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Fetal Lung Maturity Analysis Using Ultrasound
Image Features

K. N. Bhanu Prakash, A. G. Ramakrishnan, Senior Member, IEEE, S. Suresh, and Teresa W. P. Chow

Abstract—This pilot study was carried out to find the feasibility
of analyzing the maturity of the fetal lung using ultrasound images.
Data were collected from normal pregnant women at intervals of
two weeks from the gestation age of 24 to 38 weeks. Images were
acquired at two centers located at different geographical locations.
The total data acquired consisted of 750 images of immature and
250 images of mature class. A region of interest of 64 64 pixels
was used for extracting the features. Various textural features were
computed from the fetal lung and liver images. The ratios of fetal
lung to liver feature values were investigated as possible indexes
for classifying the images into those from mature (reduced pul-
monary risk) and immature (possible pulmonary risk) lung. The
features used are fractal dimension, lacunarity, and features de-
rived from the histogram of the images. The following classifiers
were used to classify the fetal lung images as belonging to mature
or immature lung: nearest neighbor, -nearest neighbor, modified

-nearest neighbor, multilayer perceptron, radial basis function
network, and support vector machines. The classification accuracy
obtained for the testing set ranges from 73% to 96%.

Index Terms—Classification, fetal lung, fractal dimension, lung
maturity, sonogram, texture.

I. INTRODUCTION

T HE ASSESSMENT of fetal lung maturity is of great value
in perinatal management. The lung development involves

biochemical and anatomical components. Biochemical maturity
can occur as early as 28 weeks or as late as term. However, the
anatomical development is closely related to the gestation age
(GA). Congenital anomalies account for 20–25% of perinatal
deaths [1]. Prenatal diagnosis (PD) is essential to avoid an un-
toward outcome for the fetus or the mother, or both. Specifi-
cally, PD helps in managing the remaining weeks of the preg-
nancy, determining the outcome of the pregnancy, planning for
possible complications during birth, planning for problems that
may occur in the newborn infant, deciding whether to continue
the pregnancy, and finding conditions that may affect future
pregnancies. A variety of noninvasive and invasive techniques
are available for PD. Each of them can be applied only at spe-
cific time periods during the pregnancy for greatest utility. All
the techniques for PD except ultrasonography are invasive, in-
volving at least a sample of maternal blood.

In amniocentesis, the study of lecithin–sphingomyelin (L/S)
ratio is the most useful. This test, being invasive, carries risks,
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and on occasion may be contraindicated. Ultrasonography is a
noninvasive procedure that is harmless to both the fetus and the
mother. Ultrasound can be used to determine fetal size, GA,
and the condition of placenta. Ultrasound cannot measure any
of the biochemical parameters of fetal lung maturity (LM), nor
can it provide direct histologic information about fetal lung de-
velopment. However, it is reasonable to assume that both mor-
phological and biochemical changes alter the diffuse scattering
and other propagation properties of fetal lung. This may change
the textural appearance of sonogram. Sonographically deter-
mined parameters of fetal biparietal diameter (BPD) and pla-
cental grading (PG) have been related to fetal LM, with an ac-
curacy ranging from 78% to 100% [2].

There has been an extensive debate for and against the
use of sonographic features for analyzing fetal lung maturity.
Thiemeet al. [3] studied the lung development in a lamb and
analyzed the development of lung through sonographic pat-
terns. Garrettet al. [4] state that reflectivity of human fetal lung
is equal to or less than that of liver throughout most of preg-
nancy, but that relationship reverses in late gestation. Cayeaet
al. [5] claim that there is no statistically significant correlation
between the sonographic features and the biochemical fetal LM
indexes, namely, L/S ratio and phosphatidylglycerol values.
Bensonet al. [6] employed radio-frequency (RF) signals for
characterizing fetal lung and liver tissues. They observed a
spectral shift in the reflected signals from a high to a low
frequency range, when the lung makes a transition from
immature to mature state. Feingoldet al. [2] used densitometer
measurements to establish a correlation between lung–liver
echogenicity and L/S ratio. Podobniket al. [7] developed
a relation between the coefficient of variation of lung–liver
echogenicity and L/S ratio. Petruchaet al. [8] measured BPD
and PG from ultrasound. They concluded that ultrasonically
determined BPD together with the PG is at least as sensitive as
the L/S ratio in predicting the pulmonary maturity. Sohnet al.
[9]–[11] carried out frequency analysis of both fetal lung and
liver, and the ratio between the mean and the range of the
frequencies received was used as an index of maturity analysis.

