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A6slrocf- Scheduling yolicies adopted for statistical mul- 
tiplexing should provide delay differentiation between dif- 
ferent traffic classes. where each class represents an aggre- 
gate traffic of individual applications having the same target 
queueing delay requirement. We propose scheduling to opti- 
mally balance queue lengths as an approach to delay differ- 
entiation. 

In particular. we assume a discrete-time, two-class, single- 
server queueing model with unit service time per packet. We 
find 3 scheduling policy that we show to be discountedcost 
optimal, for Bernoulli packet anivals using dynamic pro- 
gramming analysis and for i.i.d. batch arrivals using a step- 
wise cost-dominance analyticalapproach. We then use cumu- 
lative queue length state variables in the one-step cost func- 
tion of the optimization formulationandohtain the next-stage 
optimal policy. Simulations show that this policy achieves 
long-term mean queueing delays closer to the respective tar- 
get delays than the first policy, and also achieves smaller er- 
rors in short-term mean queueing delays than the Coffman- 
Mitrani policy. 

1. INTRODUCTION 
In scenarios such as wnununication via satellite, where sig- 
nal propagation delays are large. the queueing delay margins 
available to packet coinmunication applications can be small 
[ 11. Further, these margins can be different for different appli- 
cations. Hence. when packets from different applications are 
multiplexed statistically and transmitted on a single shared 
channel, the packets should be classified according to their 
delay requirements and scheduled for transmission using a 
suitably designed class-based scheduling policy. 

Given the packet arrival statistics for different classes, it is 
possible to determine whether it is feasible to attain mean 
class queueing delays within their respective delay margins 
12.31. Having chosen a feasible set of mean class queueing 

delays. it remains to deterinine a scheduling policy that will 
achieve delays that u e  dose to the taget mean delays when 
averaged over time intervals of sufficient length 

The Coffman-Mitrani policy in 121 exactly achieves a feasible 
set of target long-term mean queueing delays, but the short- 
term performance may be poor. Subsequent approaches that 
have been reported either are primarily heuristic in approach 
[3], or requires somewhat involved computations tcobtain 
policy parameters [4]. 

Our approach is to formulate a weighted-queue-length- 
balancing optimization problem in the framework of Marknv 
decision theory. where class weights are set inversely prolmr- 
tional to the respective products of target delays and packet 
arrival rates. For the sake of simplicity, we assume that the 
class weights are identical (set to I ) .  i.e.. the target delays 
are inversely proportional to the arrival rates of the respective 
classes. If instantaneous queue lengths could be equalized by 
a scheduling policy then the mean queueing delays achieved 
by the policy would equal the respective target delays: Al- 
though exact instantaneous equalization is not pnssible. [lie 
mean queueing delays achieved by a policy that,attempts to 
equalize cumulative queue lengths may be close to the respec- 
tive target delays. 

The rest of the paper is organized as follows. In Section 
2, we describe a multiplexing model and analytically obtain 
an optimal policy for Bernoulli packet amvais and for i.i.d. 
batch arrivals. In this section, we also use cumulative,queue 
length state variables in the optimization problem and obtain 
the next-stage optimal policy. In'Section 3, simulation re- 
sults are presented for the above policies as well as for the 
Coffman-Mitrani policy, indicating the errors in the short- 
term and long-term mean queueing delays relative to the tar- 
get delays, and the relative values of the coefficients of varia- 
tion for queueing delays. Section 4 concludes the paper. . ,  
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We solve for an optimal policy by proving some structural 
properties for IfN<.,.) (Lemma 1, stated in Appendix A.1) 
and obtain the following result. 

Theoreni I :  An optimal policy, for each horizon lengh /V, 
serves at each time n the queue with index 

arg .max { X i ( i b )  + Xi}; 

i.e.. serves the longer queue when queue lengths are un- 
equ$,andaqueue withthe maximumarrivalrate whenqueue 
lengths are equal. 

We also note that, following this policy, the modulus of the 
difference of the individual queue lengths is atmost 2 at any 
time after the queue lengths are first equal. 

