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Structure of Transfer Function of Transformers With
Special Reference to Interleaved Windings

L. Satish and Anurag Jain

Abstract—Transfer function (TF) is computed during impulse
tests on transformers. The structure and shape of TF depends
on the type of winding, namely, disc, layer-type, or interleaved
winding. There are certain features specific to TF of an interleaved
winding, which has, over the years, been attributed to its increased
series capacitance. However, reasons for why an increase in series
capacitance should introduce such differences, the presence of
only a few (lower frequency) poles in interleaved windings, etc.,
is as yet unknown. By analytically solving the equivalent circuit
model, mathematical explanations are deduced. It is demon-
strated, for the first time, how pole-zero cancellation and winding
resistance are both instrumental in determining the structure of
TF of interleaved windings.

Index Terms—Diagnostics, impulse tests, interleaved windings,
transfer function (TF), transformers.

I. INTRODUCTION

T RANSFER FUNCTION (TF) is also computed from
data acquired during high-voltage impulse tests on trans-

formers. TF is defined as the ratio of spectra of neutral current
to that of applied voltage. Use of TF affords many advantages
over existing fault detection approaches and, in spite of some
implementational and interpretation issues, has emerged as
an effective diagnostic tool. TF is a graphical representation
of the electrical characteristics of the winding as a function
of frequency. The nature and shape of TF depends on the
type of winding, knowledge of which is considered useful for
diagnostics, and interpretation during impulse testing [1].

Generally, transformers have a higher likelihood of exposure
to overvoltages. Furthermore, they are very expensive; there-
fore, it is imperative that adequate precautions are taken during
the design stages itself. To withstand the stresses imposed due
to these abnormal conditions, use of interleaved windings is
recognized as an effective solution. Its superior surge perfor-
mance due to improved impulse voltage distribution profile is
the reason for its preferred choice, in place of disc or layer-type
windings [2]. The main difference between these two winding
types is a higher series capacitance in the former. A study of
neutral currents and computed TFs (available in published liter-
ature) corresponding to these two types of windings show many
differences. Until now, these differences have neither been sys-
tematically analyzed nor reasons for them ascertained. Before
addressing this issue, salient features of their individual TFs are
summarized as follows.
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1) TF of a layer-type winding has generally a number of
poles that are more or less equally spaced, and typically
occur within 0–1.0 MHz. All the poles are well defined
with characteristic peaks and troughs. Pole magnitudes
vary, but those at higher frequencies have progressively
lower magnitude and tend to merge with noise floor.

2) In contrast, the TF of interleaved windings have only
a few low-frequency poles, which occur well within
10 kHz-300 kHz. The poles are spaced relatively more
closely. The magnitude of higher frequency poles grad-
ually decrease, and beyond the last pole, the TF tapers
off into a straight line with a positive slope. There is a
conspicuous absence of poles beyond 300 kHz, when a
fully interleaved winding is examined alone [3]. How-
ever, often one encounters a single dominant pole in the
300 kHz-1 MHz zone, when TF is computed from actual
impulse test data on an interleaved winding transformer.
This pole is not a direct contribution of the interleaved
winding, but perhaps due to an interaction with neigh-
boring windings (explanation in support of this will be
presented later). Because of this dominant pole, any
fault related information embedded in the low-frequency
poles will be suppressed, and can lead to erroneous
interpretations. Therefore, a correct understanding of
what governs the TF structure of interleaved windings
would assist in avoiding such situations.

There have been many investigations on different aspects of
interleaved windings (e.g., Heller and Veverka [2], Van Nuys
[4], Pedersen [5], and Degeneff [6]). More specifically, in
1974, Gururaj and Jayaram [7] discussed the effect of change
in series capacitance in a transformer on its neutral current.
Furthermore, it was shown that only a large capacitance change
can produce a perceptible deviation in the neutral current,
implying that minor faults are hard to detect in an interleaved
winding. More recently, Moreauet al. [8] while reporting
on high-frequency behavior of transformers, attempted a
comparison of interleaved and ordinary disk winding. Through
simulations, they reported presence of a flat frequency region
between 1 and 15 MHz, in interleaved windings. However,
experiments on different transformers revealed a flat region
in the 100–500 kHz range. Without assigning any reasons for
the mismatch, it was remarked that the flat zone could exist
anywhere between 100 kHz and 5 MHz. Actually, this is a
consequence of an erroneous use of lumped equivalent circuit
model at such high frequencies (in fact, some of them have
been shown up to even 100 MHz).

