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Fetal Lung Maturity Analysis Using Ultrasound
Image Features

K. N. Bhanu Prakash, A. G. Ramakrishn&enior Member, IEEES. Suresh, and Teresa W. P. Chow

Abstract—This pilot study was carried out to find the feasibility ~and on occasion may be contraindicated. Ultrasonography is a
of analyzing the maturity of the fetal lung using ultrasound images. noninvasive procedure that is harmless to both the fetus and the

Bvﬁga\‘N were ?%L‘:Cttﬁg ;?Qaﬂgﬁmaﬂepﬁgznfg ‘é"sor\z‘;gkf ilnézré’g':vs;remother. Ultrasound can be used to determine fetal size, GA,
acquired at two centers located at different geographical locations. and the condition of placenta. Ultrasound cannot measure any

The total data acquired consisted of 750 images of immature and ©f th? biochemipal parameters of fetal !Ung maturity (LM), nor
250 images of mature class. A region of interest of 6% 64 pixels can it provide direct histologic information about fetal lung de-
was used for extracting the features. Various textural features were velopment. However, it is reasonable to assume that both mor-

computed from the fetal lung and liver images. The ratios of fetal phological and biochemical changes alter the diffuse scattering
lung to liver feature values were investigated as possible |ndexesand other propagation properties of fetal lung. This may change

for classifying the images into those from mature (reduced pul- h | f S hically d
monary risk) and immature (possible pulmonary risk) lung. The € textural appearance of sonogram. Sonographically deter-

features used are fractal dimension, lacunarity, and features de- Mined parameters of fetal biparietal diameter (BPD) and pla-
rived from the histogram of the images. The following classifiers cental grading (PG) have been related to fetal LM, with an ac-
were used to classify the fetal lung images as belonging to mature curacy ranging from 78% to 100% [2].
o imma“t"ﬁéynh%or:eﬁz elstFlgeégrhbgr%’g":%?ref;g,‘;ggggg T%‘g{?gg There has been an extensive debate for and against the
-neares | , multl , | IS TU | . . .
network, and sgupport vectoryma(ghinesp.) The classification accuracy US(_E' of sonographic features for analyzing feta! lung maturity.
obtained for the testing set ranges from 73% to 96%. Thiemeet al. [3] studied the lung development in a lamb and
analyzed the development of lung through sonographic pat-
terns. Garretet al. [4] state that reflectivity of human fetal lung
is equal to or less than that of liver throughout most of preg-
nancy, but that relationship reverses in late gestation. Catyea
|. INTRODUCTION al. [5] claim that there is no statistically significant correlation

HE ASSESSMENT of fetal lung maturity is of great valudetween the sonographic features and the biochemical fetal LM

in perinatal management. The lung developmentinvolvgldexes’ namely, L/S ratio anpl phosphatidylglycgrol values.
biochemical and anatomical components. Biochemical maturignsonet al- [6] employed radio-frequency (RF) signals for
can occur as early as 28 weeks or as late as term. However,§iracterizing fetal lung and liver tissues. They observed a
anatomical development is closely related to the gestation aggectral shift in the reflected signals from a high to a low
(GA). Congenital anomalies account for 20-25% of perinatifduency range, when the lung makes a transition from
deaths [1]. Prenatal diagnosis (PD) is essential to avoid an (ffmature to mature state. Feing@tial. [2] used densitometer
toward outcome for the fetus or the mother, or both. Specifiiéasurements to establish a correlation between lung-liver
cally, PD helps in managing the remaining weeks of the pre ghoge;mcnty and L/S ratio. .P.odobmkt a.l' .[7] developeq
nancy, determining the outcome of the pregnancy, planning rrelatlon 'between the goefﬂment of variation of lung-liver
possible complications during birth, planning for problems th&€0genicity and L/S ratio. Petruckaal. [8] measured BPD
may occur in the newborn infant, deciding whether to contin@d PC_; from ultrasound. T_hey CO“C'Lﬂded that uItrasor_ng:aIIy
the pregnancy, and finding conditions that may affect futu%etermmec_i B_PD tog_et_herwnh the PG is at Ieas_t as sensitive as
pregnancies. A variety of noninvasive and invasive techniqu L/s ratio in predicting the pulmon_ary maturity. Scétnal.
are available for PD. Each of them can be applied only at 368 —-[11] carried O_Ut frequency analysis of both fetal lung and
cific time periods during the pregnancy for greatest utility. Aljver. and the ratio between the mean and the range of the

