ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Dendrimer assisted dispersion of carbon nanotubes: a molecular dynamics study

Pramanik, Debabrata and Maiti, Prabal K (2016) Dendrimer assisted dispersion of carbon nanotubes: a molecular dynamics study. In: SOFT MATTER, 12 (41). pp. 8512-8520.

[img] PDF
Sot_Mat_12-41_8512_2016.pdf - Published Version
Restricted to Registered users only

Download (3MB) | Request a copy
Official URL: http://dx.doi.org/10.1039/c6sm02015a

Abstract

Various unique physical, chemical, mechanical and electronic properties of carbon nanotubes (CNTs) make them very useful materials for diverse potential application in many fields. Experimentally synthesized CNTs are generally found in bundle geometry with a mixture of different chiralities and present a unique challenge to separate them. In this paper we have proposed the PAMAM dendrimer to be an ideal candidate for this separation. To estimate the efficiency of the dendrimer for the dispersion of CNTs from the bundle geometry, we have calculated potential of mean forces (PMF). Our PMF study of two dendrimer-wrapped CNTs shows lesser binding affinity compared to the two bare CNTs. PMF study shows that the binding affinity decreases for non-protonated dendrimer, and for the protonated case the interaction is fully repulsive in nature. For both the non-protonated as well as protonated cases, the PMF increases gradually with increasing dendrimer generations from 2 to 4 compared to the bare PMF. We have performed PMF calculations with (6,5) and (6,6) chirality to study the chirality dependence of PMF. Our study shows that the PMFs between two (6,5) and two (6,6) CNTs respectively are similar to -29 kcal mol(-1) and similar to -27 kcal mol(-1). Calculated PMF for protonated dendrimer-wrapped chiral CNTs is more compared to the protonated dendrimer-wrapped armchair CNTs for all the generations studied. However, for non-protonated dendrimer-wrapped CNTs, such chirality dependence is not very prominent. Our study suggests that the dispersion efficiency of the protonated dendrimer is more compared to the non-protonated dendrimer and can be used as an effective dispersing agent for the dispersion of CNTs from the bundle geometry.

Item Type: Journal Article
Publication: SOFT MATTER
Additional Information: Copy right for this article belongs to the ROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 07 Dec 2016 04:24
Last Modified: 07 Dec 2016 04:24
URI: http://eprints.iisc.ac.in/id/eprint/55441

Actions (login required)

View Item View Item