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Abstract- In this paper, we present two new methods for 
Vowel-Consonant segmentation of a co-articulated hasic- 
units employed in our Thirukkural Tamil Text-to-Speech syn- 
thesis system [ I ] .  The basic-units considered in [I] are CV, 
VC, VCV, VCCV and VCCC, where C stands for a consonant 
and V for any vowel. In the first method, we use subspace- 
based approach for vowel-consonant segmentation. It uses 
orientedprincipal component analysis (OPCA) where the test 
feature vectors are projected on to the V and C subspaces. 
The crossover of the norm-contours obtained by projecting 
test basic-unit onto the V and C subspaces give the segmen- 
tation points which in turn helps in identifying the V and 
C durations of a test basic-unit. In the second method, we 
use pmbabilisticprincipaI component analysis (PPCA) [2] to 
get probability models for V and C. We then use Neymen- 
Pearson (NP) test to segment the basic-unit into V and C. 
Finally, we show that the hypothesis testing turns out to be an 
energy detector for V-C segmentation which is similar to the 
first method. 

1 .  INTRODUCTION 

For the purpose of recognition or synthesis, speech often 
needs to be segmented into phonetic units. Manual segmen- 
tation is tedious, time consuming and error prone. Due to 
variability both in human visual and acoustic perceptual ca- 
pability, it is almost impossible to reproduce the manual seg- 
mentation results. Hence manual segmentation is inherently 
inconsistent. Automatic sementation is not faultless, but it 
is inherently consistent and results are reproducible. Ideally, 
one likes to have an automatic segmentation which can han- 
dle basic-units uttered by different speakers. There are two 
broad categories of speech segmentation [3] namely, implicit 
and explicit. Implicit methods split up the utterance without 
explicit information, such as the phonetic transcription, and 
are based on the definition of a segment as a spectrally stable 
part ofa signal. 

Motivation for Subspuce bused Segmentation 

In our synthesis scheme [I] ,  concatenation is always per- 
formed across identical vowels. Changes in duration, pitch 
and amplitude are obtained by processing the vowel parts of 

the basic-units only. Thus, the segmentation of basic-units 
into vowel and consonant parts is needed to keep the conso- 
nant portion of the waveform intact. Plosives, affricates and 
fricatives have a common property of low energy when com- 
pared with any ofthe vowels. Figure I shows the performance 
of energy based segmentation for plosive and co-articulated 
basic-units. As shown in  Figs. I(a) and (b), accurate segmen- 
tation can be obtained for non co-articulated units, and not for 
co-articulated basic-units. The ttue consonant part iyi in the 
signal ieyol is shown in Fig. I(b) with the boundaries dotted. 

We propose two methods for co-articulated basic-unit seg- 
mentation. In the first method, we use subspace approach us- 
ing orientedprincipal component anal)j.yis (OPCA) for basic- 
unit segmentation. In the second method, we usepmbabilis- 
ticprincipal component analwir (PPCA) [2] to obtain proba- 
bility models for vowel (V) and cconsonants (C). We employ 
Neymen-Pearson (NP) test using the probability models for 
basic-unit segmentation. 

2: SUBSPACE BASED SEGMENTATION 

When we consider an individual vowel or consonant, there 
exist techniques like LPC to model their statistical proper- 
ties, While segmenting the vowel part of a basic-unit, we can 
consider the vowel information (VI) in the feature vectors as 
the signal and the consonant information (Cl) as noise. Simi- 
larly when the segmentation of the consonant part is required, 
we can view CI as signal and VI as noise. We present a lin- 
ear feature transformation that aims at finding a subspace, of 
the feature space, in which the Signal-to-Noise ratio (SNR) is 
maximum. Such a decomposition can be arrived at by repre- 
senting VI and CI by training vectors obtained using manual 
segmentation. The directions in the feature space where the 
SNR is maximum can be obtained by the generalized eigen- 
value decomposition of the covariance matrices of the above 
vectors. Consider a linear transformation matrix A' that maps 
the original feature vectors z on to Z. 

