
Optimal Power Allocation 
for Multiaccess Fading Channels 
with Minimum Rate Guarantees 

Munish Goyal, h o d  S h a m .  Anurag Kumar 
Dept. of Electrical Communication Engg, 

Indian Institute of Science, Bangalore 560012 
e-mail:munish, v i n o d ,  anurag@ece.iisc.ernet.in 

ABSTRACT 

Future wireless networks will have to support multime- 
dia services whicb possess inherent quality of service (QoS) 
requirements. A minimum rate guarantees is often an  im- 
portant QOS requirement. We propose dynamic power 
and rate allocation strategies that counter  the^ effect of 
channel variations while guaranteeing a minimum rate to 
each user. 

I. INTRODUCTION 

Wireless systems of the future will support multiple traf- 
fic classes with diverse quality of service (QoS) requirements. 
Applications, such as interactive telephony are sensitive to de- 
lay, but can tolerate some loss, whereas for store and forward 
applications the requirements are quite the opposite. We con- 
sider the uplink of a single ”cell” wireless system comprising 
M mobile stations communicating with a base station (BS). 
Each user requires two service classes: the constant bit rate 
(CBR) service where a source is allowed to send at a negotiated 
rate at all times (suitable for telephony), and the available,bit 
rate (ABR) service where a source can transmit at a time vary- 
ing rate, using feedback information from the receiver, based 
on the channel conditions (suitable for Internet applications). 
The probability of error is an important QoS measure for ABR 
service class. We derive a dynamic rate and power allocation 
policy that maximizes the average rate available to ABR traffic 
with near zero error probability while guaranteeing a prenego- 
tiated rate to CBR traffic by countering the effect of channel 
variations seen on a multiaccess fading channel. 

We can view the above problem from a different perspective. 
Since the wireless channel is inherently time-varying, one has 
to employ a rate or power allocation policy based on the chan- 
nel state (as in CDh4A power control literature [3]) in order to 
guarantee a minimum rate and at the same time utilizing the 
available resources optimally. In a recent paper [I], Hanly and 
Tse have considered the resource allocation problem in a multi- 
access channel with the objective of minimizing the throughput 
capacity. In a sequel to this paper [2], they went on to discuss 
the capacity region when users need delay guarantees. They 
considered the framework in which delay guarantees are pro- 
vided by each user transmitting at fixed guaranteed rate. This 
is a very restrictive assumption and often leads to the wastage 
of transmission opportunities. Since at times when the channel 
state is good, the BS could allow a rate in excess of the mini- 

mum required while restricting to the minimum rate when the 
channel is bad. In the CBWABR setting introducedearher, the 
rate in excess of the minimum can be provided to each users 
ABR traffic. Thus the problem stated earlier can be Seen as 
a combination of the two problems considered by Hanly and 
Tse. 

Another viewpoint is to maximize the revenue earned by the 
service provider while maintaining the desired QoS. Suppose 
each user pays the service provider (BS) an additional amount 
say fi per unit average rate provided, in excess of the minimum 
required. Thus objective would be to maximize the revenue 
of the service provider while satisfying each user’s QoS re- 
quirement and the power constraint. We will consider mutual 
information in a block and a minimum is guaranteed over each 
block. For a reasonable sized block, this gets manslated into the 
bit rate available at a higher layer by using appropriate coding- 
decoding techniques. The minimum rate guarantee provides a 
boundon the tail distribution of the transmission delay 141. 

In this paper, we are not utilizing the queue state information 
while allocating resources; this could help improve the revenue 
and it is under consideration in a subsequent work. Since the 
maximum allowed long run rate averaged over the fading states 
is termed as throughput capacity, the problem of maximizing 
the revenue could also be looked as maximizing a weighted 
averaged throughput of the system while having a minimum 
rate guarantee. One could even obtain the throughput capacity 
region by varying the weights. 

The rest of this is paper is organized as follows. Section I1 
describes the system model and provides some background 
material required subsequently. This is followed by problem 
formulation. Section N provides the analytical results for the 
formulated pfoblem. In the same section, we give examples of 
single user and two user cases. We explicitly characterize the 
rate allocation and power.allocation policies for the two exam- 
ples considered. Section V summarizes the result obtained. 
Toward the end of this paper we have an appendix providing 
the proofs of some lemmas stated in the main body of the pa- 
per. 