the techniques for PD except ultrasonography are invasive, {iequencies recelv_ed was _used as an index of me_ltt_mty analysis.
volving at least a sample of maternal blood. Some of the earlier studies have used echogenicity of the lung

In amniocentesis, the study of lecithin—sphingomyelin (L/S%nd liver as a possible index of pulmonary maturity [2], [4], [9].
ratio is the most useful. This test, being invasive, carries risM,any res_earchers h"’_“’e Psed te_xtur_al measures to study and ana-
lyze the liver texture in differential diagnosis of liver [12], [13].
Since echogenicity is sensitive to machine settings, and textural
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ture during the transition from a high pulmonary risk group to
low risk group. Here we have attempted quantitative texture as-
sessment rather than qualitative (which could be subjective). In
this paper, we refer to the group with pulmonary risk as imma-
ture class and the one with reduced risk as mature class. Since
it is known clinically that many babies at 34 weeks of gestation
do not have pulmonary risk, we have considered subjects above
35 weeks as belonging to the mature class.

Il. DATA COLLECTION

Ultrasound examinations were performed both at Mediscan
Systems, Chennai, India, and at the University Hospital in Kuala i .
Lumpur, Malaysia. Data were collected in both places using . FErel "'-"*'1'_&:: *
the real-time ATL Apogee 800 plus scanner with a 3.5-MHz
curvilinear, broad bandwidth transducer probe with the dynamic
range set at 55 dB. Adequate care was taken to ensure that
imaging was performed in a similar way at both locations. The
overall gain was set at an optimal value to get uniform visi-
bility. Longitudinal and transverse sections of the fetal thorax
and upper abdomen were imaged. The fetal lung and liver were
identified in the thoracic and upper abdominal sections, respec-
tively. Care was taken to avoid obvious vascular structures in the
liver. The machine settings were optimized to obtain a uniform
echo texture. The postprocessing curves were unchanged. The ()
focal zone was adjusted so that the area of interest was alwBigsl. Samples of fetal echogram with lung and liver regions and ROlIs. (a) 30
in the focal zone. To test the validity of the method across pofsgeks and (b) 26 weeks.
ulations, and to confirm its robustness, samples were collected

from 1000 subjects belonging to Indian, Chinese, and MalayaBquired consisted of 750 images from immature class and 250

races. Data were collected from the subjects at GAs from gfages from mature class. The lung-to-liver ratio of various fea-

to 38 weeks, at regular intervals of two weeks. Since most dgre values was studied as a possible index of maturity.

liveries after 34 weeks can be effectively handled with medical

support, and in most Asian races the pregnancy ends around 38

weeks, data were collected only up to 38 weeks. The subjects

were rigorously followed up throughout the pregnancy and alsoThe various textural features extracted are described in this

after delivery. Only the data corresponding to normal pregnasection. The features were analyzed using statistical tests to find

cies, also leading to babies with normal pulmonary functionte correlation with respect to GA. Their computational costs

were included in our analysis. were also considered in finalizing the features to be used for
The purpose of our pilot study was to obtain the trend of ttedassification. A feature vector was formed using the selected

textural features of the normal fetal lung as a function of tHeatures.

