux of particles along and against the
temperature gradient. The particles moving in the two opposite directions carry different amounts of entropy,
giving rise to a heat current. However, if they are scattered in the same way, the transverse electric fields induced
by them cancel in the presence of a magnetic field giving rise to a zero Nernst signal. This is known as the
Sondheimer cancellation [5]. The Nernst effect in quasiparticle systems is thus typically produced by energy-
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dependent scattering or amibipolarity of the carriers and is generally not as strong as in superconductors.
However, we note that in high-mobility semimetals, for example Bi, the quasiparticle contribution can be
comparable to the vortex Nernst signal [6]. The Nernst effect has also been observed in heavy fermion
systems [7, 8].

The above discussion would suggest that a pronounced Nernst signal in a superconductor is an indicator of
mobile vortices. However, the Nernst effect has been observed in cuprates at temperatures well above the
transition temperature T, [2, 3]. A description of the system in terms of distinct non-overlapping vortices is not
always possible at such high temperatures. In overdoped cuprates, it has been argued that the Nernst effect is
most effectively described in terms of Gaussian fluctuations of the superconducting order parameter rather than
distinct mobile vortices [9]. Calculations of the Nernst coefficient in this regime at small magnetic fields produce
a good match to experimental data at low fields. At high fields and low temperatures, the Gaussian theory is not
applicable. Nevertheless, a description of the system in terms of the Ginzburg-Landau theory of
superconducting fluctuations with appropriate dynamics produces a good match to experimental data [10].
Other works along similar lines include a calculation based on a self-consistent Gaussian approximation with a
Landau level basis at low temperature and finite fields [11, 12] and a Coulomb gas model of vortices with the core
energy related to the Nernst effect and diamagnetism [13—15].

In the underdoped region, fluctuations are expected to be much stronger, yielding a large region of
temperature with dominant fluctuations in the phase of the order parameter with a largely uniform amplitude. A
description of the system in terms of mobile vortices is a good one in this regime and a calculation of the Nernst
effect based on a classical XY model has been performed yielding a good match to experimental data [16]. A
systematic interpolation between these two regimes as a function of doping, temperature and magnetic field for
the Nernst effect has been lacking, primarily due to the absence of a common theory of superconducting
fluctuations across the entire superconducting phase diagram. In this paper we address this gap in the literature
by employing a phenomenological Ginzburg-Landau-type functional developed by two of us [17, 18].
Calculations based on this functional have provided good agreement with experimental measurements of
different quantities such as the specific heat, superfluid density, photoemission and the superconducting dome
across the entire range of doping and temperature of the cuprate phase diagram. This functional has also recently
been employed by us to obtain a fairly good agreement with measurements of fluctuation diamagnetism in the
cuprates [19].

The measured Nernst effect in different parts of the cuprate phase diagram has been variously attributed to
Gaussian fluctuations [9], phase fluctuations [16] and quasiparticles [20]. In several instances there is no
consensus on exactly which mechanism is responsible for the observed signal in the same part of the phase
diagram [3, 21-23], also complicated by the observation of competing orders. In this work we calculate the
coefficient vy, called the off-diagonal Peltier coefficient and sometimes the Ettingshausen coefficient, from a
model of superconducting fluctuations. In the limit of strong particle—hole symmetry, as seen for many
superconductors, the Nernst coefficient v = %i—’”, where H is the magnetic field and oy, the
magnetoconductivity. We show that in a model of superconducting fluctuations, o, despite being a transport
quantity, is expected to be naturally related to equilibrium quantities. This is due to the fact that o, is
determined by the strength of the superconducting fluctuations as opposed to their dynamics (as we explain
later), which is also responsible for equilibrium phenomena. On the other hand, v and o, are given by the
dynamics of the fluctuations. In particular, we argue that o, is naturally related to the magnetization M through
adimensionless ratio M/(T,), which is a function of doping, temperature and magnetic field. Experimentally,
in hole-doped cuprate superconductors above the superconducting transition temperature T in the pseudogap
regime a large diamagnetic response has been observed concurrently with a large Nernst signal over a wide range
of temperatures [24—27]. A connection between v, and M via the ratio M/(Tcv,), first uncovered in a Hartree—
Fock calculation [28], has also been proposed theoretically in the XY and Gaussian fluctuation-dominated
regime of the cuprate phase diagram [9, 12, 16, 29] and found to be consistent with experimental observations.
In most superconductors, including the cuprates, superconducting fluctuations are the main source of any large
observed diamagnetic signal. Thus, a concurrent measurement of c,,, along with a comparison with our
calculated ratio of M/(Tcv,) can provide an indication of whether the observed Nernst signal is also due to
superconducting fluctuations. We illustrate this by performing our calculations on our phenomenological
model of superconducting fluctuations for the cuprates, mentioned in the previous paragraph.

