Delay Differentiation by Optimal-Balancing-of-Queue-Lengths
Scheduling

Avijit Chakraborty!, Rajarshi Roy!, and Utpal Mukherjit
# Department of Electrical Conununication Engineering
Indian Institute of Science
Bangalore, 560012 WDIA
080-293-2387
avijitc@ece.jisc.ernet.in, utpal@ece iisc.ernet.in
1 Department of E & ECE
Indian Institute of Technology
Kharagpur 721 302 INDIA
03222.75-5221
royr@ece.iitkgp.ernet.in

Abstract— Scheduling policies adopted for statistical mul-
tiplexing should provide delay differentiation between dif-
ferent traffic classes. where each class represents an aggre-
gate traffic of individual applications having the same target
queueing delay requirement. We propose scheduling to opti-
mally balance queue lengths as an approach to delay differ-
entiation.

In particular, we assume a discrete-time, two-class, single-
server queueing model with unit service time per packet. We
find 3 scheduling policy that we show to be discounted-cost
optimal, for Bemoulli packet arrivals using dynamic pro-
gramming analysis and for i.i.d. batch arrivals using a step-
wise cost-dominance analyticalapproach. We then use cumu-
lative queue length state variables in the one-step cost func-
tion of the optimization formulationandohtain the next-stage
optimal policy. Simulations show that this policy achieves
long-term mean queueing delays closer to the respective tar-
get delays than the first policy, and also achieves smaller er-
rors in short-term mean queueing delays than the Coffman-
Muitrani policy.

1. INTRODUCTION

In scenarios such as wnununication via satellite, where sig-
nal propagation delays are large. the queueing delay margins
available to packet communication applications can be small
{1]. Further, these margins can be different for different appli-
cations. Hence. when packets from different applicationsare
multiplexed statistically and transmitted on a single shared
channel, the packets should be classified according to their
delay requirements and scheduled for transmission using a
suitably designed class-based scheduling policy.

Given the packet arrival statistics for different classes, it is
possible to determine whether it is feasible to attain mean
class queueing delays within their respective delay margins
[2,3). Having chosen a feasible set of mean class queueing
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delays. it remains to determine a scheduling policy that will
achieve delays that are dose to the Larget mean delays when
averaged over time intervals of sufficient length

The Coffman-Mitranipolicy in [2] exactly achieves a feasible
set of target long-term mean queueing delays, but the short-
term performance may be poor. Subsequent approaches that
have been reported either are primarily heuristic in approach
[3}, or requires somewhat involved computations to.obtain
policy parameters [4].

Qur approach is to formulate a weighted-quene-length-
balancing optimization problem in the framework of Marknv
decision theory. where class weights are set inversely propor-
tional to the respective products of target delays and packet
arrival rates. For the sake of simplicity, we assume that the
class weights are identical (set to 1), i.e., the target delays
are inversely proportional to the arrival rates of the respective
classes. If instantaneous queue lengths could be equalized by
a scheduling policy then the mean queueing delays achieved
by the policy would equal the respective target delays: Al-
though exact instantanecus equalization is not possible, the
mean queueing delays achieved by a policy thai-attempts to
equalize cumulative queue lengths may be close to the respec-
tive target delays.

The rest of the paper is organized as follows. In Section
2, we describe a multiplexing model and analytically obtain
an optimal policy for Bernoulli packet arrivals and fori.i.d.
batch arrivals. In this section, we also use curmulative gueue
length state variables in the optimization problem and obtain
the next-stage optimal policy. In Section 3, simulation re-
sults are presented for the above policies as well as for the
Coffman-Mitrani policy, indicating the errors in the short-
term and long-term mean queueing delays relative to the tar-
get delays, and the relative values of the coefficients of varia-
tion for queueing delays. Section 4 concludes the paper.
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2. MODELING AND ANALYSIS

A survey of numerous Markov decision modeis, proposed for
applications in communication networks, can be foundin [5).
In [6]. a two-class multiplexer has been modeled as a discrete-
time single-server two-queve system with unit service time
per packet and i.i d. packet hatch arrivals to each input queue
(figure 1).
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Figure 1. A two-class multiplexer

Bernoulli Arrivals

For the same mode] specialized to the case of Bernoulli ar-
rivals to eacly input queue (arrival rate A; to queue i), we for-
mulate an optimal scheduling problem with total discounted
cost minimization criterion associated with a one-step cost
function of the two queue length state variables. The cost
function is taken to be symmetric in the two co-ordinates,
uondecreasinp in each co-ordinate, and increasing with med-
ulus of difference between co-ordinates for fixed sum of co-
ordinates. Examples of such one-step cost functions are
ClE,J) =1 + Plorp> 1,C%4,5) = maz (4,7), and
C@,7) =0 + ¥ fork > 2.

