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Abstract
We study theNernst effect influctuating superconductors by calculating the transport coefficient xya
in a phenomenologicalmodel where the relative importance of phase and amplitude fluctuations of
the order parameter is tuned continuously to smoothly evolve from an effectiveXYmodel to themore
conventional Ginzburg–Landau description. To connect with a concrete experimental realizationwe
choose themodel parameters appropriate for cuprate superconductors and calculate xya and the
magnetization M over the entire range of experimentally accessible values offield, temperature and
doping.We argue that xya and M are both determined by the equilibriumproperties of the
superconducting fluctuations (and not their dynamics) despite the former being a transport quantity.
Thus, the experimentally observed correlation between theNernst signal and themagnetization arises
primarily from the correlation between xya and M. Further, there exists a dimensionless ratio

TM xya( ) that quantifies this correlation.We calculate, for thefirst time, this ratio over the entire
phase diagramof the cuprates andfind it agrees with previous results obtained in specific parts of the
phase diagram.We conclude that there appears to be no sharp distinction between the regimes
dominated by phase fluctuations andGaussian fluctuations for this ratio in contrast to xya and M
individually. The utility of this ratio is that it can be used to determine the extent towhich
superconducting fluctuations contribute to theNernst effect in different parts of the phase diagram
given themeasured values ofmagnetization.

1. Introduction

TheNernst effect is the phenomenon of the production of an electric field E in a direction perpendicular to an
applied temperature gradient T under conditions of zero electrical current flow. This is only possible when
time reversal symmetry is broken, and thus in themost common setting the sample is placed in an external
magnetic field B. TheNernst effect is particularly pronounced in type-II superconducting systems [1–4]. Such
systems possessmobile vortices for certain ranges of values of appliedmagnetic field and temperature. These
vortices canmove under the influence of a temperature gradient inducing a transverse electric field through
phase slips. The vorticesmove in the direction of T- . However, since they carry no charge they do not
produce an electric current, giving rise to theNernst effect. TheNernst signal is proportional to the vortex
entropy. In contrast, for systems inwhich the elementarymobile degrees of freedomare charged quasiparticles,
the condition of zero electrical current implies an equal and opposite flux of particles along and against the
temperature gradient. The particlesmoving in the two opposite directions carry different amounts of entropy,
giving rise to a heat current. However, if they are scattered in the sameway, the transverse electric fields induced
by them cancel in the presence of amagnetic field giving rise to a zeroNernst signal. This is known as the
Sondheimer cancellation [5]. TheNernst effect in quasiparticle systems is thus typically produced by energy-
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dependent scattering or amibipolarity of the carriers and is generally not as strong as in superconductors.
However, we note that in high-mobility semimetals, for example Bi, the quasiparticle contribution can be
comparable to the vortexNernst signal [6]. TheNernst effect has also been observed in heavy fermion
systems [7, 8].

The above discussionwould suggest that a pronouncedNernst signal in a superconductor is an indicator of
mobile vortices. However, theNernst effect has been observed in cuprates at temperatures well above the
transition temperatureTc [2, 3]. A description of the system in terms of distinct non-overlapping vortices is not
always possible at such high temperatures. In overdoped cuprates, it has been argued that theNernst effect is
most effectively described in terms ofGaussian fluctuations of the superconducting order parameter rather than
distinctmobile vortices [9]. Calculations of theNernst coefficient in this regime at smallmagnetic fields produce
a goodmatch to experimental data at lowfields. At high fields and low temperatures, theGaussian theory is not
applicable. Nevertheless, a description of the system in terms of theGinzburg–Landau theory of
superconducting fluctuations with appropriate dynamics produces a goodmatch to experimental data [10].
Other works along similar lines include a calculation based on a self-consistent Gaussian approximationwith a
Landau level basis at low temperature and finite fields [11, 12] and aCoulomb gasmodel of vortices with the core
energy related to theNernst effect and diamagnetism [13–15].

In the underdoped region, fluctuations are expected to bemuch stronger, yielding a large region of
temperaturewith dominant fluctuations in the phase of the order parameter with a largely uniform amplitude. A
description of the system in terms ofmobile vortices is a good one in this regime and a calculation of theNernst
effect based on a classicalXYmodel has been performed yielding a goodmatch to experimental data [16]. A
systematic interpolation between these two regimes as a function of doping, temperature andmagnetic field for
theNernst effect has been lacking, primarily due to the absence of a common theory of superconducting
fluctuations across the entire superconducting phase diagram. In this paperwe address this gap in the literature
by employing a phenomenological Ginzburg–Landau-type functional developed by two of us [17, 18].
Calculations based on this functional have provided good agreement with experimentalmeasurements of
different quantities such as the specific heat, superfluid density, photoemission and the superconducting dome
across the entire range of doping and temperature of the cuprate phase diagram. This functional has also recently
been employed by us to obtain a fairly good agreementwithmeasurements offluctuation diamagnetism in the
cuprates [19].