Some of the earlier studies have used echogenicity of the lung
and liver as a possible index of pulmonary maturity [2], [4], [9].
Many researchers have used textural measures to study and ana-
lyze the liver texture in differential diagnosis of liver [12], [13].
Since echogenicity is sensitive to machine settings, and textural
features have been used in the literature to analyze the echotex-
ture of liver, we have tried in this work to classify lung images
as belonging to mature (least or no pulmonary risk) or immature
(possible pulmonary risk) classes using the textural features de-
scribed in Section III. The motivation for the work described in
this paper was to find the possible changes in the sonogram tex-
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ture during the transition from a high pulmonary risk group to
low risk group. Here we have attempted quantitative texture as-
sessment rather than qualitative (which could be subjective). In
this paper, we refer to the group with pulmonary risk as imma-
ture class and the one with reduced risk as mature class. Since
it is known clinically that many babies at 34 weeks of gestation
do not have pulmonary risk, we have considered subjects above
35 weeks as belonging to the mature class.

II. DATA COLLECTION

Ultrasound examinations were performed both at Mediscan
Systems, Chennai, India, and at the University Hospital in Kuala
Lumpur, Malaysia. Data were collected in both places using
the real-time ATL Apogee 800 plus scanner with a 3.5-MHz
curvilinear, broad bandwidth transducer probe with the dynamic
range set at 55 dB. Adequate care was taken to ensure that
imaging was performed in a similar way at both locations. The
overall gain was set at an optimal value to get uniform visi-
bility. Longitudinal and transverse sections of the fetal thorax
and upper abdomen were imaged. The fetal lung and liver were
identified in the thoracic and upper abdominal sections, respec-
tively. Care was taken to avoid obvious vascular structures in the
liver. The machine settings were optimized to obtain a uniform
echo texture. The postprocessing curves were unchanged. The
focal zone was adjusted so that the area of interest was always
in the focal zone. To test the validity of the method across pop-
ulations, and to confirm its robustness, samples were collected
from 1000 subjects belonging to Indian, Chinese, and Malayan
races. Data were collected from the subjects at GAs from 24
to 38 weeks, at regular intervals of two weeks. Since most de-
liveries after 34 weeks can be effectively handled with medical
support, and in most Asian races the pregnancy ends around 38
weeks, data were collected only up to 38 weeks. The subjects
were rigorously followed up throughout the pregnancy and also
after delivery. Only the data corresponding to normal pregnan-
cies, also leading to babies with normal pulmonary functions,
were included in our analysis.

The purpose of our pilot study was to obtain the trend of the
textural features of the normal fetal lung as a function of the
GA. A cross-sectional study of normal fetuses has shown that
the overall size of a fetus at each GA falls within a range of fifth
to ninety-fifth percentile. Hence, in our study, since normal sub-
jects are chosen, large variations in depth were not encountered.
The lung and the liver areas taken for analysis were contiguous
and at the same depth for each fetus. The appropriate section of
each image was frozen and then transferred to videotape. The
images were then digitized using an 8-bit Creative video grabber
card. The size of the digitized image was 320240 pixels with
a resolution of 29 pixels/cm. The histogram of the images was
first stretched to have a uniform range of gray values. To obtain
good estimates of the fractal features, it is advisable to get as
large a region of interest (ROI) as possible. However, we had
the constraint that the same area of ROI must be available in
both the liver and the lung regions of all the images obtained.
Thus, regions of interest (ROIs) of 64 64 pixels each from
the lung and liver regions were used for extracting textural fea-
tures. Fig. 1 shows two fetal echogram samples, with the ROI
selected from both the liver and the lung regions. The total data

(a)

(b)

Fig. 1. Samples of fetal echogram with lung and liver regions and ROIs. (a) 30
weeks and (b) 26 weeks.

acquired consisted of 750 images from immature class and 250
images from mature class. The lung-to-liver ratio of various fea-
ture values was studied as a possible index of maturity.