The total expected discounted cost over N stages under pol-
icy 7, for discount factor 5 € (0O, I]and initial state &, is given
by the value function

N

,_

Vi@ = £ [ S 8 C(R(k) | X(0F

:=0

z], VN 21,

£

Vi(E) =0

where X (k} denotes the state at time &

Let IT be the setof all policies. We want to find+* € II, such
that Va*"(z) = inf VZ(#). This optimal value function is
denoted by 1/, (.v)

The Dynamic Programming results for finite action space
U4 (d) [7) yield the following optimality equation:

V() = C(x)+,z3 mm [ZP“’ WV ()], VN > 1

where P;; (#) isthe controned Markov chain state transition
probability.

We solve for an optimal policy by proving some structural
properties for ¥V {.,.) (Lemma 1. stated in Appendix A.1}
and obtain the following result.

Theorem | . An optimal policy, for each horizon length ¥,
serves at each time n the queue with index

arg max, {Xi(n) T3,

i.e., serves the longer queue when queue lengths are un-
equal, and & gueue with the maximum arrival rate whenqueue
lengths are equal.

We also note that, following this policy, the modulus of the
difference of the individual queue lengths is atmost 2 at any
time after the queue lengths are first equal.

1.1.D .batch 4rrivals

The model with i.i.d. batch arrivals in successive time units
was considered in {6] with specific one-step cost function
equal to the sum of the squares of the queue lengths. It was
shown in [6] using a step-wise cost-dominance analytical ap-
proach, that an optimal stationary policy, for each horizon
length, serves the longer queue when queue lengths are un-
equal, and the queue with the maximum amval rate when
queue lengths are equal and the arrival rates differ.

In the special case of identical arrival statistics for the two
classes, we show that an optimal policy serves either one of
the queues when both queue lengths are equal.

One-Step Cost Function of Cumulative¢/uene Lengths

So far, we have used only instantaneous queue lengths as state
variables in our optimization prohlems. Simulations show
that the ratios of the resulting long-ierm average queueing de-
lays for the two queues are riot satisfactorily close to the ratios
of the target delays. We seek an improvement hy assuming a
one-stepcost function equal to the sum Of':.quares of cumula-
tive queue lengths, The state at time n, A (n is given hy the

Y, Xa(n), Z X Z Xa(k)). Thenthe

one-step cost function at tlme I'] is

(Z X&) + (nguc))?

= —[(Z X1 (k) - ng(k )+ Z Xl(A)+ZA2

k=0

four-tuple { X1 (rn

C(X(n)) =

We note that the sum X (k) T Xz (k). at any time k. is iden-
tical for all work-conserving policies. Hence, with the opti-
mization restricled to the space of work-conserving policies,
this choice for C( X {n)) is an attempt to equalize cumulative
queue lengths.

We obtain the following next-stage optimal policy (i.e., with
N =2).
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Theorem 2: The next-stage optimal wark-conserving policy
serves, at each time n for which X3 (n) # 0 and Xa(n} # 0,
the queue with index

arg max, {D_ X:(k) + Xi(n) + i},
)

i.e., serves the queue with higher value of the sum of cumu-
lative queue length. instantaneous queue length, and arrival
rate. If the sums for both queues are equal, serving either
queue is optimal.

3. SIMULATION RESULTS

In this section, we discuss the performance of the optimal
policy using instantaneous queue lengths, the next-stage opti-
mal policy using cumulative queue lengths, and the Coffman-
Mitrani policy [2].

We first briefly describe the Coffman-Mitrani policy for our
assumed model. Let S; and S5y he two policies giving strict
priority to class 1and class 2 packets respectively. Then a
mixing policy is constructed which, at the beginning of each
busy period, decides with probability a that the scheduling
decisions during that busy period are to be made accordingto
5, ,and with probability 1 — ¢ the decisions are to be made
according to S,. Given the arrival statistics, the probability
« is a constant and is determined solely by the target mean
queue length of either class. Let X} and X¥ he the mean
queuelengthsof class | under policies S, and Sa respectively.
For all work-conservingpolicies, the sum of the mean queue
lengths of both the classes is identical and denoted by Xzotar
Because of the equal class weight assumption. the target

mean queue length of class 1 is X§ = Xiotar /2. Then,

For all the cases below.

= We have simulated a total of 36 uniformly distributed ar-
rival rate pairs at total arrival rates from 0.2 upto 0.9, in in-
crements of 0.1in the individual class arrival rates,

= long-term average queueing delays are taken over a fixed
length of 108 time units,

» short-term average queueing delays are taken over 1000
windows of length 1000 time units each,

= average over different arrival rate pairs refers to the arith-
matic average over feasible arrival rate pairs alone (i.e., those
pairs for which the ratio of the target mean queueing delays,
which is determined as the reciprocal of the ratio of arrival
rates because of the equal class weight assumption, is feasi-
ble given the arrival statistics).