ThemeasuredNernst effect in different parts of the cuprate phase diagramhas been variously attributed to
Gaussianfluctuations [9], phasefluctuations [16] and quasiparticles [20]. In several instances there is no
consensus on exactly whichmechanism is responsible for the observed signal in the same part of the phase
diagram [3, 21–23], also complicated by the observation of competing orders. In this workwe calculate the
coefficient xya , called the off-diagonal Peltier coefficient and sometimes the Ettingshausen coefficient, from a
model of superconducting fluctuations. In the limit of strong particle–hole symmetry, as seen formany
superconductors, theNernst coefficient ,

H

1 xy

xx
n =

a

s
whereH is themagnetic field and xxs the

magnetoconductivity.We show that in amodel of superconducting fluctuations, xya , despite being a transport
quantity, is expected to be naturally related to equilibriumquantities. This is due to the fact that xya is
determined by the strength of the superconducting fluctuations as opposed to their dynamics (as we explain
later), which is also responsible for equilibriumphenomena. On the other hand, ν and xxs are given by the
dynamics of thefluctuations. In particular, we argue that xya is naturally related to themagnetization M through
a dimensionless ratio TM xya( ), which is a function of doping, temperature andmagnetic field. Experimentally,
in hole-doped cuprate superconductors above the superconducting transition temperatureTc in the pseudogap
regime a large diamagnetic response has been observed concurrently with a largeNernst signal over awide range
of temperatures [24–27]. A connection between xya and M via the ratio TM xya( ), first uncovered in aHartree–
Fock calculation [28], has also been proposed theoretically in theXY andGaussian fluctuation-dominated
regime of the cuprate phase diagram [9, 12, 16, 29] and found to be consistent with experimental observations.
Inmost superconductors, including the cuprates, superconducting fluctuations are themain source of any large
observed diamagnetic signal. Thus, a concurrentmeasurement of xya alongwith a comparisonwith our
calculated ratio of TM xya( ) can provide an indication of whether the observedNernst signal is also due to
superconducting fluctuations.We illustrate this by performing our calculations on our phenomenological
model of superconducting fluctuations for the cuprates,mentioned in the previous paragraph.

The paper is organized as follows. In section 2, we discuss themodel we study and various details concerning
the formof the currents and transport coefficients obtained from it. Section 3 contains a discussion of the
methodology and a description of the details of our numerical simulations.We present the results of our
simulations in section 4 and comment on the important features seen in the data. Finally, in section 5, we discuss
the novelfindings of our calculations and also their relation to previous theoretical and experimental work.
Additionally, there are three appendices which discuss technical details pertinent to the calculations and results
discussed in themain text.
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2.Model

To study transport properties due to superconducting fluctuationswe implement ‘model A’ dynamics for a
complex superconducting order parameter r t,Y( ) given by the stochastic equation

D r t
F

r t
,

,

,
. 1t

*
*

t
d
d

hY = -
Y Y

Y
+( ) { }

( )
( )

F , *Y Y{ } is a free energy functional. In order to be able to introduce electromagnetic fields, we define a

covariant time derivative D it t

2

0
= + Fp¶

¶ F( ) and a covariant spatial derivative D Ai 2

0
=  - p

F
. r tA ,( ) and

r t,F( ) are themagnetic vector and scalar potential, respectively, while h

e0 *
F = is theflux quantum. The free

energy functional is assumed to contain an energy cost for spatial inhomogeneities of the order parameter
through the appearance of terms involving the covariant spatial derivative. The specificmodel we study is
defined on a lattice, where the spatial derivative has to be appropriately discretized, as we discuss later. The time
scale τ, which provides the characteristic temporal response scale of the order parameter dynamics, can in
general be complex. However, it is required to be real under the requirement that the equation ofmotion for *Y
be the same as forΨ under the simultaneous transformation of complex conjugation ( *Y  Y ) andmagnetic
field inversion H H -( ) (particle–hole symmetry). Evidence of particle–hole symmetry in the formof no
appreciableHall or Seebeck effect is seen in the experimentally accessible regime of the superconductors we
study here and thuswe take τ to be real in our calculations. The thermalfluctuations are introduced through

tr,h ( )with theGaussianwhite noise correlator

t t k T t tr r r r, , 2 . 2B*h h td dá ¢ ¢ ñ = - ¢ - ¢( ) ( ) ( ) ( ) ( )

Further, themagnetic field (H A=  ´ ) is assumed to be uniform and notfluctuating due to a large ratio (κ)
between the London penetration depth (λ) and the coherence length (ξ) for the strong type-II superconductors
we study here. Cuprate and iron-based superconductors are examples of these.

The dynamicalmodel equation (1) is the simplest onewhich yields an equilibrium state in the absence of
driving potentials. It can be derivedmicroscopically within Bardeen–Cooper–Schrieffer theory above and close
to the transition temperatureTc. However, it has previously been used phenomenologically to study transport
in situationswhere themicroscopic theory is not known, such as for the cuprates [9, 10, 16].We employ the
model in a similar spirit here.