III. FEATURE EXTRACTION

The various textural features extracted are described in this
section. The features were analyzed using statistical tests to find
the correlation with respect to GA. Their computational costs
were also considered in finalizing the features to be used for
classification. A feature vector was formed using the selected
features.

A. Spatial Gray-Level Dependence Matrices (SGLDMs)

The SGLDMs are based on the estimation of second-order
joint conditional probability density functions, denoted by

. Here is the probability that a pair of
pixels separated by a distanceat an angle have gray levels
and . The angles are quantized to 45intervals. The estimated
probability density functions, denoted by , are
obtained as in [14] and [15].

Haralick [15] proposed 14 texture measures that can be ex-
tracted from the matrices. In our study, the five tex-
ture features (energy, entropy , correlation , inertia and
local homogeneity ) are computed

(1)

(2)
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(3)

(4)

(5)

where and
.

The two summations are carried out over all the values of
and , respectively. is

the th element of for a specified , is the number of
gray levels in the image, and . Similarly,

and are computed. Each measure is evaluated for
and , , , and .

B. Gray-Level Difference Matrix (GLDM)

Let be the image intensity function. For any given
displacement , let

and be the probability density
of . If there are gray levels, this has the form of an

-dimensional vector whoseth component is the probability
that will have value . The value of is obtained
from the number of times occurs for a given , i.e.,

. Four possible forms of the vector
were considered: , , , and ,

where is the interpixel distance. From each of the density
functions, five texture features [contrast (CON), mean, entropy
(ENT), inverse difference moment (IDM), and angular second
moment (ASM)] were extracted. In each case, the subscript

CON (6)

Mean (7)

ENT (8)

IDM (9)

ASM (10)

C. Laws’ Textural Measures

Laws’ textural energy measures [17] are derived from
three vectors, each of length three: ,

, and . These represent, respec-
tively, the operations of local averaging, edge detection, and
spot detection. If these vectors are convolved with themselves
or with one another, we obtain, among others, the following
three vectors, each of length five: ,

, and ,
which perform local averaging, spot, and edge detection,
respectively. The masks used in our analysis are and

. The masks were convolved with each image, and the
entropy of the resulting image was calculated.

D. Fractal Dimension and Lacunarity

The fractal dimension (FD) is computed based on the con-
cepts of multiresolution image analysis and fractional Brownian
motion model (fBMM). The intensity surface of an ultrasonic
image can be viewed as the end result of random walks, and
fBMM [18] can be used for its analysis. FD and lacunarity
(LAC) are the important features that characterize the roughness
and granularity of the fractal surface. Given an image
, the intensity difference vector (IDV) is defined as IDV

, where is the maximum possible scale
and is the average of the absolute intensity difference of
all pixel pairs with horizontal or vertical distance. We com-
pute as

(11)

and , where is the fractal dimension. The value of
is obtained by using least squares linear regression to estimate

the slope of the curve of versus in log–log scale. Given a
fractal set , let be the probability that there arepoints
within a box of size , centered about an arbitrary point of.
We have , where is the number of possible
points within the box. The LAC is defined as

(12)

where and .

E. Histogram-Based Features

The histogram-based features calculated were mean, variance
(VAR), coefficient of variation (CV), skewness, kurtosis, and
second moment (SM).