11. SYSTEM MODEL 

There are M mobile stations communicating with the base 
station (BS). The BS is assumed to have multiuser detection 
capability. We assume a slotted system, that the channel state 
does not change over a slot and that the transmitters and the BS 
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can track the channel. The rate requirement vector per slot for 
the CBR sources is p = [PI, pz, . . . , P M ] .  We assume infinite 
backlog of ABR traffic at each transmitter. The channel coding 
for ABR traffic is done in a way similar to the one suggested 
in 131 (Refer appendix for details) while CBR traffic is encoded 
at a fixed code rate: The ith user has a long run average trans- 
mitter power constraint of Pi. Define P = [PI, &, . . ' , &]. 
Given an average power constraint, Tse and Hanly [ 11 obtained 
a delay Limited capacity region identifying the rates at which 
each user can transmit at all times within some tolerance in 
terms of probability of error. We assume that p belong to the 
delay Limited capacity region, otherwise the problem is infea- 
sible. 

We consider the maximization of a weighted throughput for 
the ABR traffic. The weights p; could be though1 of as an 
extra nonnegative amount paid by the i th user per unit long 
run average rate provided in addition to pi. Different values 
for the extra mount per unit average rate is justifiable since 
one user could be more quality conscious than another, and 
hence ready to pay more. The channel gain process is assumed 
to be stationary and ergodic. In a particular slot k, the chan- 
nel state of the i th user is hi[k]. Let the channel state vec- 
b r i n k t h  slotbeh[k] = [ h l [ k ] , h ~ [ k ] , . . . , h ~ [ k ] ]  . Giventhe 
channel state h[k], let the rate allocation vector be R(h[k]) = 
[ R ~ ( h [ k ] ) ,  R z ( h [ k ] ) , . . . , R ~ ( h [ k ] ) ]  and the power allocation 

where R(h[k]) 2 p for all channel states h and for all k. Then 
the weighted average rate available for ABR traffic or the av- 
erage revenue for the service provider is given by 

vector be P(h[kl) = [Pl(h[kl),P~(h[kl),...,P~(h[kl)l 

Since the rate vector R(h[k]) is a function of stationary and 
ergodic process h[k],  R(h[k]) is a stationary and ergodic pro- 
cess. Let H denote the random vector representing the channel 
state vector h. Then the weighted revenue from ABR traffic is, 

~ P < ( E H [ & ( H ) ]  -Pi) 

The average power vector is &[P(H)]  where the averaging 
is done over all channel state vectors. Define the average rate 
vector R = EH[R(H)] .  

M 

i=l 

111. THE REVENUE OPTIMIZATION PROBLEM 

A. Preliminaries 
In this subsection we will state some well known results. 

Let the receiver ambient noise power be 0'. Define S c 
{1 ,2 , . . . ,M}  . GivenR E 'R+M,defineR(S) = CiEs&. 
The capacity region of an additive white Gaussian noise chan- 
nel for any given h and power vector P is given by 
C , ( h , P ) = { R € R f M : R ( S ) < , : l o g ( 1  1 

Given a rate vector P and h, the set of received power vectors 
that can support r is 

Q ( ~ , P )  = { q :  3Ps.t.pi = h i P i , ~  E Cg(h ,P) } .  

If the transmitter and receiver can track the channel, the power 
allocation can be changed with channel state. The capacity 
region for any power allocation policy P(.) is given by 

C/(P)  = { R : R ( S )  5 

jorallsc {l,...,M}}. 

The following result is proved in [I]. 
Lemma I: C / ( P )  and C,(h ,P)  are polymatroids. Q(h,r) 

is a contra-polymatroid. 
The throughput capacity region for the multiaccess fading 

channel when transmitters and receiver can track the channel 
is given by 

c (a=  u CAP) 
PEF 

where F is set of feasible power control policies satisfying the 
average power constraint 

F = { P  : E&"(H)] 5 p; forall a } .  