2.1.Heat and electrical transport coefficients
Themodel described by equation (1) has no conservation laws and thus currents cannot be defined in terms of
continuity equations. Nevertheless, they can be defined by appealing to themicroscopics of the full system and
then identifying the degrees of freedom that contribute to the superconductivity. The expression for the charge
current density obtained this way is [9, 28, 30, 31]

F

A
J . 3e

tot
d
d

= - ( )

An expression can also be obtained for the heat current density JQ along similar lines but it cannot bewritten as
compactly as that for the charge current density [28, 31].We provide the exact expression for the heat current for
themodel we study in the next subsection. For the present discussion, we only require that JQ exists. In the
presence of amagnetic field, these current densities are sums of transport andmagnetization current densities
[32]

J r J r J r

J r J r J r , 4

e e e

Q Q Q

tot tr mag

tot tr mag

= +

= +

( ) ( ) ( )

( ) ( ) ( ) ( )

where tr andmag stand for transport andmagnetization, respectively.
The transport coefficients we calculate are described only by the transport parts of the current densities, to

obtainwhichmagnetization parts need to be subtracted from the total current densities.We detail the steps to do
this in appendix Bwhich follows the discussion of [32].

The transport current densities can be related to an applied temperature gradient T and electric field E in
linear response as

T

J

J
E ,

e

Q
tr

tr

s a
a k

=
-

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( )ˆ ˆ

˜̂ ˆ

where ŝ, â, ẫ and k̂ are the electrical, thermoelectric, electro-thermal and thermal conductivity tensors,
respectively, and are independent of the gradients in linear response. On general grounds it can be shown that

H Hxy yxs s= -( ) ( ) for systemswith reflection symmetry.We also assume H Hxy yxa a= -( ) ( ), which holds for
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non-interacting systems and, in general, within the relaxation time approximation in Boltzmann transport
theory [33]. Using the above relations, theNernst coefficient (n) under the condition J 0e

tr = is given by [9, 30]

E

H T H

1
. 5

y

x

xy xx xy xx

xx xy
2 2

n
a s s a

s s
=


=

-

+
( )

For systemswith particle–hole symmetry xxa and xys are zero and thus

H
. 6

xy

xx

n
a
s

= ( )

Further, theOnsager relation gives Ta a=˜̂ ˆ [32].

2.2.Dimensional analysis of the transport coefficients
Equation (1) can bewritten in terms of dimensionless parameters as follows.We assume that there are basic
scales, x0,T0 and 0Y for the spatial coordinate, temperature and the order parameter arising in the equilibrium
state of the system.We can then define r¢,T ¢ and Y¢, which are the dimensionless spatial coordinate,
temperature and order parameter, respectively, by scaling by the quantities x0,T0 and 0Y . Equations (1) and (2)
can nowbe cast in dimensionless form in terms of these quantities as

D
F

7t
*

d
d

hY¢ = -
¢

Y¢
+ ¢¢ ( )

and

t t T t tr r r r, , 2 , 81 1 2 2 1 2 1 2*h h d dá ¢ ¢ ¢ ¢ ¢ ¢ ñ = ¢ ¢ - ¢ ¢ - ¢( ( )) ( ) ( ) ( ) ( )

where t ¢, F ¢ and h¢ are the dimensionless values of the time, free energy density and noise, respectively. This is

possible only if their basic scales are t x

k T0
d

0
2

0

B 0
= t Y( ) ( ) , F k T

x0 d
B 0

0
=

( )
and ,k T

x0 d
B 0

0 0
h =

Y ( )
respectively, where d is the

number of spatial dimensions. Additionally, the basic scale of themagnetic flux is 0F , which fromgauge
invariance implies that the basic scales of the electric potentialV and electrical current density Je areV

t0
0

0
= F and

J e k T

x0 d
B 0

0
1

0
=

F-( )
. Thus, the basic scales of the coefficients ŝ and â are

J x

V

e
0 0

0
and

J x

T

e
0 0

0
. The dimensionless quantities ŝ

and â can be calculated from equations (7) and (8) using the dimensionless formof Je. These can then be
multiplied by appropriate basic scales to get their correct dimensional values.

From the above discussion, it can be seen thatwhile ŝ is proportional to the relaxation time τ, â is
independent of it. Thus, theNernst signal is inversely proportional to τ in ourmodel.α depends only on the

parameters of F,which also determine thermal equilibriumproperties of the system. In particular, the ratio
T

M

a
∣ ∣

is dimensionless, where M is themagnetization, suggesting a possible relationship between M andα. In this
work, we thus assert that themostmeaningful comparison offluctuation diamagnetismwith theNernst effect is
a comparison of xya and M.

It has been shown that for afluctuating two-dimensional (2D) superconductor in the limit of Gaussian

superconducting fluctuations and lowmagnetic fields 2
T

M

xy
=

a
∣ ∣ [9]. Interestingly, in the complementary limit of

very strongfluctuationswith temperaturemuch higher thanTc andweak fields, the same ratio is obtained [16].
In this work, we calculate this ratio without restricting ourselves to the above limits and show that it in general
deviates from the value of 2.

