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Abstract-The main objective of this paper is to analyze the 
behaviour of a pair of oscillatory modes of a power system, 
essentially a swing mode and an exciter mode, that Dass near 
strong resonance. The method of prturbations suggested by 
Seiranyan [I] to describe the behaviour of a pair of eigenval- 
ues in the neighbourhood of a multiple point has been suit- 
ably modified to make it applicable to systems with feedback 
controllers. In the case of multimachine systems, the swing 
mode of interest is isolated by making use of the concept of 
modal transformation.The knowledge of participation factors 
helps in identifying the exciter mode that interacts with the 
swing mode. The illustrative examples comprise a Single 
Machine connected to Infinite Bus (SMIB) system and a 3- 
machine system with STATCOM supplementary modulation 
controller. 

1. INTRODUCTION 
As power systems grow and levels of power exchange in- 
crease to meet the ever increasing load demand, the sys- 
tems tend to he highly stressed. Tbe stability of an equi- 
librium point can be determined by an investigation of the 
linearized dynamics of the system. Changes in the system 
parameters may lead to interaction of two damped modes. 
The modes which are far away initially move close to each 
other and collide in such a way that one of the modes may 
subsequently become unstable. TIis collision occurs when 
the system matrix has two complex pairs of eigenvalues that 
coincide in both real and imaginary pans. If the matrix is 
not diagonalizable at the point of collision of eigenvalues, the 
phenomenon is termed strong interaction (strong resonance) 
and, weak interaction (weak resonance) if it is diagonalizable 
[2]. Dobson et al [3] have shown that strong resonance is 
a precursor to oscillatory instability in their study on 3-bus 
and 9-bus power systems. The generatbrs' power dispatch 
is varied to study the behaviour of two complex eigenvalues 
near the point of strong resonance. It is observed that be- 
fore collision the eigenvalues move together by a change in 
frequency and it is the strong resonance that transforms this 
movement into a change in damping. This change in damping 
ultimately results in one of the eigenvalues moving into the 
right half plane. Kwatny and Yu [4] have studied the effect 
of load parameter variations on an undamped stable system 

whose eigenvalues are on the imaginary axis. Loss of stabil- 
ity is noticed when two modes move towards each other along 
the i m a g i n q  axis as the parameter varies and collide before 
moving into the right and left half planes. This phenomenon 
is termed flutter instability and is generic in one pmmeter 
Hamiltonian systems. 
In the work presented in this paper the behaviour of two 
modes (essentially a swing mode and an exciter mode) of 
SMIB system which pass near strong resonance is analyzed 
by applying the theory developed by Seiranyan [I].This the- 
ory is extended to study the strong resonance in the presence 
of a STATCOM controller located at the load bus. 
In the case of 3-machine system with STATCOM damping 
controller, the two modes which interact near the point of 
strong resonance are identified. The concept of multi-modal 
decomposition [SI is applied to isolate the swing mode of in- 
terest. The relevant exciter mode is identified from the knowl- 
edge of participation factors. 
The organisation of the paper is as follows. Section 2 gives 
the background theory of strong resonance phenomenon. 
Section 3 presents the case studies of SMIB and 3 machine 
systems. Sections 4 and 5 present discussion and conclusions 
respectively. 

2. BACKGROUND THEORY 

SMIB System without STATCOM controller 

The method of perturbations is applied to analyse the interac- 
tion of the eigenvalues associated with the swing mode and 
the exciter mode in the neighbourhrhwd of the point of strong 
resonance with the help of a family of hyperbolae in the com- 
plex s-plane. The coefficients of the equations of these hyper- 
bolae are computed using an eigenvector and an associated 
vector, an eigenvector of the adjoint problem at the multiple 
point, and the increments of the parameters. 
The linearized model of a SMIB system can be expressed in 
terms of a second-order vector differential equation as 

[M]q + [D]q  + [Alq = 0 ( 1 )  

whek q = [A& AE;]*. 
The matrices M, D and A are defined in Appendix A 
The characteristic equation of the system is given by 

s4 + a t 2  + azsZ +ass  + a4 = 0 (2) 
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(The a b o x  equation is obtained from et s + I Is + .. . . .  
[ A ] )  = 0). The expressions for the coefficients a1 to a4 are 
given in Appendix B. 
The eigenvector U". the associated eigenvector u1 and the 
eigenvector vo of the adjoint problem are defined by the equa- 
tions 