I.I. D. batch Arrivals 

The model with i.i.d. batch arrivals in successive time units 
was considered in [61 with specific one-step cost function 
equal to the sum of the squares of the queue lengths. It was 
shown in [6] using a step-wise cost-doininance analytical ap- 
proach, that an optimal stationary policy, for each horizon 
length, serves the longer queue when queue lengths are ut- 
equal, and the queue with the maximum amval rate when 
queue lengths are equal and the arrival rates differ. 

In the special case of identical arrival statistics for the two 
classes, we show that an optimal policy serves either one of 
the queues when both queue lengths are equal. 

One-Step Cosl Function qf Cumulative Queue Length,v 

So far, we have used only instantaneous queue lengths as state 
variables in our optimization prohlems. Simulations show 
that the ratios of the resulting long-term average queueing de- 
lays for the two queues are riot satisfactorily close to the ratios 
of the target delays. We seek an improvement hy assuming a 
one-step cost function equal to the sum of squares of cumula- 
tive queue lengths, The state at time n, S ( n ) .  is given hy the 

four-tuple (X,(n,), X%(n),c . X l ( k ) , x . Y 2 ( k ) ) .  Then the 

one-step cost function at time n. is 

1 = 1.2 

,I 

*=0 rl=0 

2. MODELING AND ANALYSIS 

A survey of numerous Markov decision models. proposed for 
applications in communication networks, can be found in [51. 
In [6] .  a two-class multiplexer has been modeled as a discrete- 
time single-server twnqueue system with unit service time 
per packet and i.i d. packet hatch arrivals to each input queue 
(figure I). 

ContnllerlScheduler 

@ 
Class 1 q"cucl , 

c;s2sL--b At-- ,' Output 

Server 

qucve 2 

Figure 1.  A two-class multiplexer 

Bernoulli Arrivals 

For the same model specialized to the case of Bernoulli'ar- 
rivals to each input queue (arrival rate X I  to queue i), we for- 
mulate an optimal scheduling problem with total discounted 
cost miuimiiation criterion associated with a one-step cost 
function of the two queue length state variables. The cost 
function is taken to be symmetric in the two co-ordinates, 
uondecreasinp in each cowdinate, and increasing with m d -  
ulus of ditrerence between cmordinates for fixed sum of co- 
ordinates. Examples of such one-step cost functions are 
C(<, j) = io t- j p  farp > 1, C ( i , j )  = iiiuz (z , j ) ,  and 

C(i,j) = bi + b, forb > 2. 

The total expected discounted cost over A' stages under pol- 
icy T .  for discount factorb E (0, l] and initial state 5, is given 
by the value function 

k=" 
I,;(*) := 0 

where , f ( k )  denotes the state at time k 

Let lI be the set ofall policies. We want to find fi' E II, such 
that 1<$(2) = inf L$(Z). This optimal value function is 

denoted by I'N(Z). 

The Dynamic Progemming results for finite action space 
U ( 5 )  [7] yield the following optinlality equation: 

aEn 

. .  

where Pi:. (ii) is the controlledMarkov cham state bansition 
,.. . probability. , . .  

Wenote tha t the~umX-~(k)  + Sl(k).atanytimek,isiden- 
tical for all work-conserving policies. Hence, with the opti- 
mization restrictedLo the space of work-conserving policies, 
this choice for C(X(n)) is an attempt to equalize cumulative 
queue lengths. 

We obtain the following next-stage optimal policy (i.e:, with 
. .  

iv = 2). 



Packet-Switched Networks / 1221 

Theorem 2: The next-stage optimal work-conserving policy 
serves, at each time n for which X,(n) # 0 and X z ( n )  # 0, 
the queue with index 

n 

i.e., serves the queue with higher value of the sum of cumu- 
lative queue length. instantaneous queue length, and arrival 
rate. If the sums for both queues are equal, serving either 
queue is optimal. 

3. SIMULATION RESULTS 

In this section, we discuss the performance of the optimal 
policy using instantaneous queue lengths, the next-stage opti- 
mal policy using cumulative queue lengths, and the Coffman- 
Milrani policy [ 2 ] .  