2.3. The free energy functional
The free energy functional we use describes superconductivity on a 2D lattice [17]. It has aGinzburg–Landau
formwith parameters chosen to reproduce experimental observations for the cuprates. In particular, it has been
employed to successfully reproduce experimentalmeasurements of the specific heat, superfluid density,
superconducting dome and fluctuation diamagnetism [17, 19]. Coupling electrons to the pairing fluctuations
produces Fermi arcs [18]. The functional essentially describes the cuprates as highly anisotropic layered
materials withweakly coupled stacks of CuO2 planes. The superconducting order parameter

exp im m my f= D ( ) is defined on the sitesm of the square lattice where mD and mf are the amplitude and phase,
respectively. The my field ismicroscopically related to the complex spin-singlet pairing amplitude

a a a am i j j i
1

2
y = á - ñ    on the CuO2 bondswherem is the bond center of the nearest-neighbor lattice sites i

and jwhere a ai i( )† are annihilation (creation) operators. The formof the functional 0 1  = +

A
B

a
2

, 9m
m

m m0
2 4 åD = D + D⎜ ⎟⎛

⎝
⎞
⎠({ }) ( )
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C A b, cos , 9m m
mn

m n m n mn1 åf f fD = - D D - -
á ñ

({ }) ( ) ( )

where mná ñdenotes pairs of nearest-neighbor bond sites and A A rdmn m

n2

0
ò= ⋅p

F( ) is the bond fluxwhich
incorporates the effect of an out-of-planemagnetic field. The coefficientsA,B andC as a function of doping x
and temperatureT are parametrized as A x T f T T T x, eT T

0
2 0*= -( ) ( ) [ ( )] , B bf T4

0
3= and

C x xcf T2
0=( ) in terms of dimensionless numbers f, b, c and a temperature scaleT0, based on cuprate

phenomenology [17].We discuss themotivation behind the explicit forms of each term in appendix A. The form
of the functional ,m m f D{ } is such that phase fluctuations are dominant and amplitude fluctuationsweak at
lowdoping x and and become comparable in strength as x increases, ultimately tending towardsGaussian
fluctuations of the full order parameter at large doping. The charge and heat current operators are (see
appendix C)

C AJ
2

sin 10e
m n m n mn

0

p
f f=

F
D D - -( ) ( )

J J M zEJ
1

2
11Q

m n
E

n m
E

z= - + ´ ( ) ( ˆ) ( )

where J e c.c.m n
E C

t n2
im m

m

m n,
*

*
y= - +

y y
y

w


¶

¶{ }∣ ∣ with Am n m n mn,w f f= - - .

In the extreme type-II limit when the penetration depth l  ¥, the out-of-planemagnetic fieldH is related

to the in-plane bond fluxAmn on a square plaquette,of size a0 such that A 2mn
Ha0

2

0
 på =

F
. The lattice

constant a0 introduces afield scaleH0 obtainedwhen oneflux quantum 0F passes through the square

plaquette,and H
a0 2
0

0
2=

p
F .We also note that

Acos e ,m n m n mn m n
A

m n
i 2 2 2mnf f y yD D - - = - - - D - D( ) (∣ ∣ ) and therefore the term 1 can be readily

identifiedwith the discretized version of the covariant derivative D 2Y∣ ∣ in a standardGinzburg–Landau theory.
Thus, the lattice constant a0 can be thought of as a suitable ultraviolet cutoff to describe the physics of the system.

3. Simulation geometry andmethodology

We simulate themodel given by equation (1)numerically on a 2D systemof size 100×100.We perform the
simulation in dimensionless terms by scaling the relevant quantities by the units described in section 2.2. To
compute xya weperformour simulations on a cylinder (figure 1(a))with periodic boundary conditions in one
direction (ŷ ) and zero current conditions along the other (x̂). The uniformmagnetic flux per plaquette is in the
radial direction and determined by the condition of zero flux in the axial direction. The resulting current is in the
azimuthal direction and in the absence of any perturbations (temperature gradient, electric field etc) is
maximumat the edges and falls to zero and changes direction at the center figure 1(b) (red line). Thus, in the

Figure 1. (a)The cylindrical geometry of our simulation. Themagnetic field (H) is applied in the radially outward direction (red). The
temperature gradient Tx orEx is applied in the axial direction and the resulting current is in the azimuthal direction. (b)The current
profile of the cylinder in the presence and absence of a temperature gradient and electric field, which is shown by two different color
(black and red) lines. The current density ismaximumat the two edges of the cylinder. In the absence of a temperature gradient the
current density is equal inmagnitude at both edges of the cylinder (red line).When a temperature gradient is applied the current
density increases at one end and decreases by the same amount at the other end (black line).

5
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absence of any perturbing fields the backgroundmagnetization of the cylinder should be zerowhich can be
checked by summing over the charge currents fromone end to the other.