The paper is organized as follows. In section 2, we discuss the model we study and various details concerning
the form of the currents and transport coefficients obtained from it. Section 3 contains a discussion of the
methodology and a description of the details of our numerical simulations. We present the results of our
simulations in section 4 and comment on the important features seen in the data. Finally, in section 5, we discuss
the novel findings of our calculations and also their relation to previous theoretical and experimental work.
Additionally, there are three appendices which discuss technical details pertinent to the calculations and results
discussed in the main text.
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2.Model

To study transport properties due to superconducting fluctuations we implement ‘model A’ dynamics for a
complex superconducting order parameter W(r, t) given by the stochastic equation

_ SF{U, U¥)

D,U(r, t) =
D, ) SUX(r, 1)

@

F{¥, U*} isafree energy functional. In order to be able to introduce electromagnetic fields, we define a

covariant time derivative D, = (% + ifb—ﬂé) and a covariant spatial derivative D = V — ié—ﬂA. A(r, t)and
0 0

O (r, t)are the magnetic vector and scalar potential, respectively, while ®, = ei* is the flux quantum. The free
energy functional is assumed to contain an energy cost for spatial inhomogeneities of the order parameter
through the appearance of terms involving the covariant spatial derivative. The specific model we study is
defined on alattice, where the spatial derivative has to be appropriately discretized, as we discuss later. The time
scale 7, which provides the characteristic temporal response scale of the order parameter dynamics, can in
general be complex. However, it is required to be real under the requirement that the equation of motion for U*
be the same as for ¥ under the simultaneous transformation of complex conjugation (¥ — ¥*) and magnetic
field inversion (H — —H) (particle-hole symmetry). Evidence of particle-hole symmetry in the form of no
appreciable Hall or Seebeck effect is seen in the experimentally accessible regime of the superconductors we
study here and thus we take 7 to be real in our calculations. The thermal fluctuations are introduced through

1 (r, t) with the Gaussian white noise correlator

(n*(x, Hn@', t")) = 2kg TT6(x — )6 (t — t'). 2)

Further, the magnetic field (H = V Xx A)isassumed to be uniform and not fluctuating due to a large ratio ()
between the London penetration depth (\) and the coherence length () for the strong type-II superconductors
we study here. Cuprate and iron-based superconductors are examples of these.

The dynamical model equation (1) is the simplest one which yields an equilibrium state in the absence of
driving potentials. It can be derived microscopically within Bardeen—Cooper—Schrieffer theory above and close
to the transition temperature T.. However, it has previously been used phenomenologically to study transport
in situations where the microscopic theory is not known, such as for the cuprates [9, 10, 16]. We employ the
model in a similar spirit here.

2.1. Heat and electrical transport coefficients
The model described by equation (1) has no conservation laws and thus currents cannot be defined in terms of
continuity equations. Nevertheless, they can be defined by appealing to the microscopics of the full system and
then identifying the degrees of freedom that contribute to the superconductivity. The expression for the charge
current density obtained this way is [9, 28, 30, 31]

T = — o 0
An expression can also be obtained for the heat current density J< along similar lines but it cannot be written as
compactly as that for the charge current density [28, 31]. We provide the exact expression for the heat current for
the model we study in the next subsection. For the present discussion, we only require that J2 exists. In the
presence of a magnetic field, these current densities are sums of transport and magnetization current densities
[32]

]iot(r) = ]‘:r(r) + ]fnag(r)
J20) = JE(®) + T (0, )

where tr and mag stand for transport and magnetization, respectively.

The transport coefficients we calculate are described only by the transport parts of the current densities, to
obtain which magnetization parts need to be subtracted from the total current densities. We detail the steps to do
this in appendix B which follows the discussion of [32].

The transport current densities can be related to an applied temperature gradient VT and electric field E in

linear response as
)00
J2 & RJ\-VT)

where &, &, & and & are the electrical, thermoelectric, electro-thermal and thermal conductivity tensors,
respectively, and are independent of the gradients in linear response. On general grounds it can be shown that
0y (H) = —0,(H) for systems with reflection symmetry. We also assume o, (H) = —a,(H), which holds for

jo)

3
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non-interacting systems and, in general, within the relaxation time approximation in Boltzmann transport
theory [33]. Using the above relations, the Nernst coefficient (') under the condition J;, = 01is given by [9, 30]

B E, B i Qxy Oxx — Oxy Qixx )
HNV,T H o5 +o03,
For systems with particle-hole symmetry o, and o, are zero and thus
o
v=—2. (6)
Hoy,

Further, the Onsager relation gives & = Ta[32].