Bernoulli Arrivals

Irrespectivedf the policy adopted, the number of feasible ar-
rival rate pairs is 23. out of the total of 36 amval rate pairs.

Using Instantaneous Queue Lengths, the ratios of the result-
ing long-term average queueing delays are within 25% of the
ratios of the target delays for 18cut of 23 feasible arrival rate
pairs. The average of the errors in the ratio of long-term aver-
age delays isapprox. 21% and the average of the errors in the
ratio of short-tenn average delays is also approx. 21%. For
the arrival rate pair (0.3,0.4), the error in the ratio of long-
term average delays is approx. 25%, and the errors in the
ratios of short-term average delays are also 25% on average,
the maximum value over 1000 windows being approx. 42%.
These results are improvements upon the performance of the
serve-the-longest-queue policy.

Using Cumulative Queue Lengths, the ratios of the resulting
long-term average queueing delays are within 0.71% of the
ratios of the target delays forall feasible arrival rate pairs. and
within 0.3 1% of the ratios of the target delays for 18out of the
23 feasible arrival rate pairs. The average of the errors in the
ratio of long-term average delays is approx. 0.2%, while the
average of the errors in the ratio of short-term average delays
is approx. 6%. For the amval rate pair {0.4,0.2), the error in
the ratio of long-term average delays is approx. 0.31%.but
the errors in the ratios of short-term average delays are 7%
on average, the maximum value over 1000 windows being
approx. 26%.

If the Coffman-Mitrani policy is employed. lhe/'ra/tios of the
resulting long-term average queueing delays are within 1%
of the ratios of the target delays for 18 out of the 23 feasible
arrival rate pairs. The average of the errors in the ratio of
long-term average delays is approx. 0.7%, but the average of
the errors in the ratio of short-term average delays is approx.
25%. For the arrival rate pair (0.1,0.8), the error in the ratio of
long-term average delays is approx. 1%. hut the errors in the
ratios of short-term average delays are 21% on average, the
maximum value over 1000 windows being approx. 151%.

LID. Batch Arrivals with Poisson Butch Sizes

Irrespective of the policy adopted, the number of feasible ar-
rival rate pairs is 22, out of the total of 36 arrival rate pairs.

Using Instantaneous Queue Lengths, the ratios of the result-
ing long-term average queueing delays are within 30% of the
ratios of the target delays for 16 out of 22 feasible arrival rate
pain. The average of the errors in the ratio of long-termaver-
age delays is approx. 22% and the average of the errors in the
ratio of short-term average delays is approx. 24%. For the
anival rate pair (0.2,0.6), the error in the ratio of long-term

/average delays is approx. 30%, and the errors in the ratios of
short-tenn average delays are also 30% on average, the max-
imum value over 1000 windows heing approx. 48%.

Using Cumulative Queue Lengths. the ratios of the resulting
long-term average queueing delays are within 0.59% of the
ratios of the target delays for all feasible arrival rate pairs,
and within 0.25% of the ratios of the target delays for 1& out
of the 22 feasible arrival rate pairs. The average of the errors
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in the ratio of long-term average delays is approx. 0.2%.
while the average of the errors in the ratio of short-term aver-
age delays is approx. 10%. For the arrival rate pair (0.4,0.4),
the error in the ratio of long-term average delays is approx.
0.25%, hut the errors in the ratios of short-term average de-
lays are 6% on average, the maximum value over 1000 win-
dows being approx. 25%.

If the Coffman-Mitrani Policy is empioyed, the ratios of the
resulting long-term average queueing delays are within 1%
of the ratios of the target delays for 16 out of the 22 feasible
arrival rate pairs. The average of the errors in the ratio of
long-termaverage delays is approx. 0.8%.hut the average of
the errors in the ratio of short-term average delays is approx.
43%. For the arrival rate pair (0.4,0.5), the error in the ratio of
long-term average delays is approx. 1%, hut the errors in the
ratios of short-term average delays are 102% on average, the
maximum value over 100 windows being approx. 1659%.

We note that apart from improved long-term average be-
haviour, using cumulative queue lengths results in improved
short-term average behaviour as well, as shown in figures 2
and 3 (drawn in log-log scale).

Remoulli Arivale

1w

Avg. of Shon-im Avg. Delay E1e Pmceniages
3
N
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Policy using cumulatva quaus lengths
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Figure 2. Comparison of short-term behaviour for
Bernoulli arrivals

Cogfficients of Fariation of Queueing Delays

Another criterion of importance is the coefficient of varia-
tion (ratio of standard deviation to mean) of queueing delay.
Let ¢;, ¢, and ¢, denote the coefficients of variation of the
queueing delays of any class for the policies using instan-
taneous queue lengths, using cumulative queue lengths, and
using the Coffman-Mitrani policy respectively.