A perturbing field like the temperature gradient along the axial direction introduces a transport current in
the azimuthal direction, and as a result the total current density is enhanced at one end and suppressed at the
other (black line).We see this effect in our simulation by setting the temperature gradient in the linear response
regime. Summing the total current density over thewhole sample gives only the transport current since the sum
over themagnetization current continues to be zero. yxa can be obtained from the equation

S

J S

T

1 d
12yx

A

e
Atotòa = -


( )

where SA is the area of the sample. By utilizing the relation H Hxy yxa a= -( ) ( )we calculate xya . The typical
number of time steps chosen for equilibration and time averaging are about1.2 107´ and 106, respectively.

We also compute the coefficient xyã by switching off the temperature gradient and instead turning on the
electric field E in the axial direction of the cylinder. E can be introduced through a time-dependentmagnetic

vector potential (A)with E
t

A= -¶
¶
, a position-dependent electrostatic potential E = -F or any gauge-

invariant combination of the two. In thismethodwe calculate the total heat current density. It can be shown that
the appropriate subtraction of themagnetization current to yield xyã gives

S

J S

E
M

1 d
. 13xy

A

Q
Atotòa = - -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜ ( )

Themagnetization M is obtained from J Me
mag = ´ by an appropriate integration in the equilibrium state (

i.e. zero electricfield and temperature gradient). The values obtained are in agreementwith those fromMonte
Carlo simulations obtained in a previous study [19].

A check forwhether the subtraction of themagnetization current has been done properly is by verifying the

equality xy T

xya =
ã

, which is a consequence of theOnsager relations for transport coefficients.We have verified

that the above equality holds towithin our noise levels for all values of doping, temperature and field.We note
that the in the underdoped region, where the fluctuations are strong, there is a large separation betweenTc and
Tc
MF. Thus, fluctuations of the amplitude ofΨ are negligible even up to temperatures significantly greater thanTc

(but also significantly lower thanTc
MF). This allows us to use an effectiveXYmodel with only a dynamically

varying phase and amplitude frozen to themean-field value up to fairly high temperatures at underdoping. This
effectiveXYmodel seems to have a lower noise level for xya comparedwith the full Ginzburg–Landaumodel.
We thus employ this effectivemodel for lower noise in the underdoped region and have verified that the results
agreewith those obtained from the fullmodel towithin error bars.

4. Results

Weplot the obtained values of xya as functions of doping, temperature and field. The overall features of xya over
the phase diagram are summarized infigure 3 through colormap plots of the strength of the xya in the field-
temperature (H−T) plane for three different values of doping going fromunderdoped to overdoped.We have
also compared xya with M. M can in turn be compared directly with experiments as was done by us in a previous
study based on themodel we employ here [19].We found the calculated M to be in reasonably good quantitative
agreement across the entire range of doping,field and temperature accessible in experiments on the cuprates
[3, 26]. The value of xya for our 2D system is converted to a 3Done by dividing by the lattice spacing of BSSCO to
enable a direct comparisonwith the 3Dmagnetization.

Figure 2 shows thefield dependence of xya at different temperatures for three representative values of
doping—one each in the underdoped, optimally doped and overdoped regimes, with respectiveTc values
indicated in the figure panels. Themagnetization M is shown alongside to enable a comparison. It can be seen
that the overall dependence on temperature and field is the same for both quantities for all three values of
doping. This is significant because the strength of superconducting fluctuations is different for the three regimes
going from strong toweak as the value of doping increases. This similarity of the gross features in the field and
temperature dependence of both quantities is a consequence of the fact that it is the strength of the
superconducting fluctuations rather than their dynamics that is responsible for both the diamagnetic and off-
diagonal thermoelectric responses. The color plots of xya infigure 3 illustrate thefield and temperature
dependence better,making it possible to identify contours of constant xya .

The similarity between the field and temperature dependences of xya and M motivates amore careful
comparison of the two quantities. As argued in the previous section, the quantity TM xya∣ ∣ ( ) is dimensionless
and hence a goodmeasure of the correlations between the two quantities M and xya . Plots of this quantity are
shown infigure 4, and it can be seen that it is not a constant but has a dependence on doping x, temperature T Tc
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andfield H H0. Of particular relevance is the fact that it stays close to the value 2 forT Tc> at both
underdoping and overdoping over a substantial range offield, as shown infigures 4(a) and (e). This is consistent
with the predictions of theoretical calculations in the high-temperature limit of theXYmodel and theGaussian
fluctuation limit, respectively, as we discuss in the next section [9, 16]. The dimensionless ratio has also been
calculated to be 2 for amodel with both superconducting and charge density wave order [14]. For optimal
doping, the ratio approaches 2 at highfields in our numerical calculations. It should be noted that the ratio
appears to be less than 2 at lowfields. This is consistent with results obtained from self-consistent Gaussian
fluctuations [12]. However, the signal to noise ratio in the simulations at lowfields is small andwe cannot infer
anything conclusively about the ratio TM xya∣ ∣ ( ) in this regime.

