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Abstract

In this paper, we analyze the bit error performance of mul-
ticarrier direct-sequence spread spectrum (DS-SS) sys-
tems with imperfect carrier phase on multipath Rayleigh
fading channels. We consider the phase errors arising
from the receiver phase locked loops (PLL’s) on the indi-
vidual sub-carriers to be Tikhonov distributed. We derive
a simple upper bound on the average bit error probability
by approximating the phase error loss function by a stair-
case function. We show that the bound is inexpensive to
compute and is reasonably accurate. We present the effect
of imperfect phase coherence on the bit error performance
under various channel and system conditions.

Keywords – Multicarrier systems, DS-SS, imperfect carrier phase,

Tikhonov distribution.

1 Introduction

Multicarrier (MC) direct-sequence code division multiple
access (DS-CDMA) is an effective approach to combat
fading and various kinds of interference [1],[2],[3]. In [2],
Kondo and Milstein proposed a multicarrier DS-CDMA
scheme where a data sequence multiplied by a spread-
ing sequence modulates disjoint multiple carriers. The
receiver provides a correlator for each carrier and the out-
puts of the correlators are combined with a maximal-ratio
combiner. Bandlimited spreading waveforms are used to
prevent self-interference and the system performance is
evaluated assuming perfect phase coherence in a slowly
fading Rayleigh channel, with all sub-bands being sub-
jected to independent fading.

Our contribution in this paper is the analysis of the bit
error performance of a multicarrier DS-SS system, when
the phase estimates of the carrier are imperfect. In [6],
Viterbi has shown that the phase error in a first-order PLL
follows a Tikhonov distribution. In [5], Eng and Mil-
stein have analyzed the performance of a partially coher-
ent single carrier DS-SS system. In this paper, we provide
the performance analysis of a multicarrier DS-SS system
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Figure 1: Multicarrier DS-SS Transmitter

with imperfect carrier phase on multipath Rayleigh fading
channels. A key step in our analysis is the approximation
of the phase error loss function by a staircase function.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the system model including multicarrier
DS-SS transmitter, fading channel model and the receiver
with imperfect carrier phase. In Section 3, we present the
preformance analysis including the derivation of an upper
bound on the bit error probability. Numerical results and
discussions are presented in Section 4. Conclusions are
presented in Section 5.

2 System Model

Consider a multicarrier system where the available band-
width W is divided into M equal-width, disjoint fre-
quency bands, such that the bandwidth of each sub-band
is given by Wi = W=M , i = 1; 2; :::;M: Each sub-
band carries a narrowband DS-SS waveform of bandwidth
given by Wi = (1 + a)=MTc, i = 1; 2; :::;M , where
0 < a � 1 is the measure of excess bandwith of the sys-
tem, and MTc is the chip duration of the multicarrier DS-
SS system.

Fig. 1 shows the transmit chain of the multicarrier DS-
SS system considered. The binary sequence representing
the data is denoted by dq , and the pseudorandom spread-
ing sequence is denoted by cn. Assume that there are N
chips per data symbol. The sequence dqcn modulates an
impulse train where the energy per chip is Ec. The chip
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Figure 2: Multicarrier DS-SS Receiver with imperfect carrier phase

wave shaped signal then modulates multiple sub-carriers
with frequencies!1; !2; :::; !M and phases �1; �2; :::; �M .
The transmitted signal s(t) is given by

s(t) =
p
2Ec

1X
n=�1

dqcnh(t�nMTc)

MX
i=1

cos(!it+�i);

(1)
where q = bn=Nc, h(t) is the impulse response of the
chip wave shaping filter, and �i is the ith sub-carrier’s ran-
dom phase uniformly distributed over [0; 2�].

As in [2], we assume that the multipath fading on in-
dividual sub-carriers is frequency non-selective and that
all sub-bands are subject to independent fading1. Con-
sequently, the channel transfer function of ith sub-band
can be characterized by �ie

j�i , where �i represents the
fade amplitude on the ith sub-carrier which is a Rayleigh
random variable with E[�2i ] = 1, and �i is the channel
introduced random phase on the ith sub-carrier which is a
uniform random variable over [0; 2�]. The received signal
r(t) is then given by

r(t) =
p
2Ec

1X
n=�1

dqcnh(t� nMTc � �) (2)

�
MX
i=1

�icos(!it+ �0i) + n(t);

where �0i = �i + �i and n(t) is the AWGN with a psd of
�0=2.