We first briefly describe the Coffman-Mitrani policy for our 
assumed model. Let SI and Sz he two policies giving strict 
priority to class 1 and class 2 packets respectively. Then a 
mixing policy is constructed which, at the beginning of each 
busy period, decides with probability a that the scheduling 
decisions during that busy period are to be made according to 
S1 , and with probability 1 - a the decisions are to be made 
according to S1. Given the arrival statistics, the probability 
u is a constant and is determined solely by the target mean 
queue length of either class. Let X :  and XT he the mean 
queuelengths ofclass I under plicies S1 and& respectively. 
For all work-conserving policies, the sum of the mean queue 
lengths of both the classes is identical and denoted by xt,t,i 
Recause of the equal class weight assumption. the target 
mean queue length of class I is Xi = Xtot . f /2 .  Then, 

For all the cases below. 

. we have simulated a total of 36 uniformly distributed ar- 
rival rate pairs at total arrival rates from 0.2 upto 0.9, in in- 
crements of 0.1 in the individual class arrival rates, . long-term average queueing delays are taken over a fixed 
length of lo6 time units, . sho&&m average queueing delays are taken over 1000 
windows of length 1020 time units each, . average over different arrival rate pairs refers to the arith- 
inatic average over feasible arrival rate pairs alone (i.e.. those 
pairs for which the ratio of the target mean queueing delays, 
which is dctcnnined as the reciprocal of the ratio of arrival 
rates because of the equal class weight assrnption, is feasi- 
ble given the arrival statistics). 

Bernoulli Arrivals 

Irrespective of the policy adopted, the number of feasible ar- 
rival rate pairs is 23. out of the total of 36 amval rate pairs. 

Using Instantaneous Queue Lengths, the ratios of the result- 
ing long-term average queueing delays are within 25% of the 
ratios of the target delays for 18 out of 23 feasible arrival rate 
pairs. The average of the errors in the ratio of long-term aver- 
age delays is approx. 21 % and the average of the errors in the 
ratio of short-tenn average delays is also approx. 21%. For 
the anival rate pair (0.3.0.41, the error in the ratio of long- 
term average delays is approx. 25%. and the errors in the 
ratios of short-term average delays are also 25% on average, 
the maximum value over 1000 windows k i n g  approx. 42%. 
These results are improvements upon the performance of the 
serve-the-longest-queue policy. 

Using Cumulative Queue Lengths, the ratios of the resulting 
long-term average queueing delays are within 0.71% of the 
ratios of the target delays for all feasible arrival rate pairs. and 
within 0.3 1% of the ratios of the target delays for 18 out of the 
23 feasible arrival rate pairs. The average of the errors in the 
ratio of long-term average delays is approx. 0.2%. while the 
average of the errors in the ratio of short-term average delays 
is approx. 6%. For the amval rate pair (0.4.0.2). the error in 
the ratio of long-term average delays is approx. 0.31%. but 
the errors in the ratios of short-term average +lays are 7% 
on average, the maximum value over 1000 windows being 
approx. 26%. 

If the Coffman-Mitrani policy is employed. the'rdios of the 
resulting long-term average queueing delays a& within 1% 
of the ratios of the target delays for 18 out of the 23 feasible 
arrival rate pairs. The average of the errors in the ratio of 
long-term average delays is approx. 0.7%. but the average of 
the errors in the ratio of short-term average delays is approx. 
25%. For the arrival rate pair (0.1.0.8). the error in the ratio oS 
long-term average delays is approx. 1%. hut the errors in the 
ratios of short-term average delays are 2 I B  on average, the 
maximum value over 1000 windows being approx. 15 196. 

I.I.D. Balch Arrivals with Poisson Butch Si2e.s 

Irrespective of the policy adopted, the number of feasible ar. 
rival rate pairs is 22, out of the total of 36 arrival rate pairs. 