[Ll% =,0 (3) 

[LlOl = - ~ 2 X o [ w ' ]  + [Dol)lb (4) 

[L'lu, = 0 ( 5 )  

[L]  = Ailbfnl + X,[D,I + ( A , ]  ( 6 )  

The parameter vector p u  corresponds to  a double root A, of 
the characteristic equation . To investigate the behaviour of 
the eigen values A in the neighbourhood of the point p = p, in 
the parameter space, the vector p, is given an increment p = 
p , + r k .  wherek = ( k 1 : k 2 >  ..., k,) isanarbitrarynonnalized 
variation vector such that Ikl = J k :  + k: + .... + k i  = 1 
and t is a small parameter, L > 0 

L' is the conjugate transpose of the matrix L,  where 

and MO = A4b0),D, = D(P,),& = A(P,). 

2 X Y  = bjApj (14) 
, = I  

Eliminating one of the parameters, say Apl, from equations 
(13) and (141, the equation for the hyperbola with mutually 
orthogonal asymptotes 
blX = Y(UI ?c (a: + b:)'l2) can be written as 

b l ( X 2  - Y2)  - 2 a l X Y  = A 0  = cmstont  (15) 

where 

,=2 
(16) 

The hyperbola can be constructed using the solution of the 
eigenvalue problems (3). (4) and ( 5 )  (to determine the quan- 
tities A,, uo, U,, U,>), and by computing the constants a, 2nd 
4. 

Note:. For a single parameter case k=%l and e = IApl, where 
Sysiems with STATCOM coniroller AP = P - P,. 

The expansion for X is given by The block diagram of a STATCOM supplementary modula- 
tion controller is shown in Figure I .  The control signal used 
is known as Thevenin voltage and is synthesized from the lo- 
cally measurable signal viz., the magnitude of the voltage of 
the bus at which the controller is connected [ 6 ] .  The output 
of the controller is the magnitude of the reactive current in- 
jected into the system. The controller gains K ,  and Xth are 
both tunable, and Tp is the STATCOM plant time constant 
(taken as ZOmsec).The controller is installed in the system to 
enhance the damping of critical modes. 

In the case of multi machine systems the swing mode of 

(') x = x, + &XI  + fX1 + P A 3  ... 

A: = Zf,b 

J~ = -([&I ~o.zl.)i((2~.~~o~ + [ D J ) ~ ~ , ~ , )  

where XI is the first correction given by 

j=1 

(8) 
where 

aL 

and + ~ l ~ f O l ~ ~ , U o ~ l - l  (9)NyJ 'y 

[e] = [E] + x o  [E] + [E] (10) 

Let aj=real( f , )  and bj=imag( J,) and Apj  = ck,. Then 
equation (8) after multiplying by t can be written as 

Figure 1. Block diagram of STATCOM damping controller 

interest is isolated by applying the concept of multi-modal 
decomposition [ 5 ] .  Thus the modal system representing the 
swing mode involves the the angle and the 
modal speed.The relevant exciter mode is identified from the 
knowledge of participation factors. The effect of other vsri- 
ables, not relevant to the modes which interact near strong 
resonance, is neglected. 
The system with STATCOM damping controller can be ex- 

n 

&At = [C(U~ + j b j )  ApjI1l2 
j = 1  

(11) 
h t  the increment i n  the eigenvalue be written i n  terms of the 
real and imaginary parts as 

&XI = X + j Y  (12) 

Using equation (12) and squaring equation (I I), 
n pressed by a vector differential equation 

X2 - Y2 = X a j A p j  (13) 
j=1 [MI0 + ID]@ + [Alq = (B]u + [ B d I Z i  (17) 
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where B and BA are 2-dimensional vectors. (see AD- 
pendix.C) 
The output equation of the system with the STATCOM damp- 
ing controller can be written in terms of the input AI?, the 
output matrix G and d (the coefficient of the input variable in 
the output equation of the system) as 

AI4 = [G]q+dAI.. (18) 

From the controller input-output relation and equation (181, it 
is easy to obtain an equation relating AIr and q as 

