IEEE Region 10 Conferenc.e on Computer and Communication Systems, September 1990, Hong Kong

A graph Theoretic Approach for Knowledge Organisation

in Rulebased Systems

H. Krishnamurthy
Supercomputer Edn. & Res. Centre

N.Balakrishnan
Department of Aerospace Engg.

Indian Institute of Science
Bangalore 560 012
INDIA

ABSTRACT
Expert systems are strongly cha-
racterised by their use of a large
collection of domain specific knowledge

acquired from human experts.
acquired from the expert over a length
of time tends to be inconsistent and
redundant thus requifing enormous amount
of storage. In the case of rulebased
systems knowledge has to be organised to
make it complete, concise and
consistent. This paper discusses a
graph theoretic approach to achieve the
same.

Knowledge

Introduction:

Knowledge organisation is one of the
important issues addressed in the devel-"

opment of Expert Systems. For repre-~
senting the domain knowledge in an
expert system the approaches that are

extensively used can be broadly classi-
fied into two categories viz. rule based
approach and net based approach. In
expert systems, knowledge is usually
described as relations among concepts
and then listed as rule bases or con-
nected as semantic networks or grouped
as frames. Expert systems currently
developed use both these approaches for
knowledge representation. In the case
of net based systems, knowledge is repr-

esented as semantic nets and frames and
these two knowledge structures have
organisation embedded into them in some
sense. Representation of semantic nets

is similar to a directed graph and that
of frames to a generalised tree struc-
ture. For these systems modification of
the existing knowledge is done at an
appropriate node and efficient graph and
tree traversal algorithms exist for
this. For rule based systems it is imp-

ortant to have a mechanism to organise
the knowledge to improve the efficiency
of the system. Knowledge organisation

of rulebased systems aims at achieving a
knowledge base which is complete, con-
cise and consistent. Comnlerteness of a

732

knowledge base deals with the aspect of
identifying whether all specified knowl-
edge is included in a system. Given the
initial assertion one should be able to
reach all possible conclusions with the
help of a reasoning mechanism. Concise-
ness of knowledge base is to eliminate
unwanted information and also to combine
simple rules to form complex ones 8o
that the storage required. for the knowl-
edge base is minimum. Consistency of a
knowledge base is an important area of
research and deals with addressing sev-
ral issues which can help in arriving at
a knowledge base which removes even
hidden inconsistencies. In the case of
net based systems it is fairly easy due
to the inherent structuring [1]. In a
rulebased system, rules are independent
of each other and their organisation
plays an important rule in improving the
search for a solution. Any addition,
deletion and midification or knowledge

to the existing knowledge base does not
guarantee consistency. This paper dis-
cusses a graph theoretic algorithm for

knowledge rule based
systems.
Representation of knowledge using data-

structures:

organisation of

In constructing an expert sytem, a
wide variety of knowledge must be repre-
sented so that it can Dbe effectively
used in solving a complex problem. The
expert systems currently built use a
combination of different types of knowl-
edge structures for representation. This
section discusses briefly the commonly
used knowledge structures in the devel-
opment of an expert system [2].

Production rules:

The type of knowledge structure that
is chosen for an expert system depends

on the task the system is expected to:
reqguires’

perform. If the expert system
an evolutionary knowledgebase and sup-
port of interactive consultation as in
MYCIN then production rules offer a
knowledge representation that greatly
facilitates the accomplishment of the
above. If the number of rules required
to solve a given complex task 1is more

CH2866-2/90/0000-732 $1.00 © 1990 JEEE

and each one of the rules is of a com-
plex type then this datastructure can
give good stylization and modularity but
has to be organised to make storage and
retrieval efficient. The later sections
will discuss some of the examples of
these type.
Semantic Nets:
A semantic network is a graph in
which nodes are objects in some domain
of discourse and each arc is labelled
with a relation that exists between
objects it connects. Hence it can be
modelled as a labelled directed
graph. For example one can
semantic network representation
following example as in fFig. 1.

weighted
have a
for

the

Four Wheeler Automobile

e

Dgine
Figure 1

Maruthi is a car.
A car is a four wheeler.

A four wheeler is an automobile.
Maruthi has an engine.

It is RED in color.
) It costs $10,000.
Frames:

A frame is a method of representing
information. Frames are particularly
useful in representing information that
is relatively complex. Frame is a 1list
of properties that a particular type of
object possesses. For example, a frame
or list of_p;operties that an automobile
possesses is

manufacturer
make

year

license

engine

electical system
fuel system etc.,

. Storage and retrieval of knowledge
can be done efficiently for either the
framebased or netbased knowledge struc-
tures using efficient traversal algo-
rithms. This will help in addition,
deletion and modification of knowledge
at the appropriate node. But the infer-
ence process to achieve reasonable conc-
lusions can be a rulebase.