Out of the 64 features extracted, the features of GLDM and
SGLDM had similar variations. Since computation of SGLDM
features is both time- and memory-consuming, we discarded
those features. The features that were retained are FD, intercept,
LAC, CON, ENT, IDM, ASM, MEAN from GLDM, entropy of
Law’s textural measures, mean, VAR, CV, skewness, SM, and
kurtosis from histogram of the images. We performed Pearson’s
correlation test on these features to find out which of them are
highly correlated with GA. The following six features had a cor-
relation coefficient greater than 0.5: FD, LAC from fractal mea-
sures, mean, VAR, CV, and SM calculated from the histogram.
The ratios of these features were used as input to the classifiers.
It was observed that data sets from both the hospitals exhibited
similar behavior.

IV. CLASSIFIERS

The ultrasonic images were classified into mature and imma-
ture classes using the following classifiers.

A. Nearest Neighbor Classifier

This classifies an unknown sample as belonging to the same
class as that of the most similar or nearest sample point in the
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training set of data. “Nearest” can be taken to mean the smallest
Euclidean distance in the feature space.

B. -Nearest Neighbor (-NN) Classifier

There is a possibility of an NN classifier yielding an erro-
neous decision if the obtained single neighbor is an outlier of
some other class. To avoid this and improve the robustness of
the approach, the-NN classifier works with patterns in the
neighborhood of the test pattern. In our study, the value ofwas
chosen to be seven after testing with a number of values of.

C. Modified -Nearest Neighbor ( -NN) Classifier

In the -NN classifier, though a search in a-neighborhood
drives classification, the distance of a template from the test char-
acter does not play any role. In an effort to bring about a weighted
representation, the -NN classifier or weighted -NN asso-
ciates a distance-based weight with each prototype member in
the -neighborhood. This weighted representation schedule then
drives the classification process. The algorithm is as follows.

1) Compute the Euclidean distances between the test (fea-
ture) vector and the reference vectors.

2) Sort the reference vectors based on the distances and
choose the least distantpatterns.

3) Calculate weight associated with each reference pat-
tern in the neighborhood.

4) Find the class that contributes maximum weight in the
neighborhood. Declare the test pattern to be belonging to
this class.

The weight is calculated as follows. Let
be the set of reference patterns in the

neighborhood of the test pattern in the feature space, sorted in
increasing order of their distances from the test pattern. Let

be the respective distances from the
test pattern, where is the minimum and is the maximum
distance. Let be a weight set with
as the weight assigned to patternbased on its distance from
the test feature vector, given as

(13)

By testing with different values of , we found that
gave a classification accuracy better than any other value.

D. Multilayer Perceptron (MLP)

The MLP is a feedforward network, capable of generating
nonlinear boundaries. It has been successfully applied to solve
some difficult and diverse problems. In our study, a two-layer
network was chosen with six input nodes, one hidden layer with
three nodes, and two output nodes after exploring the perfor-
mance of various configurations. The hidden layer had sigmoid
activation function, whereas the output nodes had linear activa-
tion function.

E. Radial Basis Function (RBF) Network

The RBF network performs interpolation in a multidimen-
sional space. The RBF network has a high-dimensional hidden
layer with Gaussian kernels. In the current study, a network
with six input nodes, 15 hidden nodes, and two output nodes

was used. The centers of the Gaussian kernels were estimated
through -means algorithm.

F. Support Vector Machine (SVM)

In the SVM, the optimal hyperplane decides the separation
between individual classes of patterns. The optimality is in the
following sense: the average distance between the hyperplane
and the closest training points on both sides is maximal. This
aids in maximizing the correct classification rate. Whereas data
with linear separability may be analyzed with a hyperplane, lin-
early nonseparable data are analyzed withkernel functionssuch
as higher order polynomials, Gaussian, and-sigmoid. The
output of an SVM is a linear combination of the training exam-
ples projected onto a high-dimensional feature space through
the use of kernel functions. We tested all the kernels mentioned
above, and the Gaussian kernel gave the highest classification
accuracy. The value of the standard deviation was chosen as 0.2.

The nearest neighbor,-nearest neighbor [21], and -
nearest neighbor classifiers were implemented in C. For mul-
tilayer perceptron and radial basis function [22], we have used
Netlab, a package developed by Bishop and Nabney, Neural
Computing Research Group, Aston University, U.K. For SVM,
we used SVM_TORCH, a software developed by a group at
IDIAP, Switzerland [23].