(19) 

where 

T, = Tp + K,(d - Xth) (20) 

Substitution ofequation (19) in equation (17) gives 

where IAI]=Tc[M], 
[Az]=[M] + Tc[DJ + I(,[B&'], 
[AsI=[Dl + z [ A l  + KrlBCl 
and [&]=[A]. 
The elements of the matrices A,,  Az, A3 and A4 are functions 
of the components of the parameter vector p = (Kv ,X th) .  
Let the parameter vector corresponding to a double root A, of 
the characteristic equation det[s3Al + sZA2 + sA3 + ,441 = 
0 be p,. The corresponding eigenvector uo, the associated 
eigenvector U , .  and the adjoint eigenvector uo are determined 
respectively from the equations 

LZlO = 0 (22) 

Lui = -[3X;Aio + 2X0Az0 + A B ~ I U ~  (23) 

L'u, = 0 (24) 

where 

L = [A:Ai, + A:A2, + XoA3, +Ad,] = 0 (25) 

(L* is the conjugate transpose of the matrix L )  

To investigate the behaviour of the eigenvalues X in the neigh- 
bourhood of the point p = p .  in  the parameter space a family 
of hyperbolae can be constructed by solving the eigenvalue 
problems (22). (23) and (24) and following the procedural 
steps given for the case of systems without STATCOM damp- 
ing controller. 

. and AI,=AI ( P ~ ) ,  Az~=Az(P,) ,  AJ.=AS(P~,) and A 4 0 = A i ( ~ o )  

3. CASE STUDIES 
SMIB System withouf STATCOM supplementay modulation 
controller 

The SMIB system is shown in Figure.2.The generator is r e p  
resented by (1.0) model and the load is ofconstant impedance 

2 J 

t- 4 <W, 

Figure 2.  A single machine system 

type. A static exciter with a single time conslant AVR is con. 
sidemd. The system data are given in Appendix.D 

Figure.3 shows that when the generator dispatch is increased 
maintaining the terminal voltage constant at V,=V,,, where 
Vgo is the value of generator terminal voltage at strong res- 
onance (equal to 0.9933 pu), the eigenvalues associated with 
the exciter mode (EM) and the swing mode (SM) move 10- 
wards each other and collide at A, (-0.5312.5.8878) corre- 
sponding to P,=O.2410 pu. After collision, the direction of 
movement of the eigenvalues changes by 90 degrees. This 
colliiion of the eigenvalues takes place when the deviation in 
Vg is zero, i.e. AVy=O. When a perturbation is effected in Vy, 
i.e. AVg # 0, the increase in Pg makes the two eigenvalues 
move away from each other in the opposite directions near the 
double point. It is interesting to note that the two eigenvalues 
reverse the quadrants when the deviation in the terminal volt- 
age changes sign. A similar analysis can he carried out by 
varying V, and maintaining Py constant. 

Figure 3. 
system when P, is varying. 

Asymptotic behaviour of'eigenvalues of SMIB 

Svstems with STATCOM supplementay modulation con- 
tmller 

SMIB System-A STATCOM with its supplementary mod- 
ulation controller is connected at the load bus of the SMIB 
system shown in Figure.2. The initial output of the STAT- 
COM is zero.The asymptotic behaviour of the eigenvalues as- 
sociated with the exciter mode and the swing mode near the 
point of strong resonance (-0.2353.5.9212) corresponding to 
Ps=0.5 pu and Vg=l.O pu, is analyzed by drawing a hyper- 
bola (see Figure. 4) by varying K? monotonically, keeping 
,Ythconstant. It is observed from Figure.4 that the damping of 
the swing mode keeps increasing and that of the exciter mode 
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$e eigenvalues of interest tn the neighbourhood of the point 
of strong resonance (-1.1131,l3.129) due to the increase in 
i)K7 for fixed values of X+h, and ii) Xlh for fixed values of 6 1  

5.71 I 1 
-04 4 . 3  -0.2 4 1 0 

nalpn 

Figure 4. 
system when K ,  is varying. 

Asymptotic behaviour of eigenvalues of SMIB 

keeps reducing as the controller gain K ,  is increased, till the -1.3 -1.2 -1.1 -1 4.9 
,081 pm eigenvalues associated with the swing mode and the exciter 

mode Pass near Strong r eS"e ,  after which the damping of 
the modes remains almost constant. Thus in the system under 
consideration, the phenomenon of strong resonance limits the 
damping of the modes of interest. 