B. Our Formulation 
The problem addressed in this paper is to find power and 

rate allocation policies which maximize the weighted through- 
put while satisfying the minimum rate vector and the aver- 
age power constraints. Thus the average rate vector R should 
belong to C(P) and in each channel.state the rate vector 
should be greater than equal to the minimum rate required 
p. Thus for each channel state h, we have to find an optimal 
(R'(h),P*(h)) that solves the following optimization prob- 
lem. 

s.t. R E C ( P )  and R(h) 2 p, for all h. 

Equivalently, 

where p . R = xi"=, pi&. The following lemma is a modifi- 
cation of lemma 3.10 in [I]. The proof of the lemma is in the 
zppendix. 

Lemma2: Let (R*(h),P*(h))  be the solution of the fol- 
lowing optimization problem 

21 



for some positive p E 7Zy. For a given p, (R'(h),P*(h)) is 
the solution of above problem if and only if there exists X E 
R+", rate allocation policy R(. )  and power allocation policy 
P ( . )  such that for every joint fading state h, (R(h) ,  P(h) )  is a 
solution to the optimization problem 

(2) m a x p . r  - X.p s.t. r E C,(h,p)and T 2 p, 
( r d  

EH[&(H)]  = Rf,  E H [ P ~ ( H ) ]  = Pi, Vi  

where Pi is the power constraint and R; is the optimal average 
rate for user i. 

IV. ANALYSIS 
Given the channel state h and the Lagrange multiplier A, us- 

ing the Lemma 2, the optimization problem (1) can be written 
as, 

m a x p . r - X . p  s . t . r E  C , ( h , p ) a n d r > p  (3) 
( F A  

The above optimization problem is equivalent to, 

X 
max p .  r - - q s.t. q E Q(h,r) and T 2 p 
( r d  h (4) 

where by slight abuse of notation, denotes the row vector 
(h,. . . h). 'Without loss of generality, we can assume that 
2 2 & 2 . . 2 k. Then for any given rate veitor s, 
'the minimum value of . q subject to the above said contra: . 
.polymatroid constraint Q(h, r )  is given by 

hi 'hnr 

where the function f(s) := u2(ezcz - 1) and for convenience 
we have defined a constant c = lu(2). 

Next we take care of the inequality constraint r 2 p by 
asserting that there exists a Lagrange multiplier w E R+" such 
that the optimization problem (1) is equivalent to 

Rewriting the above equation in a convenient form we get, 

Let I denote the set {1,2, .  . , , M). Differentiating with re- 
spect to r; and equating to zero we get, 

The solution to the above problem that satisfies the Kuhn- 
Tucker (KT) conditions is as follows. 

Theorem 1: Given h, let (ul, UZ,. . . , u,) solves for r the 
following system of equations 

where & is zero and X i  = 2c02A; for i E I. 
Let u; 5 pi for all i E J c I. Then let ( z I , z z , . . .  J,) 
be the solution for r but only for a subset of the system of 
equations (6). i.e., for all i 4 3 and i k  = pk for all k E J .  
The rate allocation policy is r, =',ti  for all i' E I. The power 
allocationpoticyisp; = t { f ( z ; = ,  rk) - f(c;z\ rk)} .  
Remark When 3 = I we call the channel state to be bad and 
thus users transmit at the minimum desired rate p. Whereas if 
J C I, the channel is bad for some users while good for others 
Therefore the users who are in bad state transmits at a rate pi 
but others can transmit at rates higher than p;. If the channel 
is good for everyone, i.e., J is the empty set then the users 
transmits at rates u which is greater than p. The A;, i E I, can 
be obtained using the average power constraint of each user. 