Fig. 2 shows the multicarrier DS-SS receiver with im-
perfect carrier phase. We assume that the chip matched
filter satisfies the Nyquist criterion to guarantee that the
DS waveforms on individual sub-carriers do not over-
lap. With H(f), the Fourier transform of the chip wave
shaping filter impulse response h(t), we define x(t) �
F�1jH(f)j2, and assume

R1
�1 jH(f)j2df = 1. In the

performance analyses in [2],[4], perfect knowledge of the
phases of all sub-carriers has been assumed. However,
the locally generated sub-carriers typically contain ran-
dom phase errors arising from the PLLs used to track the
individual sub-carriers. Accordingly, we assume that the

1These assumptions can be valid if we choose M , a and Tc such that
1

BcTc
� M � (1 + a) 1

BcTc
, where Bc is the coherence bandwidth

of the channel [2]. The effect of non-independent fading (i.e., corre-
lated fading) among various sub-carriers, assuming perfect coherence,
is analyzed in [4].

locally generated sub-carriers have the phases

~�i = �0i +4i; i = 1; 2; :::;M; (3)

where 4i is the phase error in the ith sub-carrier’s PLL.
It has been shown that when the PLLs are in lock con-

dition, the phase errors follow Tikhonov distribution [6].
The phase error 4i has the Tikhonov pdf given by

p(4i) =
e
icos(4i)

2�I0(
i)
; � � < 4i < �: (4)

In the above, I0(:) is the zeroth order modified Bessel
function of the first kind, and f
ig are the instantaneous
loop SNRs which are themselves random variables with
exponential distributions because 
i is proportional to �2i
[7]. The pdf of 
i is given by

p(
i) =
1

�i
e
�
i
�i ; (5)

where �i = E[
i] is the average loop SNR. We assume
that the average loop SNR is the same in all the M loops,
i.e., �1 = �2 = ::: = �M = �. In order not to invali-
date the use of Tikhonov distribution for phase errors, we
assume that the fade bandwidth is smaller than the loop
bandwidths of the PLLs so that 
i may be treated as being
constant over several bit intervals.

3 Performance Analysis

Assuming perfect code and bit timing, but imperfect car-
rier phases at the receiver, the output of the chip matched
filter in the ith branch, yi(t), can be written as (ignoring
double frequency term after low pass filtering)

yi(t) = Syi(t) +Nyi(t); (6)

where the signal component Syi(t) can be written as

Syi(t) = �i
p
Eccos(4i)

1X
n=�1

dqcnx(t� nMTc);

(7)
and the noise component Nyi(t) can be written as

Nyi(t) = LPF
�
n0i(t)

p
2cos(!it+ ~�i)

	
; (8)

where n0i(t) represents n(t) after passing through the band
pass filter in Fig. 2, and LPFf:g represents low pass fil-
tering operation. The output of the ith branch correlator,
Zi, can be written as

Zi = SZi +NZi; (9)

where

SZi =

N�1X
m=0

cmSyi(mMTc); (10)

NZi =

N�1X
m=0

cmNyi(mMTc): (11)
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Note that signal term SZi contributes to the the mean of
Zi, and the noise term NZi contributes to the variance of
Zi. Consequently, the mean of Zi, conditioned on �i;4i

and dq , is given by

E[Zij�i;4i; dq ] =
p
Ec�icos(4i) (12)

�
N�1X
m=0

1X
n=�1

dqcncmx[(m� n)MTc]

= �N
p
Ec�icos(4i):

In the above, we have applied x[(m � n)MTc] = 0 for
m 6= n since jH(f)j2 satisfies the Nyquist criterion. The
variance of Zi is given by the variance of NZi so that

V ar
�
Zij�i;4i

	
= V ar

�
NZi

	
= N�0=2 = �2: (13)

Now, combine the outputs from all the M correlators to
form the overall test statistic Z as

Z =

MX
i=1

giZi; (14)

where gi is the weight with which the ith correlator output
is multiplied before combining. For maximal ratio com-
bining, we set [7]

gi =
E
�
Zij�i;4i

	
V ar

�
Zij�i;4i

	 ; (15)

The signal-to-noise ratio, �, at the output of the combiner
can be written as

� =
E2(Zj�;4)

V ar(Zj�;4)
(16)

=
N2Ec

�2

MX
i=1

�2i cos2(4i):

The conditional bit error probability is then given by

pb(�;4) = �(�p�); (17)

where

�(x) =
1p
2�

Z x

�1
e�t

2=2dt: (18)

The average probability of error pb can be obtained by un-
conditioning on � and 4, where � follows Rayleigh dis-
tribution and 4 depends on the loop SNR 
 as per Eqns.
(4) and (5). For the case of M = 2, the above uncon-
ditioning involves numerically integrating the following
expression

pb =

Z �

42=��
p(42)d42

Z �

41=��
p(41)d41 (19)

�
Z 1

�2=0

p(�2)d�2

Z 1

�1=0

�(�p�)p(�1)d�1:

As such, the evaluation of the above expression is compu-
tationally intensive. Hence, we resort to deriving a sim-
ple, inexpensive, yet reasonably accurate, bound on the
average probability of error in the following sub-section.