In spite of many research efforts on interleaved windings,
the fact remains that quantitative explanations for the peculiar
TF structure of interleaved windings has, so far, remained un-
reported. Ascertaining reasons for this is not only interesting
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Fig. 1. Equivalent circuit.

from a theoretical standpoint, but more importantly, is expected
to assist in arriving at a more meaningful interpretation of the
TF, yield insight on precautions to be taken during data acqui-
sition in impulse tests, and influence the diagnostic capabilities
of transformers in service, especially when interleaved windings
are used. These aspects have, to the best of our knowledge, not
been investigated so far, and therefore form the subject matter
of this paper.

II. UNDERLYING APPROACH

During high-voltage impulse testing and measurements,
factors such as signal-to-noise ration (SNR), shape of applied
impulse, digitizer vertical resolution, sampling frequency, and
record length place an upper bound on the cutoff frequency
up to which TF could reliably be estimated, to approximately
1.0–1.5 MHz. For this range of frequencies, the ladder network
representation (see Fig. 1) comprised of series capacitance

, series inductance , along with shunt capacitance
and mutual inductance , is known to accurately model
all aspects of the neutral current response due to a lightning
impulse ( , , , and are per section values). As the
validity of this circuit matches the frequency limit achievable
during practical impulse measurements, it was considered
appropriate to use it in the present context.

By using this circuit (see Fig. 1), the value of can be varied,
and hence, the TF shape and structure corresponding to changes
in can easily be tracked and examined. Both the layer-type
and interleaved windings can easily be represented by changing

. This equivalent circuit, although not being exact for both
these windings, is accurate enough as far as TF and neutral
current are concerned. The equivalent circuit was analytically
solved, for the following reasons.

1) At the outset, it must be emphasized that behavior of any
system depends on its poles and zeros, its numbers and
relative positions.

2) Analytical determination of poles and zeros not only re-
veals its exact number and magnitudes, but also the extent
of dependencies on the equivalent circuit parameters.

3) Knowledge of poles and zeros as a function of the cir-
cuit elements greatly helps in tracking the change in the
position of poles and zeros of the TF, and their likely in-
teractions, if any.

4) It should be noted that determination of the poles and
zeros numerically from test data is not straightforward,
more so as it is a nonminimum phase system.

The equivalent circuit was solved using nodal analysis
approach [9], [10]. Initially, a loss-less case was considered,
and at the end, a resistancein series with was included.
The neutral current expression for a unit step input was
determined. A unit step was chosen as input, instead of a double
exponential, as it not only simplified computations, but also
allowed determination of TF in analytical form, i.e., by dividing
the -domain neutral current expression by . The required
symbolic computations were performed using MAPLE and
MATLAB. As the focus was on behavior of TF with respect to

and , the neutral current expression was determined in
terms of and , by assuming typical values of series and
mutual inductances. In all analytical computations, the neutral
terminal was considered to be solidly grounded (i.e., with zero
resistance). An examination of the neutral current for different
number of sections () in the equivalent circuit revealed that it
could be represented by the following general format:

poly
poly

poly
poly

poly
(1)

where poly represents a polynomial involving the vari-
ables listed, the last term is its order, and the polynomial coeffi-
cients depend on and . The polynomial order depends
on the number of sections, and when is odd, ,

, and when is even, ,
, and . is a constant, depending

on and . When values of and are plugged into
the above equation, the first term turns out to be a constant
and corresponds to the initial capacitive component of .
The second term is a function of and corresponds to the in-
ductive part of . The last two terms of the neutral current
correspond to the oscillating components. Thus, the poles and
zeros of the system can be determined, as a function ofand

from the last two terms. After some algebra, the poles and
zeros of TF can be identified by inspection. As an example,
consider a three-section model (see Fig. 1) with the following
parameter values: nF, nF, mH,

mH, and mH. The ana-
lytically obtained neutral current is given below

(2)

The pole frequencies of can be written down by inspection
of its last two terms as

(3)

Substituting the values (inductances are in millihenries and ca-
pacitances are in nanofarads; therefore, frequency obtained will
be in megahertz), the natural frequencies are obtained as
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Fig. 2. Neutral currents. (a) Layer-type winding. (b) Interleaved winding.

kHz, kHz. Using values of and , the
neutral current expression becomes

(4)

These expressions of and poles being analytical, are hence
exact, and not subject to any limitations of sampling errors en-
countered in digital or sampled formulations. Finally, the sim-
ilarity between [(2), (4)] and the general expression of

in (1) is clear.