V. TRAINING AND TEST DATA

The collected data were grouped into two classes, namely, im-
mature and mature, depending on the GA. Samples from 24 to
34 weeks of gestation were considered to belong to the imma-
ture class (possibility of pulmonary risk) and those from 36 to 38
weeks as mature (reduced risk), as pulmonary risk is very rare
after 35 weeks of gestation . Three different types of training
and test sets were formed from the samples. The first set had
800 training and 200 test samples. Of the training data, 600 be-
longed to the immature class and 200 to the mature class. The
test set contained 150 samples of immature class and 50 of ma-
ture class. In the second training set, 400 samples were from 24
to 30 weeks of gestation and 200 from 36 to 38 weeks. In the test
set, 200 samples belonged to 32 to 34 weeks of gestation and 50
to 36 to 38 weeks. The third set contained 400 training samples,
with an equal number from immature and mature classes. The
test set had 100 samples, and an equal number of immature and
mature samples were randomly picked from the total data set.
The rationale behind the selection of these three training and test
sets is explained in the discussion section. In our training, we
have considered immature lung classified as immature as true
positive (TP) and immature lung classified as mature as false
negative (FN).

VI. RESULTS

Fig. 1 shows the lung and liver areas in the fetal images and
the ROIs for extraction of textural features. Fig. 2 gives the de-
scriptive statistical details of the lung-to-liver feature values in
the form of boxplots. It also characterizes the variation of the
above features with respect to GA. Fig. 3 demonstrates the dy-
namics of the features, chosen based on the correlation test, as
a function of the GA for the lung and the liver. Fig. 3(a) and (b)
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Fig. 2. Plot showing the variation of the ratio of lung–liver feature values with gestation age.

show that the FD and LAC of lung increase as a function of the
GA. This is to be expected because the granularity of the cells
changes with the GA. Explicitly, the cells of the lung are found
elongated during early gestation period, which could give rise
to images that are quite smooth, that is, less granular in nature.
However, the cells become spherical and fluid-filled [3] toward
the term. Further, since the fluid-to-tissue content ratio changes
with GA, the diffuse scattering properties also change, leading
to more granular images.

Fig. 3(c) shows a decrease in the echogenicity of lung as com-
pared to liver as the GA increases. The echogenicity of the lung
is almost the same as the echogenicity of the liver at early GA.
Thus, the lung seems to attenuate ultrasound waves more than
the liver at later GAs (see [6]). The variance of the gray values
of the lung [Fig. 3(d)] has an upward trend with GA, whereas
that of the liver remains relatively unchanged throughout the pe-
riod. The plot of CV [Fig. 3(e)] shows a similar trend as that of
the VAR, and the plot of SM Fig. 3(f) is similar to that of FD. It
may be noted that the nature of variation of the features of the
liver is, in most cases, similar to that of the lung.

Table I shows the results of classification. In all the cases, we
have fewer false negatives, which is a preferred outcome. The
results indicate the consistency of classification.

VII. D ISCUSSION

In the area of fetal monitoring, a reliable method to determine
lung maturity is very essential. The use of ultrasound to study
fetal lung maturity is advantageous over others because of its
noninvasive nature. Traditionally, ultrasound has been used in
fetal monitoring to obtain physical measurements of fetal size
and placenta condition. In our work, pulmonary risk assessment
based on ultrasound textural features has given encouraging re-
sults. Since in all the cases the lung and the liver have been
imaged together, the effects due to the imaging techniques (in-
cluding the internal processing by the machine) must affect both
of the regions similarly, and thus must not cause any variations
on the textural features of the lung and liver differentially.