We state the following lemma giving the structural result 
Lemma3: Given h, the user with largest value of p and 

largest channel gain h gets the highest transmission rate. 
As we discussed in the introduction, these policies can be 

looked as maximizing a weighted throughput of the system. 
The boundary of the throughput capacity region can be ob- 
tained by varying p such that cf"=, pi = 1 and for each p, 
taking the average of allocated rates over all channel states. 
Now let us assume that we are interested in sum throughput, 
i.e, no bias to a particular user. This is $e system thioughput 
We can take p; = 1 for i E I. Define f (z) = &f(z). Then 
Equation 5 becomes \ 

Forj > i, we have 

Thus for j > i,w; - w j  2 0 implying that wi is a non- 
increasing function of i. We intend to find out which of the 
inequality constraints are inactive, i.e., w; = 0. F i t l y  let 
W M  = Oandw; > 0,i  = { l , . . . , M  - 1). Thismeansr; = ,- 
p;,fori= {l , . . . ,M-l)(KTcondition) .Thus 
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where X i  = 2cv2Xj. 
Now let us consider the case W M  = 0, wM-1 = 0 and 

w; > 0 , i  = {I, ,  . , , M - 2). This means T; = pi ,  for i = 
(1,. . . , M - 2) (KT Condition). Thus Equation 7 implies that 
- = This gives a non-unique solution that satisfies hnr-1 h w ’  

Since the users have a joint channel state distribution with a 
continuous density, = 2 happens only with probabil- 
ity zero. Hence the only solution is 

Moreover the value of TM > p ~ .  The solution seems to be 
quite intuitive since the system throughput can only be maxi- 
mized while satisfying each user’s minimum rate when in any 
channel state only one user with the best channel gain transmits 
at a rate in excess of its minimum rate. 

A. Example for two users 

Given the channel state (hl , hz), Define 

1 P2 - p 1  a2 = -log - ; 
2 it - J 

If hl 5 g1 and hz I gz then T~ = p1 and TZ = pz .  If 
hl 5 g1 but hz > gz thenrl = p1  andr2 = $log(?) - P I .  

If hl 5 g2 but hl > g1 then r1 = al  and T~ = p2;  else 
c1 = a2 and TZ = log(+) - rl.  It is easy to check that 

A 1  
the minimum rates are guaranteed. 

B. Single user example 

If hl 5 Z2P1 2 then = P I ;  else TI = 3 log(?) > P I .  
The power allocation policy when the channel is good is given 
by u z ( T  - &)+. This policy has the well known water filling 
form. 

V. CONCLUSION 

We have obtained optimal rate and power allocation policy 
that maximize the ABR traffic throughput while providing rate 
guarantees to the CBR traffic subject to the transmitter power 
constraints. The allocated rate is largest for the user with best 
channel gain and the largest weight. But when the weights are 
equal, the user with best channel gain transmits the ABR data 

as well as the CBR data while others transmit the CBR data 
only. The policy for the general case can be obtained using a 
simple algorithm. 
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APPENDIX 
Channel Coding for ABR traffic: We quantize the channel 
state to finitely many values say N. There corresponds a rate 
vector to each channel state. Thus we split each users ABR 
data into N parallel data streams and encode each stream at the 
corresponding rate. Given a channel state say j ,  the encoded 
data from stream j is transmitted. Decoding is a reverse opera- 
tion of demultiplexing the received data onto different streams 
and then decoding each individual stream. 

Proof of lemma 2 The optimization problem is to find R*(h) 
and P‘ (h) which maximizes the following linear functional 
defined on the space of all functions (R(h) ,  P(h) ) ,  

EH [ R ( H ) l  
subject to 

EH[R(H)] E C(P) and R(h) 2 p, Vh 

Since the constraint set is convex and the assumption that p 
belongs to the delay’limited capacity region, there exists a La- 
grange multiplier X such that the above problem is equivalent 
to 

s . t .  EH[R(H)]  E Cf(P(h) )  and R(h) 2 p, Vh 
Consider the dual of C,(P), say D f ( R )  which is a contra- 
polymatroid. Thus given any rate function R(.) within the fea- 
sible set, the minimum value of the functional EH[X . P ( H ) ]  
is 

where the ordering n(.) is function of the channel gain h. Now 
the problem can be written as 
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Thus given any channel gain vector h, the problem is same as, 

Since Q(h, T )  is a contra-polymatroid, we get 

x 
m a x p . r - - q  
r>p , i  h 

s.t. q E Q ( / L , T )  

But C,(h,p) is the dual of Q(h,r) ,  hence we get 

m u { @ .  T - A .  p }  

s.t. r E C,(h,p) and T 2 p 

1-,P 

Hence proved. 
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