2.2. Dimensional analysis of the transport coefficients

Equation (1) can be written in terms of dimensionless parameters as follows. We assume that there are basic
scales, xo, Tp and ¥, for the spatial coordinate, temperature and the order parameter arising in the equilibrium
state of the system. We can then define v/, T/ and W/, which are the dimensionless spatial coordinate,
temperature and order parameter, respectively, by scaling by the quantities x,, To and Wy. Equations (1) and (2)
can now be cast in dimensionless form in terms of these quantities as

OF'
Dy = _6\11’* + 7 7)
and
(' (", )N (¢, 1)) = 2T'6( ) — ¥2)8(t — 1), (8

where ¢/, F and )’ are the dimensionless values of the time, free energy density and noise, respectively. This is

%ZT(X”)KI, ) = ol Candn, = q,k( ok respectively, where d is the
number of spatial dimensions. Additionally, the basic scale of the magnetic flux is @y, which from gauge
invariance implies that the basic scales of the electric potential V and electrical current density J¢ are V; = & and
J§ = i
and & can be calculated from equations (7) and (8) using the d1mens1onless form of J¢. These can then be
multiplied by appropriate basic scales to get their correct dimensional values.

From the above discussion, it can be seen that while & is proportional to the relaxation time 7, & is
independent of it. Thus, the Nernst signal is inversely proportional to 7 in our model. o depends only on the
parameters of F, which also determine thermal equilibrium properties of the system. In particular, the ratio %
is dimensionless, where M is the magnetization, suggesting a possible relationship between M and a. In this
work, we thus assert that the most meaningful comparison of fluctuation diamagnetism with the Nernst effect is
acomparison of c, and M.

It has been shown that for a fluctuating two-dimensional (2D) superconductor in the limit of Gaussian

possible only if their basic scales are t, =

foxo

Thus, the basic scales of the coefficients 6 and & are == m and 5% XO . The dimensionless quantltles o

superconducting fluctuations and low magnetic fields ITZI—I = 2[9]. Interestingly, in the complementary limit of
xy

very strong fluctuations with temperature much higher than T, and weak fields, the same ratio is obtained [16].
In this work, we calculate this ratio without restricting ourselves to the above limits and show that it in general
deviates from the value of 2.

2.3.The free energy functional

The free energy functional we use describes superconductivity on a 2D lattice [17]. It has a Ginzburg-Landau
form with parameters chosen to reproduce experimental observations for the cuprates. In particular, it has been
employed to successfully reproduce experimental measurements of the specific heat, superfluid density,
superconducting dome and fluctuation diamagnetism [17, 19]. Coupling electrons to the pairing fluctuations
produces Fermi arcs [18]. The functional essentially describes the cuprates as highly anisotropic layered
materials with weakly coupled stacks of CuO, planes. The superconducting order parameter

m = Ay, exp(ip,,) is defined on the sites m of the square lattice where A, and ¢, are the amplitude and phase,
respectively. The 1, field is microscopically related to the complex spin-singlet pairing amplitude

Uy = % (aijaj; — ajja;;) onthe CuO, bonds where m is the bond center of the nearest-neighbor lattice sites i

and jwhere a;(a iT) are annihilation (creation) operators. The form of the functional 7 = Fy, + F

Fol{Am}) = Z(AAi + gﬁi)) (9a)

m
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Figure 1. (a) The cylindrical geometry of our simulation. The magnetic field (H) is applied in the radially outward direction (red). The
temperature gradient V, T or E, is applied in the axial direction and the resulting current is in the azimuthal direction. (b) The current
profile of the cylinder in the presence and absence of a temperature gradient and electric field, which is shown by two different color
(black and red) lines. The current density is maximum at the two edges of the cylinder. In the absence of a temperature gradient the
current density is equal in magnitude at both edges of the cylinder (red line). When a temperature gradient is applied the current
density increases at one end and decreases by the same amount at the other end (black line).