GA. A cross-sectional study of normal fetuses has shown that

the overall size of a fetus at each GA falls within a range of fifth. Spatial Gray-Level Dependence Matrices (SGLDMSs)

to ninety-fifth percentile. H_en_ce, in our study, since normal sub- he SGLDMs are based on the estimation of second-order

jects are chosen, Igrge variations in depth were not encou_ntedrs t conditional probability density functions, denoted by

The lung and the liver areas taken for analysis were contigu

and at the same depth for each fetus. The appropriate sectior’?@f jld 6). Here f(i, jld, 0) is the probability that a pair of

: . ixels separated by a distan¢at an angl® have gray levelg
each image was frozen and then transferred to videotape. fah% 7. The angles are quantized to°4Btervals. The estimated

images were then digitized using an 8-bit Creative video grabber o . . L
card. The size of the digitized image was 32@40 pixels with prﬁgﬁzgtéﬂﬁnﬁg ;rl:gﬁg]n s, denoted by(i, jld, 6), are
a resolution of 29 pixels/cm. The histogram of the images wgg )

first stretched to have a uniform range of gray values. To obt'c}ianrgl;Ck [1tﬁlppropo 263 14 tte X turel measutrej tTﬁt ]cjan tbe ex-
good estimates of the fractal features, it is advisable to get Lgctedirom (i, j|d, 6) matrices. In ourstudy, the five tex-
e features (energy, entropyH , correlationC, inertial,, and

large a region of interest (ROI) as possible. However, we h :

the constraint that the same area of ROl must be available ?ﬁal homogeneity) are computed

both the liver and the lung regions of all the images obtained.

Thus, regions of interest (ROIs) of 64 64 pixels each from E=Y " [seli, jld)] 1)

the lung and liver regions were used for extracting textural fea- i

tures. Fig. 1 shows two fetal echogram samples, with the ROI H—=— Z Z 6(i, j|d) log se(i, j|d) )
T J

I1l. FEATURE EXTRACTION

selected from both the liver and the lung regions. The total data
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C = Z Z (i — 112)(G — 1) 50 (4, jd) ©) D. Fractal Dimension and Lacunarity
J The fractal dimension (FD) is computed based on the con-
I, = Z Z (i — §)%se(i, j|d) (4) cepts of multiresolution image analysis and fractional Brownian
ra motion model (fBMM). The intensity surface of an ultrasonic
1 image can be viewed as the end result of random walks, and
L= %" mse(i’ Jjld) (5) fBMM [18] can be used for its analysis. FD and lacunarity
) (LAC) are the important features that characterize the roughness
_ Lo 2 _ o o and granularity of the fractal surface. Given&hx M image
Vg?;j(gwﬂd_)]_ 22522 %e(i, gld) and og = 3,00 = pia) I, the intensity difference vector (IDV) is defined as IBV
J ’ (1), id(2), .. .id(s)], wheres is the maximum possible scale
and:d(k) is the average of the absolute intensity difference of
all pixel pairs with horizontal or vertical distande We com-

puteid(k) as

The two summations are carried out over all the values
¢ € (0, Ne—1)andj € (0, Ne—1), respectivelysg (i, j|d) is
the(i, j)th element ofS, for a specifiedi, N is the number of
gray levels in the image, arft}- (d) = P(¢, j|d, 8°). Similarly,

1y ando, are computed. Each measure is evaluated!fer 1 1 M—1 M—k—1
andé = 0°, 45°, 90°, and135°. id(k) = I(i, 5) —1(2, j+k
5 5 EChe e =T DIND SRR RS LA
B. Gray-Level Difference Matrix (GLDM) M—k—1 M—1
Let I(x, y) be the image intensity function. For any given + > (i, j) — 1(i + k. j)| (11)
i=0  j=0

displacementt = (Axz, Ay), let Is(x, y) = |[{(z, v) —
I(z + Az, y + Ay)| and f'(:|6) be the probability density andp = 3 H, whereD is the fractal dimension. The value of

of Is(z, y). If there arem gray levels, this has the form of an 7 js obtained by using least squares linear regression to estimate
m-dimensional vector whosih component is the probability the slope of the curve ati(k) versusk in log—log scale. Given a
thatZs(z, y) will have value:i. The value off’(i|6) is obtained fractal setd, let P(m) be the probability that there ane points