( 1 )  

where z is an n-dimensional vector, f is an in-dimensional 
vector, m 5 n, and W is an n x rn matrix with m linearly 
independent columns. Let d, and d, represent the training 
vectors containing VI and CI, respectively, in the original fea- 
ture space. The covariance martices for these training feature 

= i{,y'z 
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Figure 1. Basic-unit segmentation using energy based 
method. (a) Speech signal /aka/. (b) Co-articulated signal 
feyol (continuous vertical line: segmentaion using energy 
based method). 

vectors can be written as 

Cu = E ( ( d , - B ) ( d ,  -B)T] . (2) 
Cc = E[(dc - z ) ( d c  -%)'I 

where and 6 represent the means of d ,  and d, respec- 
tively. We collect an ensemble of feature vectors of length 
N corresponding to different vowels to estimate the N x N 
vowel covariance matrix C,. Similarly we estimate the con- 
sonant covariance matrix C,. We wish to find a W that max- 
imizes the ratio of the variance of VI to that of CI after the 
transformation. If the density functions of d, and d, are as- 
sumed to be normally distributed, then their covariance ma- 
trices after transformation are given by 

c = WTC,W (3) 
E = WTC,W 

A simple measure of the variance or the 'scatter' is the de- 
terminant of the covariance matrix [4]. Thus, the criterion 
function to be maximized is given by 

0 3 5  0 4  045 

The columns of the optimum W are obtained as generalized 
eigenvectors for vowels (GEVV), corresponding to the largest 
eigenvalues in 

Similarly, we obtain generalized eigenvectors for consonants 
(GEVC) as 

( 5 )  c " W p )  = X'C,W, (4 

CCWj" = XiC"Wl') (6) 
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Figure 2. (a) Speech signal /eyol. (b) Its segmentation into 
vowel (/el and lo0 and consonant (/yo regions, using both 
the vowel and consonant norm-contours. (c) Spectrogram of 
leyol. 

Evaluarion of Norm-Contours 

The GEVV and GEVCs are obtained by solving equations 
5 and 6. The test signal is divided into overlapping frames 
and the feature vector xl: corresponding to the kth  frame 
is obtained using LP-Cepstral coefficients (LPCC). or Mel- 
Cepstral coefficients (MCC). We evaluate the norm-contours 
as follows. 

Nv and Nc giye the norm-contours from V and C subspaces. 
Norm of the projection of the feature vectors derived from the 
test basic-unit on GEVV and GEVC givethenorm-contours. 
One of them represents the vowel information and the other, 
the consonant information. The resulting norm contours ob- 
tained for a test signal cross each other at the beginning and 
at the end of consonant region of a given test basic-unit. The 
segmentation points are the ones where N,(k) = N,(C).  We 
found that optimum results were obtained when M = 3. 

3. STATISTICAL TESTlNG,.FOR SEGMENTATION' 

Here, we view the basic-unit segmentation as classifying 
frames of a given test basic-unit into one of two classes: vow; 
els and consonants.'This indeed is a hypothesis testing (two- 
class) problem and it requires probability models for vowel & 
consonant anda robust thresholdas well. Tipping and Bishop 
[2] proposed PPCA, to emphasize the advantages of associ- ~ 

ating a probability model with principal componenl,analysis 
(PCA), rather than considering the algorithmic perspective of 
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a mapping from the latent space into the principal subspoce 
of the observed data. The maximum likelihood estimator for 
noise variance a' is given.by the average variance lost for 
each discarded dimension, and can be formulated as 

l d  
d , L  =r C X j .  ( 1  1 )  

4 j = " + l  

To sum up, a Probabilistic PCA is obtained by finding the q 
principal eigenvectors and eigenvalues of the sample covari- 
ance matrix S, while Gaussian distribution with sample mean 
p and covariance matrix 0'1 + UU', gives the density model. 

