ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations

Jain, Vaibhav and Maiti, Prabal K and Bharatam, Prasad V (2016) Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations. In: JOURNAL OF CHEMICAL PHYSICS, 145 (12).

[img] PDF
Jou_Che_Phy_146-12_124902_2016.pdf - Published Version
Restricted to Registered users only

Download (9MB) | Request a copy
Official URL: http://dx.doi.org/10.1063/1.4962582

Abstract

Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry,which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine-and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH2) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH2) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH2) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an important role in the stabilization of complex. Interestingly, it was observed from the equilibrated structures of dendrimer-drug complexes at low pH that encapsulated drug molecules in the G4 PAMAM(NH2) formed cluster, while in the case of nontoxic G4 PAMAM(Ac) they were uniformly distributed inside the dendritic cavities. Thus, the latter dendrimer is suggested to be suitable nanovehicle for the delivery of Ntg. This computational analysis highlighted the importance of realistic molecular models of dendrimer-drug complexes (1:n) in order to obtain reliable results. Published by AIP Publishing.

Item Type: Journal Article
Additional Information: Copy right for this article belongs to the AMER INST PHYSICS, 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Depositing User: Id for Latest eprints
Date Deposited: 03 Dec 2016 09:22
Last Modified: 03 Dec 2016 09:22
URI: http://eprints.iisc.ac.in/id/eprint/55344

Actions (login required)

View Item View Item