from the number of timed;(z, y) occurs for a givery, i.e., within a box of sizeL, centered about an arbitrary point af
J'(il6) = P(Is(x, y) = ). Four possible forms of the vectorye haveS™ _. P(m) = 1, whereN is the number of possible

m=1

6 were considered(0, d), (—d, d), (d,0), and (—d, —d), points within the box. The LAC is defined as
whered is the interpixel distance. From each of the density

functions, five texture features [contrast (CON), mean, entropy A= (My— M?)/M? (12)
(ENT), inverse difference moment (IDM), and angular second N r 9
moment (ASM)] were extracted. In each case, the subscrffp€eM = 2,y mP(m) andMz =5, _, m*P(m).

@« € (0, N — 1) E. Histogram-Based Features
CON = Z ﬂf’(i|5) (6) The histogram-based features calculated were mean, variance
f (VAR), coefficient of variation (CV), skewness, kurtosis, and
Mean Z if'(il6) @) second moment (SM).
- Out of the 64 features extracted, the features of GLDM and
. »y oy SGLDM had similar variations. Since computation of SGLDM
ENT = Z J (o) log(S(7]6)) (8) features is both time- and memory-consuming, we discarded
’ - o those features. The features that were retained are FD, intercept,
IDM =" f/(il8) /(& + 1) (9 LAC, CON, ENT, IDM, ASM, MEAN from GLDM, entropy of
¢ Law’s textural measures, mean, VAR, CV, skewness, SM, and
ASM = Z [f/(i|6)]*. (10) kurtosis from histogram of the images. We performed Pearson’s
i correlation test on these features to find out which of them are

highly correlated with GA. The following six features had a cor-
C. Laws' Textural Measures relation coefficient greater than 0.5: FD, LAC from fractal mea-
, . sures, mean, VAR, CV, and SM calculated from the histogram.
Laws’ textural energy measures [17] are derived fror? . . o

he ratios of these features were used as input to the classifiers.

three vectors, each of length threk3 = {1, 2, 1}, F3 = . o

It was observed that data sets from both the hospitals exhibited
{-1, 0,1}, andS3 = {-1, 2, —1}. These represent, respec-. . )
" : . : similar behavior.
tively, the operations of local averaging, edge detection, and
spot detection. If these vectors are convolved with themselves
or with one another, we obtain, among others, the following
three vectors, each of length fivdis = {1, 4,6, 4, 1}, The ultrasonic images were classified into mature and imma-
S5 = {-1,0,-2,0, -1}, and E5 = {-1, -2, 0,2, 1}, ture classes using the following classifiers.
which perform local averaging, spot, and edge detection, . .
respectively. The masks used in our analysis B58 E5 and A Nearest Neighbor Classifier
L5785, The masks were convolved with each image, and theThis classifies an unknown sample as belonging to the same
entropy of the resulting image was calculated. class as that of the most similar or nearest sample point in the

IV. CLASSIFIERS
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training set of data. “Nearest” can be taken to mean the smallests used. The centers of the Gaussian kernels were estimated
Euclidean distance in the feature space. throughk-means algorithm.

B. %k-Nearest Neighbork(-NN) Classifier F. Support Vector Machine (SVM)

There is a possibility of an NN classifier yielding an erro- In the SVM, the optimal hyperplane decides the separation
neous decision if the obtained single neighbor is an outlier bétween individual classes of patterns. The optimality is in the
some other class. To avoid this and improve the robustnessaifowing sense: the average distance between the hyperplane
the approach, the-NN classifier works witht patterns in the and the closest training points on both sides is maximal. This
neighborhood of the test pattern. In our study, the valuevedis aids in maximizing the correct classification rate. Whereas data
chosen to be seven after testing with a number of valués of with linear separability may be analyzed with a hyperplane, lin-