Afinal feature of our simulation data that needs to be highlighted is shown infigure 5. In thisfigure contours
of constant xya are plotted in the x−T plane for different values of themagneticfield forT Tc> . The
superconducting dome obtained by calculatingTc as a function of x is also plotted. It can be seen that the
contours follow the superconducting dome. This is especially significant at underdopingwhere the transition
temperature is determined by the strength of phasefluctuations that in turn suppress the superfluid stiffness.We
discuss the relevance of this feature in our data in the next section, but note that the same feature is also seen in

Figure 2.The field dependence (in units of H0) of xya andmagnetization M- for (a) and (b) underdoped (x= 0.05), (c) and (d)
optimally doped (x= 0.15), (e) and (f) overdoped (x= 0.25) cuprates in SI units (denoted in the figure as V K mW andAmp/m,
respectively).We divide the numerically obtained xy

2Da andM2D by appropriate layer spacing d 1.5 nm= to convert to the 3D xya and
M. xya andM can be seen to behave in the sameway as a function offield at different temperatures. As H 0 , both xya andM
diverge for T Tc< and go to zero for T Tc> .
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thefluctuation diamagnetism experimentally [26, 27] and in theoretical calculations [19].More significantly, the
same feature has also been seen in experimental data for theNernst coefficient [3].

5.Discussion and conclusions

Wehave argued here that the observed correlation between theNernst signal and themagnetization in cuprate
superconductors arises primarily due to a correlation between xya and themagnetization in amodel with only
superconducting fluctuations since both quantities depend only on the strength of the fluctuations and not their
dynamics. The relationship between xya and M is quantified by calculating the the dimensionless ratio

TM xya( ). This ratio has been calculated by other authors previously for amodel of superconducting
fluctuations in theXY limit of strong phase fluctuations and theGaussian limit, and found to be equal to 2 in
both cases [9, 16]. These correspond to high-temperature limitsT Tc for overdoped and underdoped
cuprates, respectively. Here, we have calculated this ratio as a function offield, temperature and doping for the
entire phase diagram and found deviations from the value of 2 in regionswhere the high-temperature
approximation does not apply.

xya calculated as a function of temperature, field and doping is shown infigures 2 and 3 alongside M. It can
be seen that the dependence of both quantities onfield and temperature is very similar for the entire range of
doping. This has previously been demonstrated in certain limits for very underdoped and overdoped samples
[9, 10, 16]. Our calculations agree with these previous results. On the underdoped side, ourmodel reduces to a
phase-onlymodel for a large range of temperatures for which the amplitude of the superconducting order
parameter is effectively constant with no spatial or temporalfluctuations. This corresponds to theXY limit,
whichwas the subject of one of the aforementioned studies [16]. On the overdoped side the strength of the
fluctuations is weaker, resulting in a smaller difference betweenTc andTc

MF. In this limit both phase and
amplitude fluctuate together and cannot be disentangled from each other. The description of the physics of the
system is thus in terms offluctuations of the full order parameter. At high temperature, the system is in the
Gaussian limit and our results agreewith previous calculations of xya in lowfields in this limit [9]. At higher
fields too, in the overdoped limit, our calculations agree with previous work [10].

One of the new results of our work is that we have shown that one can smoothly interpolate between these
previously studied limits by employing the free energy functional(9) to calculate xya . As a result, we are able to
directly show the connection not just between xya and M but also between these quantities and otherswhose
nature is primarily determined by superconducting fluctuations, across the entire phase diagram.One of these
quantities is the superfluid stiffness, the disappearance of which corresponds to the destruction of
superconductivity at the transition temperatureTc. The correlation between xya andTc can be seen infigure 5
where curves of constant xya in the temperature and doping plane follow the superconducting dome for
different values of themagnetic field. A similar correlation also exists between M andTc, whichwe have shown
in an earlier work [19].

The ratio TM xya( ) is plotted infigure 4 for different values of temperature, field and doping. It has been
remarked earlier that this value has been shown to be equal to 2 at high temperature for theXYmodel [16] and in
the limit of Gaussianfluctuations at lowfield [9]. Ourmodel extrapolates to both limits for appropriate choices
of parameters butwe have to be careful in definingwhat wemean by high temperature. TheXY limit is obtained
when the separation betweenTc

MF andTc becomes large, which corresponds to underdoping. High temperature
heremeans temperatures large comparedwithTc but small comparedwithTc

MF. This defines a fairly wide range

Figure 3.Contour plots of xya of (a) underdoped (x= 0.05), (b) optimally doped (x= 0.15) and (c) overdoped (x= 0.25) cuprates in
SI units. The contour lines are almost vertical near T Tc , analogous to previously obtainedmagnetization contour lines infigure 2 of
[19] and also consistentwith the features obtained by Podolsky et al [16].
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of temperatures since the two scales are well separated. On the other hand, theGaussian limit corresponds to a
small separation betweenTc andTc

MF (overdoping) and high temperature heremeans a temperatures large
comparedwith both. It should be emphasized that there is aGaussian regime for any value of doping for
temperatures larger thanTc

MF.However, for underdoped systems, these temperatures aremuch higher than
those at which experimentalmeasurements are performed and are thus not relevant here. Optimally doped
systems lie in neither regime and ourwork provides the first calculation of the ratio TM xya( ) for them. Even in
the underdoped and overdoped regimes, we calculate for the first time the ratio beyond the high-temperature
limits discussed above. It can be seen that TM xya( ) agrees with the previously obtained resultsmentioned
above.

