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Improved Modeling of Groundwater Recharge 
in Agricultural Watersheds Using a Combination 
of Crop Model and Remote Sensing

K. Sreelash1,2, M. Sekhar 1,2*, Laurent Ruiz 2,3,4, Samuel Buis 5 and S. Bandyopadhyay 6

Abstract | For improved water management and efficiency of use in 
agriculture, studies dealing with coupled crop-surface water-groundwater 
models are needed. Such integrated models of crop and hydrology can 
provide accurate quantification of spatio-temporal variations of water 
balance parameters such as soil moisture store, evapotranspiration and 
recharge in a catchment. Performance of a coupled crop-hydrology 
model would depend on the availability of a calibrated crop model for 
various irrigated/rainfed crops and also on an accurate knowledge of soil 
hydraulic parameters in the catchment at relevant scale. Moreover, such 
a coupled model should be designed so as to enable the use/assimila-
tion of recent satellite remote sensing products (optical and microwave) 
in order to model the processes at catchment scales. In this study we 
present a framework to couple a crop model with a groundwater model for 
applications to irrigated groundwater agricultural systems. We discuss the 
calibration of the STICS crop model and present a methodology to esti-
mate the soil hydraulic parameters by inversion of crop model using both 
ground and satellite based data. Using this methodology we demonstrate 
the feasibility of estimation of potential recharge due to spatially varying 
soil/crop matrix.
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1 Introduction
Modeling and quantifying the spatio-temporal 
variability of water resources is an essential com-
ponent of integrated and comprehensive water 
resources management. Such processes involve the 
complex interplay of hydrology, ecology, meteor-
ology, pedology, agronomy and climatology. The 
approach of integrated modeling is increasingly 
becoming an important tool in studies on water 
quality and quantity management. Interaction 
between vegetation soil and atmosphere deter-
mine the dynamic equilibrium of a soil vegeta-
tion atmosphere system. In most land surface and 
SVAT models (e.g., WAVES, MOSAIC, SWAP), 
vegetation does not respond to any change in 
the soil water status.1 The effect of stresses on the 

vegetation and the feedback between the vegeta-
tion and hydrological variables are often not con-
sidered, and vegetation is often considered as a 
specified boundary condition rather than as an 
interactive interface between the soil and atmos-
phere. This results in improper representation of 
the model and thus lead to inaccurate simulation 
of hydrological fluxes (e.g., recharge, evapotran-
spiration, runoff). However, the type of crop 
and its growth dynamics play a major role in the 
hydrological fluxes. Precise simulation of these 
variables requires that the vegetation should be 
considered as a dynamic component in the mod-
els. Several studies have been made in the past 
decade to develop and apply transient–dynamic 
coupled vegetation models.2–6
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Traditional land surface models do not 
consider the bottom boundary conditions as an 
interactive process. Such models, even though 
are mass conservative, ignore processes that can 
alter surface fluxes, runoff, vegetation dynam-
ics and soil moisture reserve. Hence studies have 
been made for coupling land surface models 
with groundwater models. Levine and Salvucci7 
observed that simulated recharge was closer to the 
observation when a coupled groundwater model 
was used, instead of an uncoupled land surface 
model with specified lower boundary condition. 
Yeh and Eltahir8 developed a lumped unconfined 
groundwater model dynamically coupled to a 
land surface model to simulate the fluxes between 
the water table and lower soil layer of the land sur-
face model. Further advancements were made to 
land surface models by including detailed ecologi-
cal and biogeochemical processes.9–11 Maxwell and 
Miller12 coupled a land surface model (Common 
Land Model) and a variably saturated groundwa-
ter model (ParFlow) to study the effect of the cou-
pling scheme on the simulation of soil water fluxes, 
and demonstrated the need for improved ground-
water representation in land surface schemes.