3-Mochine SysSysfem-A 3-machine system (the data of which- 
are given in [ 6 ] )  is considered for the analysis of eigenvalue 
behaviour in the neighbourhood of the point of strong reso- 
nance. The generators are represented by a (1.1) model and 
the loads are of constant power type. High gain AVR with a 
single time constant exciter is considered for each generator. 
A STATCOM with its supplementary modulation controller 
is connected.at bus no.9 close to generator 110.3. The initial 

Figure 6.  Asymptotic behaviour of eigenvalues of 3-machine 
system when K, is varying 

13.25 

output of the STATCOM is zero.While tuning the controller 
at the given operating point to enhance the damping of swing -1.3 -1.2 .,,, - I  
modes bv varvina the zain K, (with a fixed value of X d ,  it 

12.95 __- 
realpa" . . _  - 

was noticed [7] that there is an interaction (as shown in the 
Figure.5) between the exciter mode associated with the gen. 
erator no.3 and the swing mode of frequency 13.109 radsec. 

~i~~~~ 7. ~~~~~~~~i~ behaviour ofeigenvalues of3.machine 
system when Xth is varying 

Figure 5.  Root loci showing the interaction of two complex 
modes in 3-machine system when K, is varying. 

For the analysis of the behaviour of these two oscillatory 
modes by the application of the method of perturbations, the 
system is reduced by considering the dynamics of the two 
modes that interact in the neighbourhood of a multiple point. 
Figure.6 and Figure.7 illustrate the asymptotic behaviour of 

4. DISCUSSION 
This paper extends the work reported in [3] by identifying the 
modes (a swing mode and an exciter mude) responsible for 
strong resonance. Previous work [4] focussed on the strong 
resonance phenomenon resulting from two swing modes. 
The analysis of strong resonance (caused by interaction of 
a swing mode and an exciter mode) due to the variation of 
controller parameters associated with a STATCOM has been 
investigated for the first time. 
From the results obtained on the eigenvalue interaction near 
the multiple point. it is observed that the phenomenon of 
strong resonance results either in instability of one of the 
modes or in limiting the damping of modes. In the case of 
three machine system it is interesting to note that the ex- 
citer mode, pertaining to the generator close to the bus at 
which the damping controller is connected, interacts with a 
swing mode leading to the strong resonance phenomenon. It 
is also observed that near strong resonance, the eigenvalues 
move quickly and turn through 90 degrees(approx). A small 
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change in the parameter near strong resonance causes a sig- 
nificantly large change in damping or frequency of the modes 
concerned. 
Although the analysis in a multimachine system is based on 
the reduced model retaining only the two modes of interest 
and the controller, the results obtained from the analysis are 
accurate enough to pre?ict the behaviour of eigenvalues in the 
neighbourhood of strdng resonance for the detailed system. 

where 
KT+ z. 
Kv.=%. and K F ,  “ln is defined from the equation 

5 .  CONCLUSIONS 

This papcr investigates the phenomenon of strong resonance 
in power systems with STATCOM supplementary modulation 
controller.This involves interaction between a swing mode 
and an exciter mode which can be identified. The analysis 
is based on a reduced system retaining only the two modes 
of interest and the controller. The asymptotic behaviour of 
the two modes in the neighbourhood of strong resonance is 
investigated and compared with the root loci of the detailed 
system. 

6. APPENDIX 

A. Matrices of vector differential equation SMIB System 

K3AEf,, - I<,K4A6 - K3KprAIl l  
1 i .sTioK3 

A$ = 

D. SMlB System Data 
Generator: R,=O, zd=2.442, x,=2.421, xb=0.83, T;,=5.33, 
H=2.832, D,=0, Aig = 2H/wb 
Exciter: K~=450,  T ~ = 0 . 6 ;  
Line 1-2: R=O.X=0.168, B = 2 x 0.01: 
Line 2-3: R=O,X=0.126, B = 2 x 0.008; 
Load: P,,=l.O, QL=0.3: 
E,,,=l.O, fb=60 Hz. 
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