ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Solid-state optical absorption from optimally tuned time-dependent range-separated hybrid density functional theory

Refaely-Abramson, Sivan and Jain, Manish and Sharifzadeh, Sahar and Neaton, Jeffrey B and Kronik, Leeor (2015) Solid-state optical absorption from optimally tuned time-dependent range-separated hybrid density functional theory. In: PHYSICAL REVIEW B, 92 (8).

[img] PDF
Phy_Rev-B_92-8_081204_2015.pdf - Published Version
Restricted to Registered users only

Download (348kB) | Request a copy
Official URL: http://dx.doi.org/10.1103/PhysRevB.92.081204

Abstract

We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.

Item Type: Journal Article
Additional Information: Copy right for this article belongs to the AMER PHYSICAL SOC, ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Depositing User: Id for Latest eprints
Date Deposited: 24 Sep 2015 05:13
Last Modified: 24 Sep 2015 05:13
URI: http://eprints.iisc.ac.in/id/eprint/52396

Actions (login required)

View Item View Item