On the contrary, groundwater models have 
a simplified upper boundary condition that is 
externally specified and represents fluxes of water 
related to processes such as infiltration and eva-
potranspiration. These fluxes are often simpli-
fied and uncoupled, may be averaged in space 
and time, and sometimes miss the key dynamics 
of the important processes, which takes place in 
the rooting zone of the vegetation. To understand 
the effects of vegetation on soil water fluxes and 
groundwater recharge, a modeling scheme, which 
allows one to simulate the dynamics of interaction 
between a vegetation and groundwater system is 
essential. Coupled groundwater models such as 
the MODFLOW-HYDRUS13 and ParFlow,14 sim-
ulate the water balance and the soil water move-
ment in saturated and unsaturated zones, but 
they simplify the evapotranspiration process as 
these models consider vegetation as a static com-
ponent. Ledoux et al.15 added a new dimension to 
this coupling strategy by bringing in a dynamic 
crop model (STICS) to an already coupled sur-
face-groundwater model (MODCOU) to predict 
the fate of nitrogen fertilizers and the transport 
of nitrate from the rooting zone of agricultural 
areas to surface and groundwater of Seine basin. 
An integrated hydrological (TOPMODEL) and 
nitrogen model (STICS), called TNT2 (Topog-
raphy-based Nitrogen Transfer and Transforma-
tion) was developed by Beaujouan et al.16 to study 

the nitrogen fluxes in a Kervidy catchment in 
France.

In all these coupling schemes even though the 
coupling between the models are well achieved, 
the feedback between the two models is not con-
sidered. Moreover, the agriculture in tropical arid 
and semi-arid regions mainly depends upon the 
irrigation, especially in the non-rainy season and 
in some regions even in the rainy season, to sup-
plement crop water requirements not met by pre-
cipitation. If the irrigation is from groundwater, 
and also if the level of irrigation is higher than the 
recharge then groundwater levels would decline, 
which in turn would affect the crop production. 
Thus there is a need for optimal irrigation, which 
maximizes crop production but with sustained 
groundwater levels. To simulate such optimal 
water management scenarios, an integrated model 
of crop and groundwater system is required. The 
dynamics of interaction between the two mod-
els could give deeper insight into the interaction 
between the two processes. Performance of such 
a coupled crop model would depend on the avail-
ability of a calibrated crop model for various irri-
gated crops, and also on accurate representation 
of soil parameters in the model. In addition, such 
a coupled model should be able to use satellite 
remote sensing products so as to model at catch-
ment scales.

In this study we present the calibration of 
STICS model, which is used in the coupled 
crop-groundwater model developed under the 
AICHA project. Then we discuss the method-
ology of estimating soil hydraulic properties by 
crop model inversion using ground and satellite 
based data. We also discuss the application of the 
crop model in estimating the potential recharge, 
root zone soil moisture and crop variables such 
as leaf area index, biomass and yield. Finally we 
demonstrate the performance of calibrated crop 
model using remote sensed weather products 
(rainfall and potential evapotranspiration). The 
above studies are conducted in an experimental 
catchment in the tropical semi-arid region of 
South India.

2 Materials and Methods
2.1 Study area and field experiments
The study area pertains to the AMBHAS research 
observatory (www.ambhas.com) located in the 
Kabini river basin in South India, (Fig. 1), which is 
an experimental watershed for carrying out agro-
hydrological, remote sensing and hydrological 
investigations.46 It belongs to the long term envi-
ronmental observatory BVET (http://bvet.ore.
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fr/).47-49 Climate is tropical semi arid, with an aver-
age rainfall of 800 mm/year and PET of 1100 mm. 
There are mainly two types of soils in the water-
shed comprising black soils (Calcic Vertisols) and 
red soils (Ferralsols and Calcic Luvisols),50 under-
lain by granitic/gneissic rocks. The land is used 
for agriculture and the main crops are sunflower, 
maize, marigold, sugarcane, finger millet, ground-
nut etc.

Field experiments were carried out on sev-
eral crops in the agricultural plots of the Ambhas 
Research Observatory during the year 2010–2012. 
Soil and crop related measurements were per-
formed during the cropping period from October-
2010 to Dec-2012. Leaf Area Index (LAI) was 
measured by laser leaf area meter (CI-202, CID, 
Bio science Inc, USA) on a ten day frequency from 
the germination stage to harvest stage. Above-
ground biomass and yield were measured at har-
vest date.