3.1 Derivation of upper bound on BER

In order to make a crucial approximation in deriving a
bound on the bit error probability, we make the assump-
tion that the loop SNRs in all the M PLLs are quite large,
which implies that the phase estimates conditioned on the
instantaneous loop SNR 
 have small variances2. When
this condition holds, we may replace cos(4i) by its ex-
cpected value E4[cos(4i)], where E4 denotes the ex-
pectation with respect to phase error 4. From Eqn. (4)

E4[cos(4i)] =

Z 2�

0

cos(4i)e

icos(4i)

2�I0(
i) d4i (20)

=
I1(
i)

I0(
i)
:

Note that the factor E4[cos(4i)] =
I1(
i)
I0(
i)

� I(
i) ac-
counts for the degradation due to phase error compared
to perfect coherence case. Thus, I(
i) can be viewed as
a phase error loss factor. In order to simplify the anal-
ysis, we approximate this phase error loss function I(:)
by a staircase function having Ns steps. That is, I(
) is
bounded by the following function I�(
)

I�(
) =

8>>>>>>>><
>>>>>>>>:

0; 
 � �Ns

I(�Ns
); �Ns

< 
 � �Ns�1
I(�Ns�1); �Ns�1 < 
 � �Ns�2

�
�

I(�2); �2 < 
 � �1
I(�1); �1 < 
 <1;

(21)

such that �1 > �2 > ::: > �Ns�1 > �Ns
> 0. Fig.

3 illustrates the true I(
) function and the approximating
staircase function I�(
) for Ns = 3. Since the bit error
probability is monotonically decreasing with I(
), replac-
ing I(
) with I�(
) in the subsequent analysis results in
an upper bound on the bit error probability.

For Ns steps in the approximating function, there are
Ns + 1 SNR range bins, viz., f0; �Ns

g,f�Ns
; �Ns�1g,...,

f�2; �1g,f�1;1g. Represent the SNR thresholds using
the vector � = [�Ns

; �Ns�1; :::; �2; �1]. Let n0 loops
fall in the SNR range f0; �Ns

g, n1 loops fall in the SNR
range f�Ns

; �Ns�1g, n2 loops fall in the SNR range
f�Ns�1; �Ns�2g, and so on, such that

PNs

i=0 ni = M .
The vector n = [n0; n1; :::; nNs

] subject to the conditionPNs

i=0 ni = M then represents a particular combination
of the M loops falling in various SNR ranges as described

2The conditional variance of cos(4i) has been shown to decrease
quickly with increasing 
i in [5]. For 
i � 10 dB var[cos(4i)] takes
values which are very small fractions of unity.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 673



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γβ
3 β

2
β

1

I(
γ)

True function
Approximating function

Figure 3: Approximation of the phase error loss function

above. To evaluate the average bit error probability, we
carry out the following steps.

� Find the probabilities of all the possible combina-
tions of the occurrence of the vector n.

� For each of the above combination vector, determine
the conditional bit error probability.

� Find the average bit error probability from the these
conditional probabilities. This results in a family of
upper bounds on the bit error probability, different
for different choice of the threshold vector �.

� Choose the minimum upper bound from this family
of upper bounds as the optimum upper bound on the
average bit error probability.

In the following, we consider the case where M = 2
and Ns = 2 (a similar procedure applies to other val-
ues of M and Ns). Let Pn0;n1;n2(�2; �1) represent the
probability that n0, n1, n2 loops fall in the SNR range
f0; �2g, f�2; �1g, f�1;1g, respectively. The expression
for P0;0;2(�2; �1) can be written as

P0;0;2(�2; �1) =
YM�1

i=0

Z
1

�1

p(
i)d
i = e
�2�1=� : (22)

Substituting the approximation for cos(4i) from Eqn.
(20) in Eqn. (16), the signal-to-noise ratio, �0, at the out-
put of the combiner can be written as

�0 =
N2EcI

2(�1)S

�2
; (23)

where S =
PM

i=1 �
2
i , �21 = �22 = ::: = �2M = �2. The

conditional bit error probability for this case is given by

Pb;0;0;2(�2; �1; S) = �(�
p
�0); (24)

where �0 = �S. The pdf of S is difficult to obtain be-
cause of the restrictions f
ig > �1. However, by remov-
ing the restrictions on f
ig (i.e., take the region 
i > 0
instead of 
i > �1, which gives an approximate pdf of
S), the resulting S� has a well known distribution and
the upper bound remains intact because removing the re-
strictions is disadvantageous to the receiver and that can

only increase the bit error probability. Since the f�ig
are Rayleigh distributed, S� is chi-square distributed with
2M degrees of freedom, and the pdf given by p(S�) =

1
�(M)S

�(M�1)e�S
�

, where �(:) is the Gamma function
[7] and M = 2. Now, averaging the conditional bit error
probability expression in Eqn. (24) with respect to S� we
get

Pb;0;0;2(�2; �1) =

Z
1

0

�

�
�
p
�S�
�
S�(M�1)

�(M)
e�S

�

dS�:(25)

The above integral can be derived to be [8]

Pb;0;0;2(�2; �1) =
1

2

"
1� �1

M�1X
k=0

�2k
k

�� 1� �21
4

�k#
; (26)

where �1 =
q

�1
1+�1

and �1 = N2EcI
2(�1)

2�2 .