_ ) B early nonseparable data are analyzed wétimel functionsuch
C. Modifiedk-Nearest Neighborrtk-NN) Classifier as higher order polynomials, Gaussian, aad-sigmoid. The

In the k-NN classifier, though a search inkaneighborhood output of an SVM is a linear combination of the training exam-
drives classification, the distance of atemplate fromthe test chptes projected onto a high-dimensional feature space through
acter does not play any role. In an effort to bring about a weight#te use of kernel functions. We tested all the kernels mentioned
representation, thexk-NN classifier or weighted:-NN asso- above, and the Gaussian kernel gave the highest classification
ciates a distance-based weight with each prototype membegafcuracy. The value of the standard deviation was chosen as 0.2.
thek-neighborhood. This weighted representation schedule thenThe nearest neighbok-nearest neighbor [21], anthk-
drives the classification process. The algorithm is as follows.nearest neighbor classifiers were implemented in C. For mul-

1) Compute the Euclidean distances between the test (fékayer perceptron and radial basis function [22], we have used

2) Sort the reference vectors based on the distances &finputing Research Group, Aston University, U.K. For SVM,
choose the least distahtpatterns. we used SVM_TORCH, a software developed by a group at

3) Calculate weighty; associated with each reference patPIAP, Switzerland [23].
terns; in the k neighborhood.
4) Find the class that contributes maximum weight in the V. TRAINING AND TEST DATA

neighborhood. Declare the test pattern to be belonging toThe collected data were grouped into two classes, namely, im-
this class. mature and mature, depending on the GA. Samples from 24 to
The weight is calculated as follows. LeS = 34 weeks of gestation were considered to belong to the imma-
{51, 52, ..., 51} be the set of reference patterns in the e class (possibility of pulmonary risk) and those from 36 to 38
neighborhood of the test pattern in the feature space, sorteq\ifeks as mature (reduced risk), as pulmonary risk is very rare
increasing order of their distances from the test pattern. Lger 35 weeks of gestation . Three different types of training
X = {z1, 22, ..., 21} be the respective distances from thgng test sets were formed from the samples. The first set had
test pattern, where, is the minimum and;, is the maximum  go training and 200 test samples. Of the training data, 600 be-
distance. LeW = {wy, wy, ..., wy} be a weight set withu;  |onged to the immature class and 200 to the mature class. The
as the weight assigned to pattefnbased on its distance fromtest set contained 150 samples of immature class and 50 of ma-
the test feature vector, given as ture class. In the second training set, 400 samples were from 24
(13) to 30 weeks of gestation and 200 from 36 to 38 weeks. In the test
set, 200 samples belonged to 32 to 34 weeks of gestation and 50
By testing with different values of, we found that: = 7 t0 36 to 38 weeks. The third set contained 400 training samples,
gave a classification accuracy better than any other value. With an equal number from immature and mature classes. The
test set had 100 samples, and an equal number of immature and
D. Multilayer Perceptron (MLP) mature samples were randomly picked from the total data set.
The MLP is a feedforward network, capable of generatithe rgtionalg behipdthe s.electio'n ofthe;e three trainin'g'and test
nonlinear boundaries. It has been successfully applied to soffS IS €xplained in the discussion section. In our training, we
some difficult and diverse problems. In our study, a two-laydtave considered immature lung classified as immature as true
network was chosen with six input nodes, one hidden layer wi9Sitive (TP) and immature lung classified as mature as false
three nodes, and two output nodes after exploring the perfgfgative (FN).
mance of various configurations. The hidden layer had sigmoid
activation function, whereas the output nodes had linear activa- VI. RESULTS

tion function. Fig. 1 shows the lung and liver areas in the fetal images and

] ) ) the ROIs for extraction of textural features. Fig. 2 gives the de-

E. Radial Basis Function (RBF) Network scriptive statistical details of the lung-to-liver feature values in
The RBF network performs interpolation in a multidimenthe form of boxplots. It also characterizes the variation of the

sional space. The RBF network has a high-dimensional hiddeimove features with respect to GA. Fig. 3 demonstrates the dy-

layer with Gaussian kernels. In the current study, a netwonamics of the features, chosen based on the correlation test, as

with six input nodes, 15 hidden nodes, and two output nodagunction of the GA for the lung and the liver. Fig. 3(a) and (b)

w; = (xk - -T7)/(-Tk - -771)'
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Fig. 2. Plot showing the variation of the ratio of lung-liver feature values with gestation age.