Daily records of air humidity, wind velocity, 
maximum and minimum temperature, precipita-
tion and global radiation were obtained from an 
automatic weather station (CIMEL, type ENERCO 
407 AVKP). Surface soil moisture and root zone 
soil moisture profiles were measured using theta 
probe (Delta-T devices, ThetaProbe Soil Mois-
ture Sensor—ML2x) and AquaPro soil moisture 
sensors respectively. Soil depth was measured by 
soil augering. Leaf area Index and surface soil 
moisture were retrieved from microwave remote 
sensing images (RADARSAT-2, 10 m resolution, 
24 day revisit interval) collected during the satel-
lite passes and the field measurements were done 
on the corresponding days.

2.2 Theory and methodology
2.2.1 Calibration of STICS crop model: Crop 
growth models have been indispensable tools 
of agro-meteorological and plant production 
research for several years now. There are many 
crop models in the literature. Some are designed 
for particular crops, e.g., for wheat, ARCWHEAT17 
and CERES-Wheat,18 while others are generic 
models, e.g., EPIC,19 DAISY20 and STICS.21 One 
of the important preconditions of the application 
of dynamic models is the evaluation of the model 
reliability in reproducing the real world processes 
at the given place and time.22–23 The processes of 
evaluation of any crop model are relatively long 
and difficult because they require the collection 
of large data sets including weather, soil, crop 
and crop management data over extensive time 
periods. Crop growth models are great tools for 
studying and anticipating the future impacts 
of rising demands for agricultural production 
while satisfying constraints with respect to prod-
uct safety, the landscape, water resources and the 
environment. Before crop growth models can be 
applied, however, they need to be calibrated and 
evaluated for cultivars representative of a study 
area. Calibration of crop models, which is a crop 
parameter estimation process, is an integral part of 
the modeling exercise, because together with the 
form of the model equations, the crop parameter 
values determine the quality of variable predicted 
by the model. Often crop specific parameters are 
obtained from literature, however, not all parame-
ters are available in the literature and these param-
eters vary within cultivars of the same crop. Using 
approximate values for all parameters result in the 

Figure 1: Study area.
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accumulation of errors in the parameter values 
and this leads to the model giving poor agreement 
with field data.

STICS21 is a dynamic, daily time-step model 
which simulates the functioning of a soil-crop sys-
tem over a single or several successive crop cycles. 
Among the large variety of available crop models, 
the main strong points of STICS is its adaptability 
to many crop types, its robustness in a large range 
of soil and climate conditions and its modularity.24 
It has been successfully used for spatial applica-
tions and coupled with hydrological models at the 
catchment scale.16 The upper boundary condi-
tions are governed by standard climatic variables 
(radiation, minimal and maximal temperatures, 
rainfall, reference Evapo-transpiration or alter-
natively wind speed and humidity) and the lower 
boundary condition is the soil/sub-soil interface. 
Crops are described by their above-ground bio-
mass and nitrogen content, leaf area index, and 
the number and biomass of harvested organs. 
Daily root front depth and distribution of root 
density is also simulated. The soil is defined as a 
succession of up to five horizons of variable thick-
ness with homogenous properties. Each horizon 
is divided into horizontal layers of 1 cm thickness, 
for which mineral nitrogen and organic nitrogen 
contents are computed. Soil and crop interact via 
the roots, which are defined by the root density 
distribution in the soil profile.25

STICS simulates the daily carbon balance, the 
water balance (evaporation and transpiration) 
and the nitrogen balance in the system, which 
makes it possible to calculate both agricultural 
and environmental variables in a variety of agri-
cultural situations. In the STICS crop model, the 
total number of parameters is large. They are spe-
cific for each crop, soil, cropping techniques and 
on-field management practices.