It is interesting to note that while TM xya( ) obtained fromour simulations does deviate from the value of 2
at low temperatures (see figure 4), it attains this ‘high-temperature’ value even at temperatures comparable toTc.
In fact for the underdoped system it does so even at temperatures lower thanTc. Thus, it appears that in so far as

Figure 4.The dimensionless quantity TM xya∣ ∣ is obtained at different temperatures for (a) underdoped (x=0.05), (c) optimally
doped (x=0.15) and (e) overdoped (x=0.25) cuprates. The data show at high temperature TM 2xya ∣ ∣ . Colormap contour lines
of the dimensionless quantity TM xya∣ ∣ in theH−T plane for (b) underdoped (x=0.05), (d) optimally doped (x=0.15) and (e)
overdoped (x=0.25) regions. The temperature axis is scaled in units ofTc. The dimensionless quantity

T

M

xya
∣ ∣ behaves similarly at high

temperature (comparedwithTc) for different values of doping ranging fromunderdoped to overdoped.
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this quantity is concerned, theGaussian regime (T Tc
MF ) is not distinguishable from the strongly phase

fluctuating regime.We emphasize that this does not imply that the two regimes are indistinguishable for each of
the two quantities M and xya individually. Indeed, the temperature dependence of the these two quantities at
lowfield has been shown to be distinct in the two regimes [9, 16] but their ratio appears not tomake that
distinction since the leading temperature dependence cancels between the numerator and the denominator.
Thus, there does not seem to be a very clear distinction between the underdoped, optimally doped and
overdoped systemswith the temperature scale for the ratio being set only byTc regardless of whetherTc

MF is in its
vicinity.We note that the value of TM xya( ) appears to be less than 2 at high temperature for the lowest fields.
This could be an artifact of high noise levels in this regime and a higher-precision calculation (whichwould be
fairly time consuming)may yield a value equal to 2.

For a superconducting system, a strong diamagnetic signal, even aboveTc is typically due to
superconducting fluctuations as opposed to other excitations like quasiparticles [34]. However, theNernst
signal, can have substantial contributions from these other excitations in addition to those from
superconducting fluctuations. In fact, the role of quasiparticles in the observed largeNernst effect of the cuprates
has been discussed extensively [20, 22]. Our calculation provides amethod for determining the extent of the
contribution of superconducting fluctuations to the observedNernst signal through the ratio of TM xya( ). If the
observed ratio is close to the predictions fromourmodel then superconducting fluctuations are chiefly
responsible for theNernst effect in the particular regime of temperature,field and doping.Wewould likely to
emphasize again that the relevant transport quantity in our calculation is xya and not theNernst signal ν.
Experimentally, obtaining xya requires a concurrentmeasurement of theNernst effect and the
magnetoconductance. It is also possible that features in theNernst effect are unconnected to superconducting
fluctuations, and hence themagnetization, and arise due to the behavior of themagnetoconductance and not

xya . An analysis of these features is beyond the scope of our present calculation and could be an interesting
direction for future studies.
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AppendixA. The free energy functional

The functional form in the absence of a gaugefield is defined as

A
B

a
2

, A.1m
m

m m0
2 4 åD = D + D⎜ ⎟⎛

⎝
⎞
⎠({ }) ( )

C b, cos , A.1m m
mn

m n m n1 åf f fD = - D D -
á ñ

({ }) ( ) ( )

Figure 5. xya in the x−T plane for two different values of themagneticfield (a) H H 0.10 = and (b) H H 0.20 = . The lines of
constant xya follow the superconducting dome. This indicates that the equilibrium superconducting fluctuations responsible for the
suppression of the superfluid stiffness also determine the thermoelectric response. A similar feature is also seen for themagnetization
[19].
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where the pairing field exp im m my f= D ( ) is defined on the sitesm of the square lattice with phase mf and
amplitude mD . mná ñdenotes nearest-neighbor site pairs. As discussed in themain text, the quadratic term
coefficientA is proportional to T T*-( )whereT* is the local pairing scale temperature and in our theorywe
identify it to be the pseudogap temperature scale [35]. Cooling down fromaboveT*, the pairing scale máD ñ
increases with noticeable change inmagnitude [17]whileA changes sign. Across the phase diagramT* is
considered to be varyingwith doping concentration x as a simplified linear formT x T 1 x

x0
c

* = -( )( ) with

T 400 K0  at zero doping and vanishing at a doping concentration xc= 0.3. The exponential factor eT T0

suppresses the average local gapmagnitude máD ñat high temperatures (T T x* ( ))with respect to its
temperature-independent equipartition value T A x T,( ) whichwill result from the simplified formof the
functional (equation (A.1)) being used over the entire range of temperature. In the range of temperature in our
study the role of this factor is not very crucial (for a detailed discussion see [17]). The parameterB is chosen as a
doping-independent positive number and the formofC is chosen to be proportional to x for small doping. The
reason for such a choice can be understood from theUemura correlations [36]where superfluid density xsr µ
in the underdoped region of the cuprates. Further elaboration on the functional and coefficients can be found in
the appendices of [17, 19].