Using Instantaneous Queue Lengths, the ratios of the result- 
ing long-term average queueing delays are within 302  of the 
ratios of the target delays for 16 out of 22 feasible arrival rate 
pain. The average of the errors in the ratio of long-termaver- 
age delays is approx. 22% and the average of the errors in the 
ratio of short-term average delays is approx. 24%. For tlie 
anival rate pair (0.2.0.6). the error in the ratio of long-term 

/average delays is approx. 30%. and the errors in the ratios of 
short-tenn average delays are also 30% on average, the max- 
imum value over 1000 windows heing appmx. 4x70. 

Using Cumulative Queue Lengths. the ratios of the resulting 
long-term average queueing delays are within 0.59% of the 
ratios of the target delays for all feasible arrival rate pairs, 
and within 0.25% of the ratios of the target delays for 16 out 
of the 22 feasible arrival rate pairs. The average of the errors 
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in the ratio of long-term average delays is approx. 0.2%. 
while the average of the errors in the ratio of sbort-term aver- 
age delays is approx. 10%. For the arrival rate pair (0.4.0.4). 
the error in the ratio of long-term average delays is approx. 
0.25%. hut the errors in the ratios of short-term average de- 
lays are 6% on average, the maximum value over 1000 win- 
dows being approx. 25%. 

If tlie Coffmai-Mitrani Policy is e!nployed, the ratios of the 
resulting long-term average queueing delays are within 1% 
of the ratios of the target delays for 16 out of the 22 feasible 
arrival rate pairs. The average of the errors in the ratio of 
long-term average delays is approx. 0.8%. hut the average of 
the errors in the ratio of short-term average delays is approx. 
43%. For the arrival rate pair (0.4,0.5), the error in the ratio of 
long-term average delays is approx. 1%, hut the errors in the 
ratios of short-term average delays are 102% on average, the 
maximum value over 1030 windows being approx. 1659%. 

We note that apart from improved long-term,average be- 
haviour, using cumulative queue lengths results in improved 
short-term average behaviour as well, as shown in figures 2 
and 3 (drawn in log-log scale). 

Figure 2. Comparison of short-term behaviour for 
Bernoulli arrivals 

Coesfcients qfkrimion of Queueing Delays 

Another criterion of importance is the coefficient of varia- 
tion (ratio of standard deviation to mean) of queueing delay. 
Let ci, c,, and c ,  denote the coefficients of variation of the 
queueing delays of any class for the policies using instan- 
taneow queue lengths, using cumulative queue lengths, and 
using the Coffman-Mitrani policy respectively. 

For feasible Bernoulli amval rate pairs, tlie values of c i ,  &, 
and cm are in the respective ranges 0.04 - 0.90.0.00 - 0.90. 
and 0.00 - 1.30. And the differences c, - ei, em - ci. and 
c,,, - cc vary between -0.27 and 0.24, -0.30 and 0.50, and 
-0.1 1 and 0.43 respectively. 

Figure 3. Comparison of short-term behaviour for i.i.d. 
batch arrivals with Poisson hatch sizes 

And for i i d .  batch arrivals with Poisson batch sizes, the val- 
uesofci, c,,andc,, areintherespectiveranges0.25- 1.22. 
0.32 - 1.27, and 0.32 - 1.54. And the differences cc  - c;., 
cm - ci. and em - cc vary between -0.12 and 0.11. -0.12 
and 0.55, and -0.02 and 0.52 respectively. 

4. CONCLUSION 

The next-stage optimal policy obtained using cumulative 
queue length state variables in the one-step cast function of 
the optimization formulationachieves long-term mean queue- 
ing delays closer to the respective target delays than by us- 
ing only instantaneous queue length state variables. This pol- 
icy using cumulative queue lengths also achieves short-term 
mean queueing delays closer to the respective target delays 
than the Coffman-Mitrani policy. 

Extensionsof this work toarbitrary class weights, largernum- 
ber of classes, and correlated arrivals, and comparisons with 
the policies in I3.41, are desirable. 