2.2.2 Inversion for estimation of soil hydrau-
lic properties: Good estimates of soil hydraulic 
parameters and their distribution in a catchment 
is essential for crop-hydrology models. Measure-
ments of soil properties by experimental methods 
are expensive and often time consuming, and in 
order to account for spatial variability of these 
parameters in the catchment, it becomes neces-
sary to conduct large number of measurements. 
Although extensive soil data is becoming more 
and more available at various scales in the form of 
digital soil maps,42 there is still a large gap between 
this available information and the input param-
eters needed for hydrological models.43 Inverse 
modeling has been extensively used but the spa-
tial variability of the parameters and insufficient 

data sets restrict its applicability at the catchment 
scale. Montzka44 demonstrated the possibility of 
estimating the soil hydraulic parameters using 
remotely-sensed surface soil moisture measure-
ments by applying a sequential filtering technique 
to the mechanistic soil-water model HYDRUS 
1-D. Sreelash45 showed that the multilayered soil 
hydraulic properties can be estimated using obser-
vations of surface soil moisture and crop canopies 
by inversion of a crop model. Use of remote sensed 
soil moisture data to estimate soil properties using 
the inverse modeling approach received attention 
in recent years but yielded only an estimate of the 
surface soil properties. However, in multilayered 
and heterogeneous soil systems the estimation 
of soil properties of different layers yielded poor 
results due to uncertainties in simulating root 
zone soil moisture from remote sensed surface soil 
moisture. Crop biophysical parameters such as 
Leaf Area Index (LAI) and above ground biomass, 
on the other hand, are sensitive to the properties 
of the root zone soil, and hence these observa-
tions can be useful for estimating the properties 
of deeper soil layers. Leaf area index and biomass 
can be estimated from optical/microwave remote 
sensing data.

Surface soil properties can be estimated by 
inverse approach using surface soil moisture data 
retrieved from remote sensing data. Since soil 
moisture retrieved from remote sensing is repre-
sentative of the top 5 cm only, inversion of models 
using surface soil moisture cannot give good esti-
mates of soil properties of deeper layers. Crop var-
iables like biomass and leaf area index are sensitive 
to the deeper layer soil properties. Here we discuss 
the methodology of estimating the properties of 
deeper layers by inversion of a crop model STICS 
using crop canopy variables and surface soil mois-
ture retrieved from microwave remote sensing. 
Parameter estimation by inversion of a dynamic 
crop model like STICS is a complex process, since 
such models involve parameter interactions and 
hence obtaining a single optimum soil param-
eter set is not realistic. Generalized Likelihood 
Uncertainty Estimation27 (GLUE), an informal 
Bayesian method using prior information about 
parameter values for estimating model param-
eters can be used for the parameter estimation 
process. Here we estimate the soil water related 
parameters like field capacity, wilting point and 
depth of soil water reserve/rooting depth/depth of 
soil layer. A combined likelihood function based 
on sum of absolute errors, which represents the 
goodness of fit when output variables possess dif-
ferent magnitudes. Thus in this study we propose 
to use crop biophysical parameters to estimate the 
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multilayered soil properties by inversion of a crop 
model using the Generalized Likelihood Uncer-
tainty Estimation (GLUE) approach. With the 
availability crop type information from remote 
sensing this approach can be used to estimate the 
soil properties at watershed scale.

Here we demonstrate an approach of soil 
parameter estimation using crop model STICS and 
the GLUE approach. The STICS model contains 
about 60 soil parameters. Varella et al.28 reduced 
this number by selecting the simplest options for 
simulating the soil system, and by considering 
only two soil horizons; they performed sensitivity 
analyses and selected seven soil parameters char-
acterizing both water and nitrogen processes. In 
the present study, we restricted the analysis to the 
five soil-water related parameters (Table 1). These 
parameters are the water content at field capacity 
and wilting point of both the horizons, HCC1, 
HCC2, HMINF1 and HMINF2 respectively 
and the thickness of the second horizon, EPC2. 
Figure 2 shows the methodology that is adopted 
in this study for soil parameter estimation from 
ground and satellite based data.

For model inversion, the initial ranges of soil 
parameters comprised between the maximum and 
minimum values corresponding to a broad vari-
ety of soils. This broad range was used in order to 
assess whether the parameter estimation approach 
is efficient even when prior information on the soil 
properties is poor. As results of estimated param-
eters vary greatly according to the type of obser-
vation set,29 we used seven combinations L1 to 
L7 (Table 2), using either individual (L5 to L7) or 
combined observation sets of SSM, BM and LAI, 
(L1 to L4).