Necessity for knowledge organisation:

This section discusses the necessity
for organising the rulebase of an expert
system, Rulebase systems are those
which have a certain number of IF-THEN
rules which are assumed to be true.

Based on some initial set of facts or
assertions the rule deduces new
conclusgions. If the knowledge base

733

isn't properiy organised it may be
necessary to start the rule checking
procedure once again from the beginning
each time a new conclusion is deduced.
For example consider the following set
of rules in a forward chaining approach.

Rl : X and Y =--2 2

R2 : P and Q and R --- X

R} : W -=-Y

The assetions are P, Q, R and W.

The inference mechanism traverses
the rules R1, R2 and R3 in the given
order. It can be seen that R1 will not
fire since X and Y are not available as
assertions. R2 and R3 will fire and

with the conclusions added to the asser-

tion list, R1 will fire to decide that 2
is true. From this simple example it
can be seen that in a knowledge base if

there are two rules R; and R, (i<j) then
a proper organisation will ldad to the
fact that for firing R, R. cannot be a
precondition. Generalisina this ‘one can
say that it is necessary, in the forward
chainirg algorithm to return to the
FIRST rule each time a conclusion is
added to the fact list. This approach
will lead to examining the same set of
rules again with new set of assertions.
But in a large system it is not always
possible to organise rules to avoid this
condition because all the inputs are not

available apriori. In the interactive

situation after a rule R_ fires and the
. . . a

conclusion is a question”to the user to

provide his input then the next rule

that can fire depends on the users

response. So in such cases the rules

have to be organised to avoid any unnec-
essary backtracking.

Graph Theoretic Approach for
Organisation:

Knowledge

The main thrust of this paper is to
store the rules as a graph structure.
In this approach, all the rules are
stored in a graph in which each rule is
represented by a special count node with
premises coming in and conclusions
leaving. The assertions are placed in
a single linked list.

The algorithm explained in this
procedure checks for redundant rules,
conflicting rules subsumed rules, circu-
lar rules, unreachable and dead-end
clauses. This brings to the fore the
hidden inconsistencies in the knowledge
base which are not detected by scannling
these rules. For example a certaln
combination of rules which has a circu-
lar property is identified by a proce-
dure which detects a directed circuit.
Similarly procedures are implemented for
checking other aspects like redundancy
etc. This algorithm is implemented in
Turbo Pascal on an IBM PC.

putline of the algorithm:

The essential steps of the algorithm
used to achieve the organisation of
knowledge is as follows. It is assumed
for illustrative purposes that the
inference mechanism adopts a forward
reasoning approach even though the
algorithm will also work for goal-di-
rected backward reasoning with minor
modifications. 1In the forward reasoning
approach the assertions are kept in a
1inked 1list [4]). The algorithm con-
structs a graph for the given rulebase.
Redundant rules are represented in the
graph by parallel edges. It is possible
to identify parallel edges and remove
one of them. Subsumed rules are identi-
fied by the fact that one rule is mo-
delled as a subgraph of the other. A
simple example is given in Fig.2.

A->B
A/\B —» C
Count

>

Figure 2

Circular rules correspond to the
situation of chaining of the rules in a
set forming a cycle an example of which
is given in Fig. 3.

aA>B
[28
B/\D % E
E—->F
F >N
Count
2 E F

Figure 3
The graph traversal of the node set
ABEFA will identify a directed circuit.

In a large rulebase there may be hidden

as well as explicit cycles which are due
to a subset of the rulebase. The algo-
rithm will identify that subset and the

user can modify the knowledge base to

break the cycle. Apart from these
several other graph theoretic properties
help us to identify unreachable and
dead-end clauses. The nodes in the
graph with zero in-degrees and non-zero
out- degrees (called source nodes) are
the facts corresponding to initial
assertions.
2ero out- degrees and non-zero in-de-
grees (called sink nodes) are the goal
conditions.
in Fig. 4 explains a simple situation.

Similarly the nodes with

For example the graph given

IMITIAL AESENTIONS A,0,E

BULE RASE ML 1 &4 > C
| PN B)
N B/NE > T
R F -4
RS 2 /M -+)
R s C/NG > X

GOAL COMDITIONS ARK).k
O—
Count
OO L
‘ (::>,_r*|ll

O—

Count
Figure 4

The algorithm which explains the
methodology is given in Appendix.

