ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Chromium isotope variations (delta Cr-53/52) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of delta Cr-53/52 in the Earth's mantle over geologic time

Farkas, Juraj and Chrastny, Vladislav and Novak, Martin and Cadkova, Eva and Pasava, Jan and Chakrabarti, Ramananda and Jacobsen, Stein B and Ackerman, Lukas and Bullen, Thomas D (2013) Chromium isotope variations (delta Cr-53/52) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of delta Cr-53/52 in the Earth's mantle over geologic time. In: GEOCHIMICA ET COSMOCHIMICA ACTA, 123 . pp. 74-92.

[img] PDF
Geo_Cos_Act_123_74_2013.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy
Official URL: http://dx.doi.org/10.1016/j.gca.2013.08.016

Abstract

Here we report chromium isotope compositions, expressed as delta Cr-53/ 52 in per mil (&) relative to NIST 979, measured in selected Cr-rich minerals and rocks formed by the primary magmatic as well as the secondary metamorphic and weathering processes. The main objectives of this study were: (i) to further constrain the isotope composition of the Earth's mantle Cr inventory and its possible variation during geological history, based on the analysis of globally distributed and stratigraphically constrained mantle-derived chromites; and (ii) to investigate the magnitude and systematics of Cr isotope fractionation during oxidative weathering and secondary alteration (i. e., hydration, serpentinization) of the magmatic Cr sources. Specifically, we analyzed delta Cr-53/ 52 in a set of globally distributed mantle-derived chromites (FeMgCr2O4, n = 30) collected from various locations in Europe, Asia, Africa and South America, and our results confirm that a chromite-hosted Earth's mantle Cr inventory is uniform at - 0.079 +/- 0.129& (2SD), which we named here as a ` canonical' mantle d 53/ 52 Cr signature. Furthermore our dataset of stratigraphically constrained chromites, whose crystallization ages cover most of the Earth's geological history, indicate that the bulk Cr isotope composition of the chromite-hosted mantle inventory has remained uniform, within about +/- 0.100&, since at least the Early Archean times (similar to 3500 million years ago, Ma). To investigate the systematics of Cr isotope fractionation associated with alteration processes we analyzed a number of secondary Cr-rich minerals and variably altered ultramafic rocks (i. e., serpentinized harzburgites, lherzolites) that revealed large positive delta Cr-53/ 52 anomalies that are systematically shifted to higher values with an increasing degree of alteration and serpentinization. The degree of aqueous alteration and serpentinization was quantified by the abundances of fluid-mobile (Rb, K) elements, and by the Loss On Ignition (LOI) parameter, which determines the amount of structurally bound water (OH/ H2O) present in secondary hydrated minerals like serpentine. Overall, we observed that altered ultramafic rocks that yielded the highest LOI values, and the lowest amounts of fluid mobile elements, also yielded the heaviest delta Cr-53/ 52 signatures. Therefore, we conclude that secondary alteration (i.e., hydration, serpentinization) of ultramafic rocks in near-surface oxidative environments tend to shift the bulk Cr isotope composition of the weathered products to isotopically heavier values, pointing to a dynamic redox cycling of Cr in the Earth's crustal and near-surface environments. Hence, if validated by future

Item Type: Journal Article
Additional Information: copyright for this article belongs to PERGAMON-ELSEVIER SCIENCE LTD , ENGLAND
Department/Centre: Division of Mechanical Sciences > Centre for Earth Sciences
Depositing User: Id for Latest eprints
Date Deposited: 17 Dec 2013 05:43
Last Modified: 28 Feb 2019 05:26
URI: http://eprints.iisc.ac.in/id/eprint/47934

Actions (login required)

View Item View Item