F{ A ¢, = —CZ Ay A, cos(p, — ¢, — Amn)s (9b)

(mn)

where (m#n) denotes pairs of nearest-neighbor bond sitesand A,,,, :é—” fr: A - dr) is the bond flux which

incorporates the effect of an out-of-plane magnetic field. The coefficients A, B and C as a function of doping x
and temperature Tare parametrizedas A(x, T) = (f/Ty)*[T — T*(x)]e!/%, B = bf*/T; and

C(x) = xcf?/T, in terms of dimensionless numbers f, b, cand a temperature scale T, based on cuprate
phenomenology [17]. We discuss the motivation behind the explicit forms of each term in appendix A. The form
of the functional F{¢,,, A,,} issuch that phase fluctuations are dominant and amplitude fluctuations weak at
low doping x and and become comparable in strength as x increases, ultimately tending towards Gaussian
fluctuations of the full order parameter at large doping. The charge and heat current operators are (see

appendix C)
2T .
]e = _CAmAn Sll‘l(d)m - d’n - Amn) (10)
o)
1 A
1@ = ~Unon = o) + Ma(E x 2) (1)
where J}, ., = —%{% % [fuleimn + c.c. }with Wn = Gy — By — Apne
In the extreme type-II limit when the penetration depth A — oo, the out-of-plane magnetic field H is related

2
to thein-plane bond flux A,,,, on a square plaquette [J of size ap such that > A, = 271'%. The lattice

0
constant g, introduces a field scale H, obtained when one flux quantum @, passes through the square

o >. Wealso note that
27ag

Ay A, cos(B, — &y — Apn) = — (|0 — Yyedm]? — A? — A2), and therefore the term ; can be readily
identified with the discretized version of the covariant derivative |[DW¥|? in a standard Ginzburg-Landau theory.
Thus, the lattice constant a, can be thought of as a suitable ultraviolet cutoff to describe the physics of the system.

plaquette OJ and Hy =

3. Simulation geometry and methodology

We simulate the model given by equation (1) numerically on a 2D system of size 100 x 100. We perform the
simulation in dimensionless terms by scaling the relevant quantities by the units described in section 2.2. To
compute a,, we perform our simulations on a cylinder (figure 1(a)) with periodic boundary conditions in one
direction () and zero current conditions along the other (%). The uniform magnetic flux per plaquette is in the
radial direction and determined by the condition of zero flux in the axial direction. The resulting current is in the
azimuthal direction and in the absence of any perturbations (temperature gradient, electric field etc) is
maximum at the edges and falls to zero and changes direction at the center figure 1(b) (red line). Thus, in the
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absence of any perturbing fields the background magnetization of the cylinder should be zero which can be
checked by summing over the charge currents from one end to the other.

A perturbing field like the temperature gradient along the axial direction introduces a transport current in
the azimuthal direction, and as a result the total current density is enhanced at one end and suppressed at the
other (black line). We see this effect in our simulation by setting the temperature gradient in the linear response
regime. Summing the total current density over the whole sample gives only the transport current since the sum
over the magnetization current continues to be zero. o, can be obtained from the equation

_ifjteotdSA

12
S« VT (12

Qy =
where S, is the area of the sample. By utilizing the relation o, (H) = — o, (H) we calculate c,, . The typical
number of time steps chosen for equilibration and time averaging are about 1.2 x 107 and 10°, respectively.

We also compute the coefficient é&,, by switching off the temperature gradient and instead turning on the
electric field E in the axial direction of the cylinder. E can be introduced through a time-dependent magnetic
vector potential (A)with E = — i—“:, aposition-dependent electrostatic potential E = —V ® or any gauge-
invariant combination of the two. In this method we calculate the total heat current density. It can be shown that
the appropriate subtraction of the magnetization current to yield &, gives

B if]thtdSA

- M|. 13
5. E (13)

Oéxy =

The magnetization M is obtained from J§,,, = V x M by an appropriate integration in the equilibrium state (
i.e. zero electric field and temperature gradient). The values obtained are in agreement with those from Monte
Carlo simulations obtained in a previous study [19].

A check for whether the subtraction of the magnetization current has been done properly is by verifying the
equality i, = %, which is a consequence of the Onsager relations for transport coefficients. We have verified
that the above equality holds to within our noise levels for all values of doping, temperature and field. We note
that the in the underdoped region, where the fluctuations are strong, there is a large separation between T, and
T2 Thus, fluctuations of the amplitude of ¥ are negligible even up to temperatures significantly greater than T,
(but also significantly lower than T¥'F). This allows us to use an effective XY model with only a dynamically
varying phase and amplitude frozen to the mean-field value up to fairly high temperatures at underdoping. This
effective XY’ model seems to have alower noise level for c,, compared with the full Ginzburg-Landau model.
We thus employ this effective model for lower noise in the underdoped region and have verified that the results
agree with those obtained from the full model to within error bars.

4, Results

We plot the obtained values of i, as functions of doping, temperature and field. The overall features of a,, over
the phase diagram are summarized in figure 3 through color map plots of the strength of the v, in the field-
temperature (H—T) plane for three different values of doping going from underdoped to overdoped. We have
also compared a, with M. M can in turn be compared directly with experiments as was done by us in a previous
study based on the model we employ here [19]. We found the calculated M to be in reasonably good quantitative
agreement across the entire range of doping, field and temperature accessible in experiments on the cuprates

[3, 26]. The value of v, for our 2D system is converted to a 3D one by dividing by the lattice spacing of BSSCO to
enable a direct comparison with the 3D magnetization.