III. RESULTS AND DISCUSSION

In this paper, a ten-section equivalent network was consid-
ered. This circuit was analytically solved, and additionally, it
was also simulated in PSPICE, so that TF could be computed
from voltage and current time-domain records. Since, PSPICE
does not permit inclusion of an ideal short-circuit, different
values of neutral resistors were examined. As the final results
were invariant to this change, a typical value of 50was used
in all PSPICE simulations to compute time-domain records.
The other parameters of the circuit used are as follows.

nF, mH and mutual inductances are
mH, mH, mH,

mH, mH, mH,
mH, mH,

mH, and ,
,

, and so on.

A. Nature of Neutral Currents

Using PSPICE, time-domain neutral current response due to
a lightning impulse 1.2/50s, V (and computed at
50 ns time interval) was determined for both types of windings.
Fig. 2(a) and (b) shows neutral current responses for two
extreme values of , namely, 0.1 nF and 12.8 nF, which cor-
responds to a layer-type and interleaved winding, respectively,
(corresponding values are 20 and 1.77, respectively). It can be
observed from Fig. 2(a) that, for the layer-type winding model
considered, the neutral current response distinctly contains
the intermediate oscillatory and final inductive components.
In Fig. 2(b), for interleaved winding, the initial capacitive
component is seen as a large positive spike, but the oscillating
component is almost absent, and there is also a significant
reduction in the frequency of oscillations. This aspect implies
that TF of an interleaved winding would predominantly contain

Fig. 3. TF from time-domain records for different values ofC .

only lower natural frequencies. The series capacitance being
very large in the case of interleaved winding, offers negligible
impedance for the initial portion of the impulse, which causes
a high spike (of same polarity of the impulse) in the neutral
current. The corresponding spike in the layer-type winding is
very small and immediately followed by the oscillatory part,
and so, appears as a negative spike. Furthermore, shape of
neutral current obtained from the model matches well with that
measured on an untanked, fully interleaved winding (it was a
fully interleaved winding taken out from a 110-kV, 40-MVA
transformer. Its total was 3.44 nF and value of was about
4.0) [3]. This agreement further validates the model being
considered in this analysis.

B. TF Structure and its Variation With

TF computed from 16 384 points long time-domain records
(at 50 ns time interval) obtained from PSPICE for values
of 0.1 nF, 1.6 nF, 6.4 nF, and 12.8 nF, for a 1.2/50s applied
impulse, are shown in Fig. 3. In all of these figures, the fre-
quency resolution of TF is 1.22 kHz, and truncation in current
and voltage records, if any, was removed by Nicolson weighting,
to eliminate effect of spectral leakage on TF. From a study of
Fig. 3, the following important observations emerge. As one
moves from a layer-type winding to an interleaved winding, we
have the following.

1) The number of poles in TF is significantly less.
2) All poles shift toward the lower frequency region.
3) As poles shift toward lower frequencies, they tend to

come closer. The pole magnitudes decrease.
4) There is a conspicuous absence of poles beyond

90–100 kHz (this was anticipated during discussion in
Section III-A).

5) After the last pole, the TF magnitude increases.
During this exercise of increasing the value of, since the

equivalent circuit topology had remained unchanged, one would
normally have expected the circuit (and hence TF) to still con-
tinue to possess the same number of natural frequencies. How-
ever, in contrast, as the value of was increased, the TF com-
puted from time-domain records was progressively found to
contain a lesser number of poles. This aspect was indeed very
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Fig. 4. Analytically obtained TF forC = 12:8 nF.

intriguing. In order to determine the reasons for such a behavior,
analytical solution of the circuit was undertaken.

C. Analytical Explanations for TF Behavior

The expression for was determined for a unit step input.
Because of this, poles and zeros of TF will be the same as poles
and zeros of , except that the TF will have an additional
zero at the origin [because ]. Therefore, by ex-
amining the poles and zeros of , behavior of TF can be
explained.

The analytically obtained TF was plotted for the same values
of , retaining the same frequency resolution of 1.22 kHz.
However, no significant differences in TF were observed up to
1 MHz. For example, Fig. 4 shows analytically computed TF for

nF. At higher frequencies, the analytically computed
TF magnitude was observed to continuously increase. Such an
increase of TF beyond the last pole is not surprising, as TF
is governed by only the capacitive term, as per (1). A satura-
tion-like feature in TFs computed from time-domain records at
very high frequencies is due to sampling limitations. Analyti-
cally computed TFs do not suffer from this issue.

