ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Full-Diversity Dispersion Matrices From Algebraic Field Extensions for Differential Spatial Modulation

Rajashekar, Rakshith and Ishikawa, Naoki and Sugiura, Shinya and Hari, K V S and Hanzo, Lajos (2017) Full-Diversity Dispersion Matrices From Algebraic Field Extensions for Differential Spatial Modulation. In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 66 (1). pp. 385-394.

[img] PDF
IEE_Tra_Veh_Tec_66-1_385_2017.pdf - Published Version
Restricted to Registered users only

Download (806kB) | Request a copy
Official URL: http://dx.doi.org/10.1109/TVT.2016.2536802

Abstract

We consider differential spatial modulation (DSM) operating in a block fading environment and propose sparse unitary dispersion matrices (DMs) using algebraic field extensions. The proposed DM sets are capable of exploiting full transmit diversity and, in contrast to the existing schemes, can be constructed for systems having an arbitrary number of transmit antennas. More specifically, two schemes are proposed: 1) field-extension- based DSM (FE-DSM), where only a single conventional symbol is transmitted per space-time block; and 2) FE-DSM striking a diversity-rate tradeoff (FE-DSM-DR), where multiple symbols are transmitted in each space-time block at the cost of a reduced transmit diversity gain. Furthermore, the FE-DSM scheme is analytically shown to achieve full transmit diversity, and both proposed schemes are shown to impose decoding complexity, which is independent of the size of the signal set. It is observed from our simulation results that the proposed FE-DSM scheme suffers no performance loss compared with the existing DM-based DSM (DM-DSM) scheme, whereas FE-DSM-DR is observed to give a better bit-error-ratio performance at higher data rates than its DM-DSM counterpart. Specifically, at data rates of 2.25 and 2.75 bits per channel use, FE-DSM-DR is observed to achieve about 1-and 2-dB signal-to-noise ratio (SNR) gain with respect to its DM-DSMcounterpart.

Item Type: Journal Article
Additional Information: Copy right for this article belongs to the IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
Department/Centre: Division of Electrical Sciences > Electrical Communication Engineering
Depositing User: Id for Latest eprints
Date Deposited: 03 Apr 2017 04:49
Last Modified: 03 Apr 2017 04:49
URI: http://eprints.iisc.ac.in/id/eprint/56451

Actions (login required)

View Item View Item