show that the FD and LAC of lung increase as a function of the VII. DISCUSSION
GA. This is to be expected because the granularity of the cell
changes with t_he GA. EXp“C'tIY’ the C.e"S of the lung are_founFlung maturity is very essential. The use of ultrasound to study
elongated during early gestation period, which could give rl?et II turity is advant th b fit
to images that are quite smooth, that is, less granular in natureo, 'ung matunty 1s advantageous over others because of its
However, the cells become spherical and fluid-filled [3] towargOMinvasive nature. Traditionally, ultrasound has been used in

the term. Further, since the fluid-to-tissue content ratio chan &g,al monitoring to_c_)btaln physical measuremeqts of fetal size
with GA, the diffuse scattering properties also change, Ieadiﬁgd placenta condition. In our work, pulmongry risk assess_ment
to more granular images. based on ultr_asound textural features has given encouraging re-
Fig. 3(c) shows a decrease in the echogenicity of lung as cophlts- Since in all the cases the lung and the liver have been
pared to liver as the GA increases. The echogenicity of the lulf§aged together, the effects due to the imaging techniques (in-
is almost the same as the echogenicity of the liver at early GAluding the internal processing by the machine) must affect both
Thus, the lung seems to attenuate ultrasound waves more tBhfhe regions similarly, and thus must not cause any variations
the liver at later GAs (see [6]). The variance of the gray valu@¥ the textural features of the lung and liver differentially.
of the lung [Fig. 3(d)] has an upward trend with GA, whereas We have considered three different training and test sets,
that of the liver remains relatively unchanged throughout the p&s explained in the earlier section. This formulation is to test
riod. The plot of CV [Fig. 3(e)] shows a similar trend as that dihe generalization and adaptability of the classifiers. The first
the VAR, and the plot of SM Fig. 3(f) is similar to that of FD. Ittraining set is more biased toward immature class. We need
may be noted that the nature of variation of the features of ther classifiers to be more sensitive and specific for immature
liver is, in most cases, similar to that of the lung. class, because classification of immature class as mature is
Table | shows the results of classification. In all the cases, wess desirable. If a mature lung is classified as immature, the
have fewer false negatives, which is a preferred outcome. Tpi@blem is not very serious because adequate care would be
results indicate the consistency of classification. taken. The classifiers’ accuracy for the training and test sets is

Sin the area of fetal monitoring, a reliable method to determine
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Fig. 3. Plot showing the variation of various features of lung and liver with respect to gestation age.

given in Table I. It may be noted that all the classifiers haverom Table I, we see that even in the case of unbiased training,
almost comparable accuracy of classification, with NN arttie classification results are very consistent, with few false nega-
mk-NN having a little edge over the others. The number dives. In fact, the results are very close to the biased training, and
false negatives is low for every classifier. The results showimthe case of RBF and SVM classifiers, better than the latter.
high degree of specificity of the classifiers to the immature The NN andmk-NN have performed better where represen-
class. tative samples from all GAs were used. The performance of all