Next, the pole frequencies of were analytically com-
puted. These values, and those obtained from time-domain
records, could more easily be matched, in the case of lower
value of where the poles are easy to identify in TF plots.
However, at higher values, as the poles tend to merge,
discriminating between them is increasingly difficult. To
address this issue, the record length was artificially increased
by zero-padding. Merely increasing the record length by zero
padding does not lead to any additional signal content, and
therefore, it did not improve the situation. When the poles of

were determined analytically, it was found that all the
pole frequencies (a ten-section network will have nine natural
frequencies) could easily be computed, irrespective of the
value of used. However, that was not the case when TF was
computed from time-domain records, as discussed previously.
This issue is considered next.

It is known that the behavior of any system is governed by
both the poles and zeros, their relative numbers, and relative spa-
tial positions. Until now, investigations have concentrated only
on analyzing the system poles and the role of zeros seems to
have been ignored. Therefore, keeping this aspect in mind, it
was decided to analytically determine the zeros as well. Unlike
the expression for poles, the equations for zeros were relatively
longer and more complex, and so, nothing worthwhile could be
inferred based on mere inspection. Therefore, by plugging-in
values of all the parameters, poles and zeros of were nu-
merically determined. These values were determined for all
values and shown in Table I for two extreme values of. The
number of zeros is one more than the number of poles, and the
zero that is closest to a particular pole is paired together. Fig. 5
is a pole-zero plot for all values of to facilitate easy interpre-

Fig. 5. Pole-zero plots ofI (s) for different values ofC .

TABLE I
(Mega-Neper� j Mega-rad/s)

tation. From an examination of Fig. 5 and numerical values in
Table I, the following important points emerge.

1) All poles lie on the imaginary axis (as they should).
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Fig. 6. Variation of pole frequencies withC .

2) An increase of causes poles to move along the imag-
inary axis toward the origin.

3) Zeros are also present on the right-half plane, showing
that it is a nonminimum phase network. Zeros and poles
are well separated at lower values of. A symmetry is
observed about the real axis (as expected) and imaginary
axis as well.

4) An increase of causes zeros to rapidly migrate toward
and settle on the imaginary axis and thereby come closer
to the poles.

5) At higher values of , most of the poles and zeros are
almost indistinguishable. For example, at nF,
it is seen in Table I, that the higher frequency pole and
zero frequencies differ by as little as only a few tens of
hertz. Such a small difference cannot be resolved in the
pole-zero plot, since they overlap. In the TF, these partic-
ular pole-zero pairs almost cancel out, leaving that many
fewer natural frequencies, and reduce the order of the
system. This is what is usually referred to as apole-zero
cancellation.

6) The pole-zero cancellation is observed to first occur for
the higher frequency poles, and then, gradually affect to
the lower frequency poles, as is increased.

Therefore, it is now clear that at higher values of, i.e., in an
interleaved winding, because of pole-zero cancellation, the TF
will effectively contain only a few distinct low-frequency poles.
As the difference between the pole and zero is of the order of
a few tens of hertz, it is certain that, when using time-domain
records most of these poles will remain undetected. Therefore,
efforts must be made to keep the frequency resolution close to
this limit, if all poles are to be resolved. This is an uphill task,
since it means that a record length of close to 10points has
to be acquired. This is practically not possible in many of the
existing impulse measuring systems. Therefore, this situation
suggests employment of an alternative, e.g., the swept frequency
method. Before discussing that issue, another feature observed
in TF, namely, the tendency of the natural frequencies to shift
toward the lower frequency region (when is increased), was
studied, by examining the dependency of pole frequencies on

. Substituting values of all the parameters into the expression,
pole frequencies (pole numbers 1, 5, and 9 from Table I) as a
function of , are plotted in Fig. 6, from which the following
observations can be made.

1) Pole frequencies monotonically decrease with an increase
in the value of , i.e., they shift toward low-frequency
region.

2) The higher frequency poles shift more rapidly compared
to low-frequency poles.

Fig. 7. TF for C = 12:8 nF. (a). Using long time-domain records
(frequency resolution= 122:07 Hz) (b). Using swept frequency method
(frequency step= 1 Hz).

3) The pole frequencies reach a limiting value beyond a par-
ticular value (this is also seen in Fig. 5).

An attempt was also made to describe this feature, by means
of a relation between pole frequency and. It turned out that
the expressions were extremely long (running to pages) and ap-
proximating them was not possible, nor could any inference be
drawn from it. Hence, only a qualitative assessment was done.