Figure 2 shows the field dependence of «,, at different temperatures for three representative values of
doping—one each in the underdoped, optimally doped and overdoped regimes, with respective T, values
indicated in the figure panels. The magnetization M is shown alongside to enable a comparison. It can be seen
that the overall dependence on temperature and field is the same for both quantities for all three values of
doping. This is significant because the strength of superconducting fluctuations is different for the three regimes
going from strong to weak as the value of doping increases. This similarity of the gross features in the field and
temperature dependence of both quantities is a consequence of the fact that it is the strength of the
superconducting fluctuations rather than their dynamics that is responsible for both the diamagnetic and off-
diagonal thermoelectric responses. The color plots of a, in figure 3 illustrate the field and temperature
dependence better, making it possible to identify contours of constant avy, .

The similarity between the field and temperature dependences of c, and M motivates a more careful
comparison of the two quantities. As argued in the previous section, the quantity [M|/(Ta,) is dimensionless
and hence a good measure of the correlations between the two quantities M and c,. Plots of this quantity are
shown in figure 4, and it can be seen that it is not a constant but has a dependence on doping x, temperature T/ T;

6
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Figure 2. The field dependence (in units of Hy) of ., and magnetization —M for (a) and (b) underdoped (x = 0.05), (c) and (d)
optimally doped (x = 0.15), (¢) and (f) overdoped (x = 0.25) cuprates in SI units (denoted in the figure as V/KQm and Amp/m,
respectively). We divide the numerically obtained a,qu,) and M*" by appropriate layer spacing d = 1.5 nm to convert to the 3D Qi and
M. oy, and M can be seen to behave in the same way as a function of field at different temperatures. As H — 0, both o, and M
diverge for T < T; and goto zerofor T > T..

and field H/H,. Of particular relevance is the fact that it stays close to the value 2 for T > T_ atboth
underdoping and overdoping over a substantial range of field, as shown in figures 4(a) and (e). This is consistent
with the predictions of theoretical calculations in the high-temperature limit of the XY model and the Gaussian
fluctuation limit, respectively, as we discuss in the next section [9, 16]. The dimensionless ratio has also been
calculated to be 2 for a model with both superconducting and charge density wave order [ 14]. For optimal
doping, the ratio approaches 2 at high fields in our numerical calculations. It should be noted that the ratio
appears to be less than 2 at low fields. This is consistent with results obtained from self-consistent Gaussian
fluctuations [12]. However, the signal to noise ratio in the simulations at low fields is small and we cannot infer
anything conclusively about the ratio |[M| /(Tc,,) in this regime.

A final feature of our simulation data that needs to be highlighted is shown in figure 5. In this figure contours
of constant c,, are plotted in the x— T plane for different values of the magnetic field for T > T;. The
superconducting dome obtained by calculating T, as a function of x is also plotted. It can be seen that the
contours follow the superconducting dome. This is especially significant at underdoping where the transition
temperature is determined by the strength of phase fluctuations that in turn suppress the superfluid stiffness. We
discuss the relevance of this feature in our data in the next section, but note that the same feature is also seen in




10P Publishing

NewJ. Phys. 19 (2017) 073009 K Sarkar et al

a b c
0.9 o 0.9 18 }
08 8 08 16 .
0.7] 7 0.7 4 A
0.6] 6 0.6 12 .
=} <} 10 o
I o5 5 I T
S 0.5 0.5 s 0
0.4¢ 4 0.4 }
3 6
0.3 0.3 .
A 4
0.2 0.2 A .
0.1 \ ! 0.1 E
30 40 50 60 40 50 60 70 80 90 30 35 40 45 50 55
T (Kelvin) T (Kelvin) T (Kelvin)
Figure 3. Contour plots of a, of (a) underdoped (x = 0.05), (b) optimally doped (x = 0.15) and (c) overdoped (x = 0.25) cuprates in
SIunits. The contour lines are almost vertical near T > T, analogous to previously obtained magnetization contour lines in figure 2 of
[19] and also consistent with the features obtained by Podolsky et al [16].

the fluctuation diamagnetism experimentally [26, 27] and in theoretical calculations [19]. More significantly, the
same feature has also been seen in experimental data for the Nernst coefficient [3].