Vowel-Consonant Segmentafion as Hypothesis Testing 

To bring the segmentation problem into a Hypothesis testing 
framework, we need to have a probability model for vowels 
and consonanfs. This can be accomplished by calculating U, 
using equation 10 and plugging U into the covariance model 
given by C = 0 ~ 1  + UU'. Let us call the probability model 
for vowels and consonants as C,, and C,,, respectively. We 
have 

We use GEVV (Wp)), GEVC (WF') and the corresponding 
eigenvalue matrices (A?' & At') to obtain the parameters 
U,,, U,, ofland using equations 10 and I I. These param- 
eters are in turn used to generate probability model C,, and 
Cpc using equation 12. Assuming the V and C features to be 
zero mean Gaussian random processes with covariance matri- 
ces C,,, and C,,, the segmentation problem is to distinguish 
between the hypotheses 

under HO - { N(O,C,,) N(o,Cpc)  under H I  

Here, x is a zero mean fest basic-unit. A NP detector decides 
H I  if the likelihood ratio exceeds a threshold or if 

where, 

-+-=- exp[-Qz'C,;'z] 
(2.)W..l Lh(:c) = & exp[-Q~~C; 'zI  

the log-likelihood ratio (LLR) becomes 

I&) = {(z'C,-,'z) - (z'C,;'z])} > %I [y- 

Hence, we decide H I  if 

T ( z )  = Z1'(CP;.l - c,;',. > 711 *I2 y- m] (13) m 

Evaluation of fhe Threshold 

By simplifying the test statistics T ( z )  (eq. 13) into a standard 
distribution form, then the threshold (711) can be evaluated 
[ 5 ] .  Let A = C;' and B = C;, , equation 13 becomes 

T ( z )  = z T ( A  - B)z > y'l, (14) 

Define G = A-'B. Let the eigenvalue decomposition of G,  
be 

GV = AV, 

such that 
V'AV = A1 
V'BV = Az 

where, A, A1 and A2 are diagonal matrices. Writing equation 
15 in terms of A and B, we have 

(16) 
A = VA1V" 
B = VA2V' 

Substituting eq. 16 into 14, we have 

T ( z )  = zTV(Al  - Ay]V"x. (17) 

T(y)  = ?/T& (18) 

Let y = V'x. Then equation 17 becomes 

where, ;I = A1 -Az.  We know that x is zero mean. Therefore 
y is also zero mean, i.e., E{y} = 0 and the covariance ofy is 

If I( is a vowel, then C,,= C,, and VTCn,,V = A;'. Sim- 
ilarly, If x is a consonant, then C,,= C,, and V'rC,cV = 
A;'. So, we can write equation 18 as 

where {A, &, ..., &} are diagonal elements of i. 
Because y is i.i.d., T(y) is x2 (Chi-square) distributed and 
the detector turns out to be an energy'detector. The required 
threshold, 711, for segmentation is computed by using an op- 
timization algorithm for the fixed p.rnbabili$ offalse alarm; 
P F A [ 5 ] .  

where, 
. I .  

1 
a -7 

- rJ"(71). 

Now, the decision (segmentation) rule is 
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Figure 5. Segmentation of basic-unit using OPCA and 
PPCA. (a) Test basic-unit lollaal. (b)Vowel and consonant- 
norm contours after the projection of test basic-unit into V & 
C subspaces. ( c )  Test statistics T(y), along with the threshold 
for a given &a B 1 -4 .  (d) V & C decision after the class 
testing. (e) Spectrogram of lo l lad .  