Appendix B.More on transport currents, coefficients andmagnetization

TheNernst effect is the off-diagonal component of the thermopower tensor Q̂, measured in the absence of
electrical currents

TJ E B.1tr s a= + -( ) ( )

where Jtr is transport current, E is the electric field and T is the temperature gradient. Q 1s a= -ˆ ˆ ˆ is the
thermopower tensor. Here

and . B.2
xx xy

yx yy

xx xy

yx yy
s

s s
s s a

a a
a a= =⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ˆ ˆ ( )

For an isotropic system, xx yys s= and xx yya a= . Further, xy yxs s= - and xy yxa a= - . Therefore the
thermopower tensor

Q B.31s a= -ˆ ( )

1
. B.4
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TheNernst coefficient

Q Q S tan , B.5xy yx
xy xx xy xx

xx xy

xy

xx
2 2 H

a s s a

s s

a
s

= - =
-

+
= - Q

⎛
⎝⎜

⎞
⎠⎟ ( )

where tanH
1 xy

xx
Q =

s

s
- ( ) is theHall angle and S Q Qxx yy=( ) is thermopower.

Let J re
tot( ), J rQ

tot( ) and J rE
tot( ) be the total charge, heat and energy current densities at position r in the sample.

Each of these current densities is a sumof a transport part andmagnetization part. The latter exists even in
equilibrium and needs to be subtracted to obtain the transport contributions. If rF( ) is the electric potential at r,
these currents are related to each other as

J r J r r J r . B.6Q E e
tot tot tot= - F( ) ( ) ( ) ( ) ( )

The transport part of the current densities have a similar relation

J r J r r J r . B.7Q E e
tr tr tr= - F( ) ( ) ( ) ( ) ( )

The charge and energymagnetization densities M re( ) and M rE( ) are related to their respective current
counterparts such that [32]

J r M r

J r M r . B.8

e e

E E

mag

mag





= ´

= ´

( ) ( )

( ) ( ) ( )

If the surroundingmaterial is non-magnetic, both M re( ) and M rE( ) vanish outside thematerial. Therefore
integrating over the sample area SA and averaging
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Utilizing the above relations and equation (B.6), equation (B.7)we get
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J r J r J r r M . B.11Q Q E e
tot tr mag = + - F ´( ) ( ) ( ) ( )( ) ( )

Nowusing the identity M M Me e e  ´ F = F ´ + F ´( ) reduces to

J r J r r M M r M . B.12Q Q e E e
tot tr  = + F ´ + ´ - F( ) ( ) ( ) ( ( ) ) ( )

We identify and note that there is no heatmagnetization density M rQ( ) such that J r M rQ Q
mag = ´( ) ( ). In

fact,
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and for MzM = ˆ and ExE = ˆ we obtain
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AppendixC.Heat and charge current expressions for continuumand latticemodels

The expressions of charge and heat current [9, 28, 30, 31] for a continuumGinzburg–Landau theory are
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with C
m0 2

2

*
= and ...á ñ standing for thermal averages.

For the latticemodel given by equation (A.1) the heat current between sitesm and n is obtained taking into
account a contribution Jm n

E
 from sitem to n and vice versa and subtracting themout as
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n
, òw f f= - - ⋅ is a gauge-invariant quantity.

The charge current expression is C AJ sin .e
m n m n mn

2

0
f f= D D - -p

F
( )

For anXYmodel described by theHamiltonian, J AcosXY mn m n mn f f= - å - -á ñ ( ), J being theXY
coupling, the heat and charge current expressions [16] are

J AJ sin C.4XY
e

m n mnf f= - -( ) ( )
J

A M zEJ
2

sin . C.5XY
Q

m n m n mn zf f f f= - + - - + ´ ( ) ( ) ( ˆ) ( )

One can verify that the frozen amplitude limit of both charge and heat current expressions of our lattice
model reduces to these expressions.

EffectiveXYmodel

On the underdoped side, whereT T Tc
MF

c* =  we can integrate out the amplitude mD of the pair degrees of
freedom my to obtain an effective action XY only in terms of the phase.
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In the above, wemake use of the cumulant expansion, i.e.
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By neglecting the fluctuations of amplitudes and retaining just thefirst of the above expressions, an effective
XYmodel is obtained, i.e.
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