D. Swept Frequency Methods

As already discussed, in actual impulse measurements, the
minimum attainable frequency resolution in TF is of the order
of a few kilohertz. This feature becomes a bottleneck when an-
alyzing the test data of transformers with interleaved windings,
since extremely small frequency resolutions (of the order of a
few tens of hertz) are necessary to resolve all the natural fre-
quencies present, to ensure reliable diagnostics and correct in-
terpretation of TF.

It is reiterated that zero-padding an existing 4 K or 8 K
long time-domain record, will not produce the desired results,
because doing so, does not introduce any additional informa-
tion content into the signal. Instead, the other possibility is
to acquire the time-domain data for extended lengths, and by
doing so, definitely additional low-frequency information gets
included. In such a situation, an improvement of resolution
at lower frequencies could be expected. With nF,
the voltage (1.2/50 s) and neutral current were calculated at
200 ns for 40 960 points, yielding a TF frequency resolution
of 122.07 Hz. TF calculated with these time-domain signals is
shown in Fig. 7(a). Clearly, four poles can be identified, which
is an improvement compared to Fig. 3(d), but all nine poles
could not be resolved. Increasing the record length further was
not found to be very effective.

A practical way of achieving such small frequency resolu-
tion is to explore the use of swept frequency methods. Theoret-
ically, this option can be implemented in PSPICE using the op-
tion “LIN AC SWEEP ANALYSIS.” Choosing a frequency step
of 1 Hz, the computation was performed (for nF),
and the resulting TF is shown in Fig. 7(b). It is clear that all nine
poles can be identified, even when nF. The analysis
with 1 Hz resolution can be restricted up to 100 or 150 kHz to
limit data size.

Furthermore, a closer look at the TF obtained in Fig. 7(b)
shows that, beyond the first few low-frequency poles, the rest
of them are all extremely sharp (loss-less case) and have a pe-
culiar shape near their troughs. A zoomed TF plot showing this
aspect is illustrated in Fig. 8. Such a TF shape near the troughs
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Fig. 8. Zoomed plot of TF in Fig. 7(b).

Fig. 9. Swept frequency analysis with loss considered. (a).C = 0:1 nF
(frequency step= 50 Hz). (b).C = 12:8 nF (frequency step= 1 Hz).

is due to the existence of a near-discontinuity in the TF expres-
sion, and occurs at every pole-zero cancellation. This is a fea-
ture in all TFs, where the poles and zeros are extremely close to
one another, almost resulting in a cancellation. A physical im-
plementation of the idea of swept frequency method is possible
with the use of network analyzers or low-frequency impedance
analyzers. Such instruments are presently being used for FRA
analysis in diagnosing mechanical deformations in transformer
windings.

E. Effect of Loss

Although pole-zero cancellation is the primary cause for a
lesser number of poles in the TF of an interleaved winding, the
reason for studying the effect of loss is that the quality factor
and pole height in the TF depends on the loss (resistance) in
the system. Therefore, inclusion of a loss component into the
simulation or equivalent circuit can definitely be expected to
have an influence on the results obtained so far.

With a resistance of 1.5 included in series with in each
section and a 50 neutral resistance, a PSPICE simulation was
performed (LIN AC SWEEP ANALYSIS) for two extreme values
of (0.1 nF and 12.8 nF). TF obtained for nF with a
frequency step of 50 Hz is shown in Fig. 9(a), and it can be seen
that all the poles are well resolved.

Of course, in a layer-type winding, this has never been an
issue. In Fig. 9(b), TF computed for nF, with a fre-
quency step of 1 Hz is plotted. Surprisingly, only two poles can
be identified. Comparing this TF with that in Fig. 7(b), it can
be seen that pole heights have significantly decreased and, in
addition, there is a widening of the poles, i.e., theirq-factors
have increased. Thus, in an interleaved winding, pole widening
and reduction in pole height due to losses, are two more reasons
the remaining higher frequency poles cannot be resolved or de-
tected, irrespective of the adopted approach.

To prove this aspect, the three-section network model
described in Section II, is again considered, but with loss
included (i.e., a resistance in series with ) and neutral

Fig. 10. Analytically obtained TF for different values ofr.

solidly grounded. It was solved analytically, and the expression
for TF in terms of and is

(5)

Here, and are in nanofarads, is in millihenries, and
is in kilohms. TF plotted for and 15 is shown

in Fig. 10. An increase in leads to a drastic reduction in pole
height and width of the pole also increases. It is seen that the
second pole is almost buried in the background. In interleaved
windings, since magnitudes of higher frequency poles are low to
begin with, an inclusion of loss will further decrease it, making
its detection all the more difficult. In addition, the factor of pole
widening due to losses, makes it even more difficult to resolve
them, especially with neighboring poles being very close to one
another. Because of this, they tend to merge together, and appear
as a single pole, or may remain undetected. Thus, resistance or
loss of the network also plays a vital role in modifying the shape
of TF.