Conclusions

One of the important aspects in the
development of an Expert system is Know-
ledge organisation. The organisation of
knowledge plays a key role in making the
reasoning procedure efficient. Most of
the commercially available expert syst-
ems use the rulebased approach as the
main knowledge structure for representaz,
tion. This paper discusses a graph the:
oretic approach to detect the inconsist-
encies in a knowledgebase and organise

the same to make it complete, consise
and consistent.

References

1) H. Krishnamurthy and M.N. Murty, A

Conceptual clustering scheme for
frame-based knowledge organisation,
Proceedings of SPIE, Applications of
Artificial 1Intelligence, Vol. 635,
p 408, 19386.

2) D.A. Waterman, A Guide to Expert
Systems, Addison-Wesley Pub. Co.

3) Y. Chang and K.S. Fu, Conceptual
clustering in knowledge organisation,
IEEET on PAMI, Vol. 7, Sept. 1985.

4) R.E. Neopolitan, Forward-chaining
versus a graph approach as the
inference engine in expert systems,
Proceedings of SPIE, Application of
AI, Vol. 635, 1986.

734

APPENDIX
Algorithm:

MAIN KNOWLEDGE ORGANIZATION;

Begin

Read the rules;
call REDUNDANT_SUBSUMED_RULES
DETECTION;
call CONFLICTING_RULES_DETECTION;
call CIRCULAR_RULES_DETECTION;
call OPTIMIZE_RULES;

end.

REDUNDANT _SUBSUMED_RULES_DETECTION;

Begin
Set I = First rule;
while more rules do
begin
Set J = I + 1th rule;
while more rules do
begin
If number of conclusions in the
Ith rule conclusion part is
equal to the number of conclu-
sions in the Jth rule conclu-
sion part and Ith rule conclu-
sion is the subset of Jth rule
conclusion
Then If number of premises in the
Ith rule premise part is equal
to the number of premiges in
the Jth premise part
Then If Ith rule premise is the
subset of Jth rule premise
Then Print Rule I and J are
redundant
Else If number of premises in the
Ith rule premise part is

greater than number of prem-
ises 1in the Jth rule premise
part and Ith rule premise 1is

the subset of Jth rule premise
or Jth rule premise 1is the
subset of ‘Ith rule premise

Then Print Rules I and J are

subsumed rules;

end;
end;
end;

CONFLICTING_RULES_DETECTION;
begin
Set 1 = First rule;
while more rules do
begin
Set J = I+1th rule;
while more rules do

begin
if Ith rule's premise part is
equal to Jth rule's prem
ise part AND Ith rule's

conclusion part is not equal

to Jth rule's conclusion
part
Then Print Rules I and J are
conflicting;
end;
end;

end;

CIRCULAR_RULES_DETECTION;

Begin
Set I = First rule;
while more rules AND 1loop is not

detected do

738

begin
Initialize the two dimensional loop

array;
while more conclusions for Ith
rule do
begin
Initialize circular loop array;
Set T = 1Ith rule's present

conclusion;
while more conclusions for T do
begin
Check whether the
conclusion of T is present
in the premise part of any
other rule (say K)

present

rule is not present in the’

circular loop array;

If K is equal to the current

rule I

Then Loop is detected, thus
update the 1loop array

with circular loop array;
Else If K is not equal i.e
conclusion is present in
the premise part of any
other rule other than
current rule

Then Add this rule to the
circular loop array and
update T as the Kth

rule's conclusion part

Else Set T as the conclu-
sion part of previous
rule found in the circ-
ular loop array

end;
end;
Sort the loop array to get the
innermost loop;
Display the innermost loop obta-

ined from loop array;
end;
end;

OPTIMIZE_RULES;

Begin
Initialize optimize array;
Set I = first rule;
while more rules do
begin
If Ith rule is not present in the
optimize array
Then Check whether the Ith rule's
premise part is present in the

conclusion part of any other

rule;

If no such rule

Then Set CON = Ith rule’s
conclusion and Put Ith rule

in the optimize array;
Set J = First rule;
While more rules do
begin)
If Ith rule's premise
part is present in the
conclusion part of any
other rule
Then Put Jth rule in the
optimize array and CON=
Jth rule's cgnclysiong
end; '
Setup the optimize array
for next set of optimize
rules;
end;
Print the optimize array;
end; -

and thatgj