Decide Vowel (HI) if 

otherwise decide Consonant (Ho), 

4. RESULTS AND D~SCUSSION 
Speech segmentation experiments were conducted on a Kan- 
nada speech database spoken by a female volunteer. GEVV’s 
and GEVC’s were obtained from a Tamil speech database 
spoken by a male volunteer using the method discussed in 
section 2. Feature vectors were obtained for each frame of 
a test basic-unit. Duration of each frame of speech was 30 
ms, with an overlap of 20 ms between successive frames. 
Each frame of speech was Hamming windowed and pro- 
cessed to yield a 13-dimensional feature vector. The fea- 
ture vectors used were MCC and LPCC. We have seen in 
Fig. I(b) that energy based segmentation fails to identify the 
co-articulated consonant region. On the oth8er hand, in Fig. 
2, the same consonant region has been correctly identified 
using subspace-based method. Figure 2(c) also displays the 
spectrogramofthe basic-unit leyol. Here, spectrogram shows 
clear second formant transition from the frontal vowel /el to 
the back vowel lo1 and the transition region corresponds to 

the consonant lyl. Basic-unit considered in Fig. 3 is VCCV 
and both C’s are glide and a nasal (lyl and lml). 

Probability models for V and C were obtained using equa- 
tions 10, l l and 12. Here, the observed feature vector t, and 
its dimension is 13, the, latent variable x has dimension of 3. 
ie., d = 13 and q = 3. Dimension of the latent variable 
x has been chosen based on the dimensions of GEVV and 
GEVC. The multiple crossovers present some uncertainty in 
classifying the basic-units into vowel and consonant parts. By 
employing classical decision theory, we can remove this un- 
certainty by choosing a threshold on a statistical basis. In 
plot 4(d), the basic-unit is seen to he clearly segmented. In 
Fig. 4(b), there are multiple crossovers and using the class 
decision approach shown in Fig. 4(d). we can eliminate false 
crossovers. We used fixed Pp, = l V 4  to calculate the 
threshold, $1. Figure 4(e) shows the spectrogram of laurnail. 
Figure 5(a) shows the co-articulated basic-unit lo1 I ad.  In Fig. 
S(b) we can see the multiple cross overs of the norm-contours. 
Fig. 5(c) shows the test statistics along with the threshold and 
V & C decision is shown in Fig. 5(d). Figure 5(e) shows the 
spectrogram oflollad. 

5 .  CONCLUSION 

We have presented subspace and hypothesis based methods 
for co-articulated basic-unit segmentation. The first method 
uses crossovers of norn-contours for segmentation. Norm- 
contours give a measure of energy in the projected sub- 
spaces. There may be an ambiguity when there are multiple 
crossovers. In the second method this ambiguity is resolved 
by finding a statistical threshold. The test statistic using NP 
criterion turns out to be an energy detector as in the first 
method but without any ambiguity in segmentation. PPCA 
method can be fulther extended to classify within the vowel 
or consonant segments in a basic-unit using mixture-PPCA 
[61. 

REFERENCES 

[I] G. L. Jayavardhana Rama. A. G. Ramakrishnan, R. Mu- 
ralishankar and P. Prathibha, ’‘A complete text-to-speech 
synthesis system in Tamil,” IEEE workshop on Speech 
Synthesis, 2002. 

[2] M. E. Tipping and C. M. Bishop, “Probabilistic princi- 
pal component analysers,” Journal of the Royal Statistical 
Society, vol. 61, no. 3, pp, 611-622, 1999. 

[3] Jan P. van Hemert. “Automatic segmentation of speech:’ 
IEEE Trans. Signal Pmc., vol. 39. no. 4. pp. 1008-1012. 
1991. 

[4] R. Duda and P. Hart Paltern Class&ation and Scene 
Analysis, New York: Wiley, 1973. 

[5] Steven M. Kay, Fundamentals ofStatistical Signal Pro- 
cessing : Detection Theoryy, Prentice-Hall, 1nc.A Simon & 
Schuster, New Jersy 07458, 1998. 

[6] M.E. Tipping and C. M. Bishop, “Mixture of probabilis- 
tie principal component analysers,” Neural Computation, 
vol. 11, no. 2, pp. 443-482, 1999. 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