5. Discussion and conclusions

We have argued here that the observed correlation between the Nernst signal and the magnetization in cuprate
superconductors arises primarily due to a correlation between a,, and the magnetization in a model with only
superconducting fluctuations since both quantities depend only on the strength of the fluctuations and not their
dynamics. The relationship between ., and M is quantified by calculating the the dimensionless ratio
M/(Tay). This ratio has been calculated by other authors previously for a model of superconducting
fluctuations in the XY limit of strong phase fluctuations and the Gaussian limit, and found to be equal to 2 in
both cases [9, 16]. These correspond to high-temperature limits T > T for overdoped and underdoped
cuprates, respectively. Here, we have calculated this ratio as a function of field, temperature and doping for the
entire phase diagram and found deviations from the value of 2 in regions where the high-temperature
approximation does not apply.

Qi calculated as a function of temperature, field and doping is shown in figures 2 and 3 alongside M. It can
be seen that the dependence of both quantities on field and temperature is very similar for the entire range of
doping. This has previously been demonstrated in certain limits for very underdoped and overdoped samples
[9, 10, 16]. Our calculations agree with these previous results. On the underdoped side, our model reduces to a
phase-only model for alarge range of temperatures for which the amplitude of the superconducting order
parameter is effectively constant with no spatial or temporal fluctuations. This corresponds to the XY limit,
which was the subject of one of the aforementioned studies [16]. On the overdoped side the strength of the
fluctuations is weaker, resulting in a smaller difference between T.and T2'". In this limit both phase and
amplitude fluctuate together and cannot be disentangled from each other. The description of the physics of the
system is thus in terms of fluctuations of the full order parameter. At high temperature, the system is in the
Gaussian limit and our results agree with previous calculations of c,, inlow fields in this limit [9]. At higher
fields too, in the overdoped limit, our calculations agree with previous work [10].

One of the new results of our work is that we have shown that one can smoothly interpolate between these
previously studied limits by employing the free energy functional (9) to calculate c,. As a result, we are able to
directly show the connection not just between a,, and M but also between these quantities and others whose
nature is primarily determined by superconducting fluctuations, across the entire phase diagram. One of these
quantities is the superfluid stiffness, the disappearance of which corresponds to the destruction of
superconductivity at the transition temperature T.. The correlation between c, and T, can be seen in figure 5
where curves of constant v, in the temperature and doping plane follow the superconducting dome for
different values of the magnetic field. A similar correlation also exists between M and T, which we have shown
in an earlier work [19].

Theratio M/(Ta,) is plotted in figure 4 for different values of temperature, field and doping. It has been
remarked earlier that this value has been shown to be equal to 2 at high temperature for the XY model [16] and in
the limit of Gaussian fluctuations at low field [9]. Our model extrapolates to both limits for appropriate choices
of parameters but we have to be careful in defining what we mean by high temperature. The XY limit is obtained
when the separation between T'F and T, becomes large, which corresponds to underdoping. High temperature
here means temperatures large compared with T, but small compared with Tx'". This defines a fairly wide range
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Figure 4. The dimensionless quantity [M|/a,, T is obtained at different temperatures for (a) underdoped (x = 0.05), (c) optimally
doped (x = 0.15) and (e) overdoped (x = 0.25) cuprates. The data show at high temperature [M| /o, T =~ 2. Color map contour lines
of the dimensionless quantity M|/, T in the H — T plane for (b) underdoped (x = 0.05), (d) optimally doped (x = 0.15)and (e)

overdoped (x = 0.25) regions. The temperature axis is scaled in units of T... The dimensionless quantity MT behaves similarly at high

M|
ayT
temperature (compared with T.) for different values of doping ranging from underdoped to overdoped.

of temperatures since the two scales are well separated. On the other hand, the Gaussian limit corresponds to a
small separation between T.and T2'"" (overdoping) and high temperature here means a temperatures large
compared with both. It should be emphasized that there is a Gaussian regime for any value of doping for
temperatures larger than T>*. However, for underdoped systems, these temperatures are much higher than
those at which experimental measurements are performed and are thus not relevant here. Optimally doped
systems lie in neither regime and our work provides the first calculation of the ratio M/(Tav, ) for them. Even in
the underdoped and overdoped regimes, we calculate for the first time the ratio beyond the high-temperature
limits discussed above. It can be seen that M /(T ) agrees with the previously obtained results mentioned
above.