F. Implications on Diagnostics

As already discussed in Section I, difficulties connected with
fault detection in interleaved windings were highlighted in [7].
Based on the present results, certain guidelines can be formu-
lated so that interpretations and diagnostics with TF, for inter-
leaved windings in particular, could be improved.

1) It is advisable to employ swept frequency methods to
measure TF directly, using low-frequency impedance an-
alyzers (e.g., HP 4192A). For this, only the low-frequency
region (10 kHz-100 kHz) of the TF needs to be scanned.
Use of frequency steps of the order of a few tens of hertz is
mandatory. This method is only an additional diagnostic
tool.

2) Ascertaining dielectric integrity can only be done by HV
impulse testing. However, if a few suggestions given
below can be adhered to while acquiring impulse test
data, then, the TF estimated with it will be closer to the
TF obtained from swept frequency method. Therefore,
during impulse tests, it is recommended that a max-
imum possible length of the signals should be recorded.
For this, even a coarse sampling time can be used, as
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high-frequency content in the signal is absent. Data must
be Nicolson-windowed prior to TF estimation. During TF
interpretation, any dominant high-frequency pole (arising
from an interaction with neighboring windings) must be
disregarded, and attention focused only on the 0–300 kHz
region alone. This rule is also true for detecting mechan-
ical displacements, since physical changes in windings
are most likely to introduce deviations in TF within this
range. Attention of the reader is drawn here, to the fact
that the TF of interleaved windings discussed so far did
not contain any poles beyond the 200-kHz region. Also,
TF computed in [3] on a fully interleaved winding did
not possess any pole beyond 250 kHz. Therefore, if the
TF, computed from actual impulse test data, possesses a
pole in the range of 200 kHz-1 MHz, its origin can only
be traced to its interaction with neighboring windings.

3) Given that interleaved windings have TF information pre-
dominantly concentrated in the low-frequency region, a
question that needs to be answered is, would it would be
prudent to employ a much slower impulse waveform for
purposes of estimating the TF? This would excite lower
frequencies better, thereby improving the SNR. This sug-
gestion is purely from the LV diagnostics point of view,
and does not intend to replace the LI test. An answer to
this can emerge, only after relevant studies are carried out.

It is important to mention at this juncture, that some exper-
iments have been carried out on a model transformer winding.
The preliminary results obtained using swept frequency method
agree well with those predicted and reported here. Further ex-
perimentation and verification is currently underway, and details
of these will be reported later.

Finally, in summary, the following important results emerge
from this study.

In an interleaved winding, a situation similar to a
pole-zero cancellation almost occurs. Due to this, its TF
effectively contains only a few distinct low-frequency
poles.

TF of an interleaved winding when considered alone,
beyond the last pole, is a straight line with a positive slope.

Loss in the network causes a reduction in pole height
and also introduces a pole widening. These two factors
complicate matter further as resolution of the remaining
poles becomes almost impossible. Use of swept frequency
methods (with frequency steps of the order of a few hertz)
for estimating the TF of interleaved windings was shown
to be effective.

During HV impulse tests (involving interleaved winding
transformers), it would be beneficial to acquire test data
for extended lengths, if permissible by hardware, for im-
proving resolution of low-frequency poles. The TF esti-
mated with such data would be closer to the true TF that
could be estimated by swept frequency methods.

Proposed use of slower front impulses for LV diagnostics.

IV. CONCLUSIONS

Differences in TF between a layer-type and interleaved
winding were examined. Mathematical explanations have been
provided, for the first time, to explain the peculiar TF structure
observed in interleaved windings. It was demonstrated both by

numerical and analytical approaches, how pole-zero cancella-
tion and network loss are together instrumental in determining
the structure of TF. Some suggestions for data acquisition
during impulse tests on interleaved winding transformers are
given, so that a more accurate TF could be estimated. The ad-
vantages of using swept frequency methods to directly measure
TF was shown. It is believed that, based on the present findings,
there definitely exists a scope for improving diagnostics with
TF, especially for transformers with interleaved windings.
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