2.3 Recharge modeling
In semi-arid agricultural areas, the question is 
that under what conditions groundwater recharge 
occurs, and its magnitude, are fundamental to the 
management of water resources.30 Understanding 
the spatial and temporal variability of potential 
recharge in semi-arid regions gains importance 
as the potential recharge varies as a function soil, 
vegetation and climate types. The re-distribution 
of the rainfall in the soil horizon, and its inter-
action with the vegetation such as root water 

Figure 2: Methodology for soil parameter estimation from ground/satellite data.

Table 1: Soil parameters of model STICS selected for estimation along with their initial ranges used as 
prior information for model inversion in the field experiments.

Parameter Definition Unit Range

HCC(1) Water Content at Field Capacity of 1st horizon gg–1 10–40

HCC(2) Water Content at Field Capacity of 2nd horizon gg–1 10–40

HMINF(1) Water Content at Wilting Pont of 1st horizon gg–1  5–30

HMINF(1) Water Content at Wilting Pont of 2nd horizon gg–1  5–30

EPC(2) Thickness of 2nd horizon cm 10–200
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uptake needs to be adequately represented in 
models intended in providing reliable estimates of 
groundwater recharge. Several methods have been 
developed in the past for estimating the ground-
water recharge,31–34 each method being suitable for 
the choice of intended application of the recharge 
estimate and the spatial and temporal scales being 
considered.

Estimates of potential recharge by soil mois-
ture budgeting models are prone to large error 
in recharge rates.35 Estimation of groundwater 
recharge through simple water balance models or 
through soil moisture balance approaches often do 
not consider the effect of soil and crop type which 
critically affect the recharge process. This becomes 
particularly important in semi-arid agricultural 
catchments where the agriculture also depends on 
groundwater irrigation. Groundwater recharge in a 
semi-arid region, while generally low can be highly 
variable depending on the soil type and plant cover 
even under same climatic conditions. Soil hydrau-
lic properties such as field capacity, permanent 
wilting point and depth of soil water reserve plays 
a major role in the potential recharge that may 
eventually reach the water table. In soil moisture 
balance approach the potential recharge is found to 
be sensitive to water holding capacity and rooting 
depth.36 Moreover, Martinez et al.,37 using a root 
zone modeling approach to estimate groundwater 
recharge, stressed that future studies should focus 
on quantifying the uncertainty in recharge esti-
mates due to uncertainty in soil water parameters 
such as field capacity, rooting depth etc. Hence, a 
good estimate of soil water related parameters and 
depth of soil layers along with their uncertainty 
is essential for a reliable estimate of the potential 
recharge.

Different crops have varying quantities of crop 
water requirement and depending on the rooting 

depth of the crops; the water from the soil water 
reserve is taken up the crop and is added to the 
actual Evapo-transpiration. This process largely 
affects the recharge process. Hence, a crop model 
based approach is better suited to assess sensitiv-
ity of recharge for various crop-soil combina-
tions in agricultural catchments. In this study we 
focus on using the soil parameters estimated from 
inversions to quantify the potential recharge. The 
potential recharge obtained from the crop model 
is used as an input to the groundwater model and 
the dynamics of feedback between crop and a 
groundwater system is simulated using a coupled 
model. Figure 3 shows the scheme in which a crop 
model can be used as a potential tool for estimat-
ing the potential recharge into the groundwater 
system.

In this section we demonstrate how a crop 
model such as STICS can be used to simulate the 
potential recharge and its uncertainty for an irri-
gated turmeric crop. The mechanism of soil water 
transfer in the STICS model is shown in Fig. 4. In 
the STICS model, water transfer in the soil micro-
porosity is calculated per elementary 1 cm layer 
using reservoir-type analogy. Water fills the lay-
ers by downward flow, assuming that the upper 
limit of each basic reservoir corresponds to the 
layer’s field capacity. The soil layers affected by 
evaporation can dry until they reach the residual 
soil water content. In deeper layers, the water is 
only extracted by the plant, and therefore always 
remains above the wilting point.

The flowchart (Fig. 5) shows the methodology 
adopted in this study for estimating the spatial 
variability of potential recharge using STICS crop 
model.