Itis interesting to note that while M/(T,) obtained from our simulations does deviate from the value of 2
atlow temperatures (see figure 4), it attains this ‘high-temperature’ value even at temperatures comparable to T..
In fact for the underdoped system it does so even at temperatures lower than T.. Thus, it appears that in so far as
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Figure 5. o, in the x — T'plane for two different values of the magnetic field (a) H/H, = 0.1and (b) H/H, = 0.2. The lines of
constant a, follow the superconducting dome. This indicates that the equilibrium superconducting fluctuations responsible for the

suppression of the superfluid stiffness also determine the thermoelectric response. A similar feature is also seen for the magnetization
[19].

this quantity is concerned, the Gaussian regime (T > T™¥) is not distinguishable from the strongly phase
fluctuating regime. We emphasize that this does not imply that the two regimes are indistinguishable for each of
the two quantities M and v, individually. Indeed, the temperature dependence of the these two quantities at
low field has been shown to be distinct in the two regimes [9, 16] but their ratio appears not to make that
distinction since the leading temperature dependence cancels between the numerator and the denominator.
Thus, there does not seem to be a very clear distinction between the underdoped, optimally doped and
overdoped systems with the temperature scale for the ratio being set only by T regardless of whether T>' is in its
vicinity. We note that the value of M/(Ta,, ) appears to be less than 2 at high temperature for the lowest fields.
This could be an artifact of high noise levels in this regime and a higher-precision calculation (which would be
fairly time consuming) may yield a value equal to 2.

For a superconducting system, a strong diamagnetic signal, even above T is typically due to
superconducting fluctuations as opposed to other excitations like quasiparticles [34]. However, the Nernst
signal, can have substantial contributions from these other excitations in addition to those from
superconducting fluctuations. In fact, the role of quasiparticles in the observed large Nernst effect of the cuprates
has been discussed extensively [20, 22]. Our calculation provides a method for determining the extent of the
contribution of superconducting fluctuations to the observed Nernst signal through the ratio of M/(Tav,,). If the
observed ratio is close to the predictions from our model then superconducting fluctuations are chiefly
responsible for the Nernst effect in the particular regime of temperature, field and doping. We would likely to
emphasize again that the relevant transport quantity in our calculation is c, and not the Nernst signal v..
Experimentally, obtaining o, requires a concurrent measurement of the Nernst effect and the
magnetoconductance. It is also possible that features in the Nernst effect are unconnected to superconducting
fluctuations, and hence the magnetization, and arise due to the behavior of the magnetoconductance and not
Qiyy. An analysis of these features is beyond the scope of our present calculation and could be an interesting
direction for future studies.
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Appendix A. The free energy functional

The functional form in the absence of a gauge field is defined as

Fo(An)) = Z(AA; + gA;;), (Ala)

m

Fil{Am ¢,) = =C 3 Aplycos(dy, — b,), (A.1b)

(mn)
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where the pairing field v, = A, exp(i¢,,) is defined on the sites 1 of the square lattice with phase ¢, and
amplitude A,,. (mn) denotes nearest-neighbor site pairs. As discussed in the main text, the quadratic term
coefficient A is proportional to (T — T*) where T* is the local pairing scale temperature and in our theory we
identify it to be the pseudogap temperature scale [35]. Cooling down from above T*, the pairing scale (A,,)
increases with noticeable change in magnitude [17] while A changes sign. Across the phase diagram T* is

considered to be varying with doping concentration x as a simplified linear form T*(x) = T (1 — xi) with

Ty ~ 400 K at zero doping and vanishing at a doping concentration x. = 0.3. The exponential factor e’/ %

suppresses the average local gap magnitude (A,,) at high temperatures (T 2> T*(x)) with respect to its
temperature-independent equipartition value \/ T /A (x, T) which will result from the simplified form of the
functional (equation (A.1)) being used over the entire range of temperature. In the range of temperature in our
study the role of this factor is not very crucial (for a detailed discussion see [17]). The parameter Bis chosen as a
doping-independent positive number and the form of Cis chosen to be proportional to x for small doping. The
reason for such a choice can be understood from the Uemura correlations [36] where superfluid density p, o< x
in the underdoped region of the cuprates. Further elaboration on the functional and coefficients can be found in
the appendices of [17, 19].

Appendix B. More on transport currents, coefficients and magnetization

The Nernst effect is the off-diagonal component of the thermopower tensor Q, measured in the absence of
electrical currents

Jo = 0B + a(—VT) (B.1)

whereJ,, is transport current, E is the electric field and VT is the temperature gradient. Q = 6@ is the
thermopower tensor. Here

Oxx Oxy Qxx Oy
o= and & = . B.2
? (ny Uyy) (O‘yx ayy) (B.2)
For an isotropic system, oy, = 0y, and o = a,. Further, 0, = —0,cand a,, = —a,. Therefore the
thermopower tensor
Q=01 (B.3)
1 Oxx  —0 Q@ «
) 2 (Uxx Uv)(_axx axy)' (B.4)
Oy + Uyy Xy XX Xy XX
The Nernst coefficient