In the second case, the training set did not contain any samble classifiers was similar when trained and tested with samples
from 32 to 34 weeks, and the test set did not contain any sampldy from definitely immature €30 weeks) and mature>@6
from GAs below 32 weeks. This step was undertaken to ensuveeks) classes. When the training and test data contained sam-
that the classifier is not biased by data, which could belong pdes from all the GAs, the neighborhood classifiers performed
either of the classes. Maturity does not occur before 32 wedbstter. Their accuracy can be attributed to more closeness in the
for a normal fetus, whereas it is guaranteed beyond 36 weelegghborhood relation among the samples at the boundary of the
[24]. Thus, the testing of images from the intervening periaavo classes. The boundary samples along with the other samples
is likely to throw light on the transition period. An increase irof the two classes contribute to the greater accuracy of NN and
the number of false negatives is seen in this case (see Tablel}-NN classifiers.
This is because we have assumed that the data correspond to tAde classification accuracy fé~NN andmk-NN was com-
immature class, whereas in reality, some of them could actuited for various values éfstarting fromt = 2 for the training
ally have transited to the mature class. As seen from the resudtsd test sets. The classification accuracy decreased with in-
the NN classifier and its variants have performed poorly whemeasingk up to X = 6, started increasing froth = 7, and
compared to other classifiers, showing their poor generalizatidacreased once again for> 8. Based on this test, the value of
capability. k = 7 was selected.

In the third set, we had an equal number of samples from bothSome of the earlier studies [2], [4]-[7], [9] have established
classes in order to have an unbiased training of the classifigige usefulness of ultrasound examinations in predicting pul-
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TABLE |
CONFUSIONMATRIX OF VARIOUS CLASSIFIERS FORTEST SETS 1, 2,AND 3 (I:
IMMATURE CLASS, M: MATURE CLASS, CA: CLASSIFICATION ACCURACY FOR
TEST SET, AND FN: NUMBER OF FALSE NEGATIVES)
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study of only the echogenicity. Based on the obtained results,
it appears that a fairly accurate decision about the maturity of
the fetal lung can be made based on the characteristics of the

Classifier output
Classifiers Correct Test set-1 | Test set-2 | Test set-3
Class 0 M |1 M |1 M
150 50 [200 50 |50 50
I 145 5 | 170 30 |46 4
M 3 47 |33 17 |0 50
NN CA 96% | 748% | 96%
FN 5 30 4
I 142 8 [164 36 |44 6
M 30 20 {30 20 |16 34
k- NN CA 81% 73.6% 78% [
FN 8 36 6
I 147 3 [170 30 |46 4 (2]
M 15 35 | 14 36 | 5 45
mk- NN 70 91% 82.4% 91% Gl
FN 3 30 4 ”
I 150 0 [187 13 |46 4
M 37 13 |37 13 |16 34 )
MLP CA 81.5% 80% 80% (6]
FN 0 13 4
I 142 8 [190 10 |47 3 (71
M 30 2 |43 7 |14 36
RBF CA 81% 78.8% 83% (6]
FN 8 10 3
I 142 8 | 165 35 |47 3 o
M 23 27 | 22 28 |10 40 [10]
SVM CA 84.5% 77.2% 87%
FN 8 35 3 [11]

L . : [12]
monary maturity with various degrees of accuracy by using var-

ious features like placenta grading, physical measurements of
fetal size, echogenicity of the lung and liver region, attenua-
tion of frequencies in lung and liver region, and shift in the RF 13]
frequency spectrum during the process of maturation. We have
used textural features as a measure of pulmonary maturation,
which has yielded an accuracy of classification from 73% td14]
96%. To the best of the authors’ knowledge, this seems to be
the first ever attempt to classify fetal lung maturity in terms of

textural features of the ultrasound image. [15]

[16]
VIIl. CONCLUSION

In this paper, we have shown that the textural features argy)
better indicators of the histological changes, compared to the

ultrasound images. This result is worth investigating further be-
cause of its clinical ramifications. A complete sonographic anal-
ysis, which combines the above textural features with parame-
ters such as fetal BPD, PG, femur length, head circumference,
and the abdominal circumference, could possibly enhance the
prediction accuracy. Also, an analysis of data from high-risk
pregnancies (mothers with hypertension or diabetes mellitus)
could be used to further validate the prediction of maturity using
sonographic features. Further investigation of textural features
of ultrasound with biochemical tests will help to establish the
validity of the method and eliminate the use of invasive tests for
fetal pulmonary maturity analysis.
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