The expressions for Pb;1;0;1(�2; �1), Pb;0;1;1(�2; �1),
Pb;0;2;0(�2; �1), Pb;1;1;0(�2; �1), Pb;2;0;0(�2; �1) can be
derived in a similar way.

We arrive at a family of upper bounds on bit error prob-
ability by averaging over the vector � as follows

Pb(�1; �2) = P0;0;2(�2; �1)Pb;0;0;2(�2; �1) (27)

+ P1;0;1(�2; �1)Pb;1;0;1(�2; �1) + P0;1;1(�2; �1)Pb;0;1;1(�2; �1)

+ P0;2;0(�2; �1)Pb;0;2;0(�2; �1) + P1;1;0(�2; �1)Pb;1;1;0(�2; �1)

+P2;0;0(�2; �1)Pb;2;0;0(�2; �1):

The optimum upper bound is then obtained by choosing
the minimum value among the family of upper bounds
given by the above equation, i.e.,

P �b = min[Pb(�1; �2); �1 � �2 � 0]: (28)

Note that in deriving the above upper bound two ma-
jor approximations were made. The first approximation
involved approximating the phase error loss function by
a staircase function with finite number of steps. The sec-
ond approximation involved approximating the pdf of S
by the pdf of S�. As we will see in the next section, these
approximations do not compromise much on the accuracy
of the bounds. In addition, the computational complexity
involved in evaluating the bound in Eqn. (28) is quite in-
expensive.

4 Numerical results
We evaluate the bit error performance of coherent mul-
ticarrier DS-SS systems with imperfect carrier phase on
fading channels using the bounding technique and com-
pare it with the performance in the perfect coherence case.
We also establish the tightness of the bound for different
values of Ns in the approximating function by comparing
with the probability of error obtained through the exact
expression.

Fig. 4 shows the bit error performance as a function
of Eb=No (=MNEc=No) for a system with M = 2 and
N = 256. The loop SNR is taken to be 10 dB above the
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systemEb=No. Fig. 4 illustrates the performance plots for
a) perfect coherence case, b) imperfect carrier phase case,
computed using the exact expression in Eqn. (19), and c)
imperfect carrier phase case, obtained using the bounding
technique as per Eqn. (28) for Ns = 1; 2. The following
observations can be made from Fig. 4. For the system
parameters considered, a) because of imperfect phase es-
timates at the receiver, there is a performance loss of about
0:5 dB compared to the perfect coherence case, and b) the
bound is loose for Ns = 1 (about 2:5 dB above the exact
value). However, when Ns is increased to Ns = 2, the
bound becomes tighter (close to the exact value to within
a 0:2 dB). This illustrates the accuracy and simplicity of
the bound.

Next, the effect of loop SNR on the performance of the
system with imperfect carrier phase in comparsion with
that of a perfect coherence system for M = 2; N = 256
and Ns = 2 is shown in Fig. 5. It is observed that, as
expected, the performance loss due to imperfect carrier
phase becomes increasingly less as the loop SNR is in-
creased. For example, when the loop SNR is 20 dB above
the system Eb=No, the performance loss is only less than
0.25 dB. Finally, Fig. 6 illustrates the effect of increas-
ing the number of sub-carriers (to M = 3) on the perfor-
mance when N = 256; Ns = 2 and loop SNR is 10 dB
aboveEb=No. As the number of sub-carriers is increased,
the performance improves indicating the robustness of the
multicarrier system to multipath fading.

5 Conclusions
We analyzed the bit error performance of multicarrier
DS-SS systems with imperfect carrier phase on multipath
Rayleigh fading channels. We considered the phase errors
arising from the receiver phase locked loops on individ-
ual sub-carriers to be Tikhonov distributed. We derived a
simple, approximate upper bound on the average bit error
probability. We showed that the bound is inexpensive to
compute and is reasonably accurate. We also showed that,
compared to the perfect coherence case, the bit error per-
formance in the case of imperfect carrier phase degrades
by less than 1.5 dB and 0.25 dB for loop SNR values of
10 dB and 20 dB above the system Eb=No, respectively.
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