We have considered three different training and test sets,
as explained in the earlier section. This formulation is to test
the generalization and adaptability of the classifiers. The first
training set is more biased toward immature class. We need
our classifiers to be more sensitive and specific for immature
class, because classification of immature class as mature is
less desirable. If a mature lung is classified as immature, the
problem is not very serious because adequate care would be
taken. The classifiers’ accuracy for the training and test sets is
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Fig. 3. Plot showing the variation of various features of lung and liver with respect to gestation age.

given in Table I. It may be noted that all the classifiers have
almost comparable accuracy of classification, with NN and

-NN having a little edge over the others. The number of
false negatives is low for every classifier. The results show a
high degree of specificity of the classifiers to the immature
class.

In the second case, the training set did not contain any sample
from 32 to 34 weeks, and the test set did not contain any sample
from GAs below 32 weeks. This step was undertaken to ensure
that the classifier is not biased by data, which could belong to
either of the classes. Maturity does not occur before 32 weeks
for a normal fetus, whereas it is guaranteed beyond 36 weeks
[24]. Thus, the testing of images from the intervening period
is likely to throw light on the transition period. An increase in
the number of false negatives is seen in this case (see Table I).
This is because we have assumed that the data correspond to the
immature class, whereas in reality, some of them could actu-
ally have transited to the mature class. As seen from the results,
the NN classifier and its variants have performed poorly when
compared to other classifiers, showing their poor generalization
capability.

In the third set, we had an equal number of samples from both
classes in order to have an unbiased training of the classifiers.

From Table I, we see that even in the case of unbiased training,
the classification results are very consistent, with few false nega-
tives. In fact, the results are very close to the biased training, and
in the case of RBF and SVM classifiers, better than the latter.

The NN and -NN have performed better where represen-
tative samples from all GAs were used. The performance of all
the classifiers was similar when trained and tested with samples
only from definitely immature ( 30 weeks) and mature (36
weeks) classes. When the training and test data contained sam-
ples from all the GAs, the neighborhood classifiers performed
better. Their accuracy can be attributed to more closeness in the
neighborhood relation among the samples at the boundary of the
two classes. The boundary samples along with the other samples
of the two classes contribute to the greater accuracy of NN and

-NN classifiers.
The classification accuracy for-NN and -NN was com-

puted for various values ofstarting from for the training
and test sets. The classification accuracy decreased with in-
creasing up to , started increasing from , and
decreased once again for . Based on this test, the value of

was selected.
Some of the earlier studies [2], [4]–[7], [9] have established

the usefulness of ultrasound examinations in predicting pul-
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TABLE I
CONFUSIONMATRIX OF VARIOUS CLASSIFIERS FORTESTSETS 1, 2,AND 3 (I:
IMMATURE CLASS, M: MATURE CLASS, CA: CLASSIFICATION ACCURACY FOR

TEST SET, AND FN: NUMBER OF FALSE NEGATIVES)

monary maturity with various degrees of accuracy by using var-
ious features like placenta grading, physical measurements of
fetal size, echogenicity of the lung and liver region, attenua-
tion of frequencies in lung and liver region, and shift in the RF
frequency spectrum during the process of maturation. We have
used textural features as a measure of pulmonary maturation,
which has yielded an accuracy of classification from 73% to
96%. To the best of the authors’ knowledge, this seems to be
the first ever attempt to classify fetal lung maturity in terms of
textural features of the ultrasound image.

VIII. C ONCLUSION

In this paper, we have shown that the textural features are
better indicators of the histological changes, compared to the

study of only the echogenicity. Based on the obtained results,
it appears that a fairly accurate decision about the maturity of
the fetal lung can be made based on the characteristics of the
ultrasound images. This result is worth investigating further be-
cause of its clinical ramifications. A complete sonographic anal-
ysis, which combines the above textural features with parame-
ters such as fetal BPD, PG, femur length, head circumference,
and the abdominal circumference, could possibly enhance the
prediction accuracy. Also, an analysis of data from high-risk
pregnancies (mothers with hypertension or diabetes mellitus)
could be used to further validate the prediction of maturity using
sonographic features. Further investigation of textural features
of ultrasound with biochemical tests will help to establish the
validity of the method and eliminate the use of invasive tests for
fetal pulmonary maturity analysis.
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