For feasible Bernoulli amval rate pairs, the values of ¢, ¢,
and c. are in the respective ranges 0.04 —0.90, 0.00 - 0.90,
and 0.00 — 1.30. And the differences ¢. — ¢;, &m — Ci» and
¢m — 0 Vary between —0.27 and 0.24, —0.30 and 0.50, and
—0.11and 0.43 respectively.

11.D. Artvais with Poisson Batoh Sizes

W B
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Figure 3. Comparison of short-term hehaviour for i.i.d.

batch arrivals with Poisson hatch sizes

And for;.i.d. batch arrivals with Poisson batch sizes, the val-
ues of ¢, ¢, and ¢, areintherespectiveranges0.25— 1.22.
0.32 — 1.27, and 0.32 — 1.54. And the differences ¢, — ¢;,
tm — ¢i, and ¢m — ¢, vary between —0.12and 0.11. —0.12
and 0.55,and —0.02and ©.52 respectively.

4_CONCLUSION

The next-stage optimal policy obtained using cumulative
queue length state variables in the one-step cost function of
the optimization formulationachieves long-term mean queue-
ing delays closer to the respective target delays than by us-
ing only instantaneous queue length state variables. This pol-
icy using cumulative queue lengths also achieves short-term
mean queueing delays closer to the respective target delays
than the Coffman-Mitrani policy.

Extensionsof this work to arbitrary class weights, larger num-
ber of classes, and correlated arrivals, and comparisons with
the policies in [3,4], are desirable.

5. APPENDIX
A.l Lemmal

The three properties of the one-step cost function assumed for
the Bernoulli arrival case in Section 2 are as follows:

Property A (i, 5) =C(, )

Property B:  Cli+1,5) > Cli,j) ifi>j,
Cl,jr1 2C@E7) ifj=i

Property C: if i3 + fy =iz + jan |61 =2 ] =1,

>

and |4 —H > li2 —Je
then Cfi1,j1) > Cliz, j2)

Starting with these properties, as V1 (., .) is C(., .), we prove
the following lemma by induction.
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Lemma || The N-stage optimal value function Vv (,, ) , ¥ N,
has the following structural properties :-

(P1)ifi>j *1, then Vn(i,5) > V(i — 1,5 it 1
(equalityholds if # = j + 1)

Pifj > it thenVn(i, /) > Ve T 1,5 - 1)
(equality holds if  j =i 4 1);

(P3)ifi=j.thenVy(i T 1,5 —1) > =< Vn(i-1,j)1
accordingas X\; > = <A?

(P4) Vn (4, ) is non-decreasing in each co-ordinate.
A.2 Proof of Theorem 2
Let the state at time ri, X (n) = (X1{n), Xo(n), Z X (&),

Y Xalk))be (i, g, s, 8, id # 0.

Conirot
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- ) N H H N H +
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Pigurc 4. Timing Diagram

Departure oceursjust alter a control epoch, and arrivals occur
just prior to a control epoch (figure 4).

Then, if queue | is servedat time n, X (n } 1 will bc
-1+ A W], j+Alnd1 s+i—1+ A (np1,
B D Y (TS

and if queue?2 is served nt time », X{n} 1 will be

(E+ A, i—1+defn 1, s+i+A(nkt,
t+j -1+ Azl 1,

where A (n ¥ 1 form = 1,2denote the arrivalsjust prior
to timee n 1 (figure 2) to queue | and queue 2 respectively.

From the choice of the one-step cost function, and denoting
the cost incurred at time n + 1 when queue m is served at

limenby C™(mp 1,s+i+ Ai(n} | by P, and
t+5 + As(n ¥ 1 by Py, we have
ElC n}1 | Xn) =(i3 )]
= E[(P -1 + P X)) =4 ),
EC?* (w1 |J(’(n) ={, %
E[PE + (P -1 | X(n) =03 ).

Henee, H[C (o} | —C*nr 1 | X(n) = (6,4, ]
= E{PE — (P~ 1%} - {P? — (P = )%}

| Xy =G )

2R — Y| X)) =064, )]

Q[ +7+ A} - (s +i+ A}

The next-stage optimal policy serves queue 2 / either gueue /
queue | according as

ElCYnW 1 - C?ay1 | X)) =@, )] >=<o,
feLaccordingas {t+ 5+ Mo} >=< {s+i+ A}

We note that lor Markovian arrival processes, the state of the
arrival process has to be included in the state deseription of
the system, and A, and As Will be artival state dependent.

Replacing i, j, s,and t by Xi(n), Xa(n), Z X {k), and
k=i

Z X. (k) respectively, Theorem 2 is proved.

k=0
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