5 .  APPENDIX 

A. l  Lemma 1 

The three properties of the one-step cost function assumed for 
the Bernoulli arrival case in Section 2 are as follows: 

PropertyA: C(i,j) = C(j, ) 

PropertyB: C ( i + l , j ) > . C ( i > j )  i f i > j ,  

C(i , j ) t  1 2 C( i , j )  i f j  > i 
if i l  + j, = iz + jz, I il - iz I = 1, Property C : 

and I i l  - j1 1 > I iz - jz  1. 
then C ( i l , j l )  > C(i2,jz) 

Starting with these properties, as Vl(., .) is C(., .), we piove 
the following lemma by induction. 



Packet-Switched Networks / 1223 

Lenttnci I :  The N-stage optimol value liinction VN (., .) : t/ N. 
has the lollowing structurlil properties : -  

(PI) i f i  2 j + I ,  then ! ! N ( i , j )  t V&(i - 1,j it J 

(equality holds if i = j -t 1); 

(E) if j 2 i + I .  their V ~ ( i , j )  2 V,(i + 1 , j  - I) 

(eqimlity holds if j = i + I); 

(P3) if i = j .  then l f ~ ( i  + 1, j - 1 )  2 = 5 VN ( i  - 1 ,  j )k 1 

accordidingas XI > = < A;?; 

(P4) V N ( ~ ~  j )  is noii-rlccrcasing in each co-ordinate. 

A.2 Proof of Theorem 2 

Let tile state a~ time 71, 2 ( n )  = (x ,  (n),  x2(11), C X, ( k ) ,  

*1,1”.1 
Ilpah, 

Pigurc 4. Timing Diagrain 

Depaxturc occurs just alter a control e p c h ,  aid iirrivals occur 
just prior t o n  control epoch (figure 4). 

Tlicn, if queue I is served at time n, ,f(n.}t 1 will bc 

( i - l + A i ( 7 l k l  , , j + & ( n . ) t l  , , s + i - l + / l ~ ( f L ) k l  , 
t + j + A?(n.)+ 1 , 

niid if queue 2 is served nt time ‘ i i ~  .T(n ft 1 will be 

( i + A , ( n ) t l  , j - l + A 2 ( n f t l ,  Y + i + i l l ( n ~ ) t l ,  

t + j - l + A a ( n ) + l  , 

where A,,(n )t 1 form = 1 ,2  denote the arrivals just prior 
to lime n + 1 (figure 2) to queue 1 and queue 2 respectively. 

Froin the choice of the onc-step cost function, and denoting 
the cost incurred at tiiiic n + 1 when queue m is S C K V C ~  at 
t i i i~nbyC”L(7Lft  1 , s + i + A l ( n ) t  I b y P ~ , a n d  
t + j + A;?(n, ft 1 by P;?, we have 

E[C‘(nft I. I,@) = (i,$> )] 

= E[(Pl - 1 ) 2  + I y  1 %(n) = ( i ,&  )], 

r,”Cz(iL)t 1 I,T(n) = ( i ,A )] 
= E[Pf + (PA - 1 ) Z  12(7L) = ( i ,&  )] ,  

Hcncc, E[C‘(ra)t I - C 2 ( n ) t  1 I .?(TI,) = (,i,& )] 

= /?[{iy - ( P - 1 ) Z J  - (/’? - (Pi-  1)2}  

= 2 F;[{cA - 1 3 )  I k(74 = ( i , ,& )] 

= 2 [ ( l + j - t X 2 } -  ( S + i + A l ] ]  

I ,f(7L) = ( i ,&  )] 

Thc next-stage optin1:il policy serves queue 2 / either qiicuc / 
queuc 1 ;iccorrling iis 

F[C’(n,)+ 1 - C 2 ( 7 I , ) t  1 I .?(!I.) = ( i ,$” )] >=< 0, 
i.e..eccordingxs { t + j + X ? }  >=< { s i - i f X i ) .  

We notc that lor Markovian arrival processes, the state o l  the 
arrivd process has LO he included in the state description of 
[lie system, iind XI ;iiid A2 will hc arrival stiitc dependent. 

Replacing i ,  j, s ,ai idt  by XI(TI.), S ’ 2 ( n ) ,  x X ~ ( k ) , a n d  
h - 0  

X2 ( k )  respectively, Tlleorclii 2 is p ~ ~ ~ c d .  
I.-O 
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