Qxy = *ny =

QO — Oy (axy

2 2
Oy T Oy

— Stan @H), (B.5)

Oxx

where Oy = tan™! (Q) is the Hall angle and S(Q, = Q) is thermopower.

xx

Let J%,,(r), J¥,(r) and JE (r) be the total charge, heat and energy current densities at position r in the sample.
Each of these current densities is a sum of a transport part and magnetization part. The latter exists even in
equilibrium and needs to be subtracted to obtain the transport contributions. If ®(r) is the electric potential at r,
these currents are related to each other as

J2,(x) = Jh (1) — ()] (D). (B.6)

The transport part of the current densities have a similar relation
J3@) = Jo () — @5 (). (B.7)

The charge and energy magnetization densities M*(r) and ME(r) are related to their respective current
counterparts such that [32]
o) = V X M)
Jhae@® =V x ME(r) . (B.8)

If the surrounding material is non-magnetic, both M¢(r) and ME(r) vanish outside the material. Therefore
integrating over the sample area S4 and averaging
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Jio= 5 J wdsi= = [ mas,
Ti= o ), dewasi= = [ hmas. (8.9)
Utilizing the above relations and equation (B.6), equation (B.7) we get
Ji = é( fs Jia(®)dSs — fs ) @(r)]&(r)dsA) (B.10)
and
J3:0) = T2 + Tag (@) — S@O(V x M) (B.11)
Now using the identity V' x ®M*¢ = V& x M¢ + &(V x M?) reduces to
J2,(r) = JOr) + Vo) x M* + V x (ME — &(r)Me). (B.12)
We identify and note that there is no heat magnetization density M2(r) such that ]gag(r) =V x MQ(r).In
fact,
J2..®) = VO(I) x M® + V x (ME — &(r)M°) (B.13)
and therefore
1= [ 0%m - M x Bds, (319
A+ Sa

and for M = Mz and E = EX we obtain
- 73()') _ jgt(y) B

By = M. B.15
y £ £ (B.15)

Appendix C. Heat and charge current expressions for continuum and lattice models

The expressions of charge and heat current [9, 28, 30, 31] for a continuum Ginzburg-Landau theory are

Jo = — icoz_”<\11*(v - izlA)w> + c.c. €D
@y Dy
0 27 2
IgL = —C0<(E - lgoq))\l'*(v - IEOA)\I’> + c.c. (CZ)

2
with Cy = # and (...) standing for thermal averages.
For the lattice model given by equation (A.1) the heat current between sites m and n is obtained taking into

accounta contribution J£ _ from site m to n and vice versa and subtracting them out as

o = %(LEH CE Y+ My(E x 2) (C.3)

E C (v
where J, _,, = _5{ o

;:—’:Zn [Yle“m + cc.}with Wy, = &, — ¢, — fr:A - dr is a gauge-invariant quantity.

The charge current expression is J¢ = %CAmAn sin(g,, — ¢, — Apun)-
For an XY model described by the Hamiltonian, Hyy = —J 2 ) €O8(D,, — &y — Ayn)sJ being the XY
coupling, the heat and charge current expressions [16] are

]g(Y =] Sin(¢m - an — Aun) (C.4)

19y = —%(qu - 8,)sin(d, — &, — Am) + M(E x 2). (C5)

One can verify that the frozen amplitude limit of both charge and heat current expressions of our lattice
model reduces to these expressions.

Effective XY model

On the underdoped side, where T* = TMF > T. we can integrate out the amplitude A,, of the pair degrees of
freedom 1/, to obtain an effective action Fxy only in terms of the phase.

12
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fo"l-[ (A, dA,,) e FFod A e=BFA A,
— J0 "

—BFxy{d,}) — _
e T, (AdA e (A R (0
0 m
In the above, we make use of the cumulant expansion, i.e.
2
(exp(—0F)o = expl~B(F)o + (o — (F) + ), €7

where (...)o denotes the thermal average obtained using 7, only, to obtain,

Fxy({d,,) = —C > (Ao cos(¢,, — ¢,)

(mn)
pc?
- > cos(d,, — d)cos(d; — P (ARALA AR — (AmAu)o (A1 AK)]
(mn), (Ik)
+ higher order terms

By neglecting the fluctuations of amplitudes and retaining just the first of the above expressions, an effective
XY model is obtained, i.e.

Farld,] = —CA* Y cos(¢,, — &,) (C.8)
(mn)
_ ™ Nexp| —8(AN2 + EAt) |dA
with A2 = o Forl o s es
I Aexp[fﬁ(AAzwtgA“)]dA
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