ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Controlling air solubility to maintain `'Cassie'' state for sustained drag reduction

Dilip, D and Jha, Narsing K and Govardhan, Raghuraman N and Bobji, MS (2014) Controlling air solubility to maintain `'Cassie'' state for sustained drag reduction. In: COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 459 . pp. 217-224.

[img] PDF
col_sur_A-phy_eng_asp_459_217_2014.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy
Official URL: http://dx.doi.org/ 10.1016/j.colsurfa.2014.07.006

Abstract

`'Cassie'' state of wetting can be established by trapping air pockets on the crevices of textured hydrophobic surfaces, leading to significant drag reduction. However, this drag reduction cannot be sustained due to gradual dissolution of trapped air into water. In this paper, we explore the possibility of sustaining the underwater Cassie state of wetting in a microchannel by controlling the solubility of air in water; the solubility being changed by controlling the local absolute pressure near the surface. We show that using this method, we can in fact make the water locally supersaturated with air thus encouraging the growth of trapped air pockets on the surface. In this case, the water acts as a pumping medium, delivering air to the crevices of the hydrophobic surface in the microchannel, where the presence of air pockets is most beneficial from the drag reduction perspective. In our experiments, the air trapped on a textured surface is visualized using total internal reflection based technique, at different local absolute pressures with the pressure drop (or drag) also being simultaneously measured. We find that, by controlling the pressure and hence the solubility close to the surface, we can either shrink or grow the trapped air bubbles, uniformly over a large surface area. The experiments show that, by precisely controlling the pressure and hence the solubility we can sustain the `'Cassie state'' over extended periods of time. This method thus provides a means of getting sustained drag reduction from a textured hydrophobic surface in channel flows. (C) 2014 Elsevier B.V. All rights reserved.

Item Type: Journal Article
Additional Information: Copy right for this article belongs to the ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS.
Keywords: Cassie state; Textured Hydrophobic surface; Trapped air bubbles; Solubility; Sustained drag reduction
Department/Centre: Division of Mechanical Sciences > Mechanical Engineering
Depositing User: Id for Latest eprints
Date Deposited: 08 Nov 2014 04:58
Last Modified: 08 Nov 2014 04:58
URI: http://eprints.iisc.ac.in/id/eprint/50150

Actions (login required)

View Item View Item