2.4  Crop modeling using satellite 
weather products

Management of water resources in semi-arid 
regions is particularly important due to the high 
temporal and spatial climatic variability. The 
fusion of remote sensing data in crop growth 
model provides a powerful tool for estimating the 
biomass and yield and for predicting/monitoring 
the impacts of drought and other management 
activities. The integration of remote sensing infor-
mation of crop variables such as leaf area index, 
biomass, nitrogen level estimates into a crop 
model has been made in several studies.39–41,56–61 
These studies aim at improving the model pre-
diction by assimilating these variables in the crop 
model. Large scale monitoring and estimation 
of crop yield is essential for food security related 
issues. The high spatial and temporal variability of 
weather variables make it difficult for a crop model 

Table 2: Cases with combinations 
of Surface Soil Moisture (SSM), 
above-ground biomass (BM) and 
Leaf Area Index (LAI).

Likelihood  
combination

Combination of  
observation set

L1 SSM + LAI + BM

L2 LAI + BM

L3 SSM + LAI

L4 SSM + BM

L5 LAI

L6 BM

L7 SSM
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to predict the variability crop yield at large scale. 
Remote sensing information of climate variables 
such as rainfall can provide the additional infor-
mation necessary to capture the effect of the spa-
tial variability of rainfall on the estimated yield.

With the increasing availability of climate 
forcing and soil related information from satel-
lite products, hydrological and crop models can 
be used to estimate variables such as soil mois-
ture or groundwater resources at large scales. In 
recent years, better satellite based products are 
being made available, which have a good spatial 
resolution. On the other hand, management of 
ground network of rain gauges is a costly and dif-
ficult task. Several studies attempted to estimate 
and evaluate different satellite rainfall products 

and demonstrated their suitability in modeling 
various hydrological processes. Satellite-based 
precipitation products are prone to a variety of 
error sources and require a thorough evaluation. 
One way to evaluate is the direct comparison of 
the satellite rainfall estimates to the rain gauge 
networks. The bias and the uncertainty in the 
retrieved rainfall products needs to be quanti-
fied before a satellite product can be applied to 
a hydrological model. The error in the satellite 
rainfall estimates propagates into the simulated 
variables and quantifying this is important. With 
the availability of climate forcing and soil related 
information from satellite products, crop and 
hydrological models can be used to estimate the 
variables at a larger scale.

Figure 3: Scheme of using crop models for estimating potential recharge (modified from Portoghese 
et al.38).
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In this study we demonstrate the application 
of satellite rainfall and potential evapotranspira-
tion for estimating the crop variables and poten-
tial recharge used the rainfall estimates from two 
satellites (Kalpana and TRMM) and the potential 
evapotranspiration (PET) from Kalpana Satellite 

to estimate the crop variables. We compared rain-
fall estimated from Kalpana and TRMM satellite 
data with ground measurements at different time 
scales and evaluated the relevance of satellite 
data for agro-hydrological processes simulation. 
We quantified the errors in the estimates of agro-

Figure 4: Mechanism of soil water transfer in STICS.

Figure 5: Methodology for using STICS model for estimating spatial variability of potential recharge.
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hydrological variables induced by the uncer-
tainty in the rainfall estimates from the satellite 
data. We use the calibrated crop model STICS to 
simulate the agro-hydrological variables such as 
potential recharge, leaf area index and yield for a 
wet growing season in 2011 using gauge and sat-
ellite data.

3 Results and Discussion
3.1 Calibration of STICS crop model
An example of the calibration of turmeric crop 
using OptimiSTICS is shown in Fig. 6. We used 
GLUE approach to estimate the crop parameters 
which are related to leaf area index, biomass and 
yield formation. Additionally, a crop parameter 
estimation tool called OptimiSTICS,26 which was 

specifically available with STICS model was used 
to calibrate some of the corps. The simulated LAI, 
biomass, yield at harvest and root zone soil mois-
ture agree closely with the measured values indi-
cating that the calibrated model is able to simulate 
the crop variables and root zone soil moisture 
with fairly good accuracy.

3.2  Estimation of soil hydraulic 
properties using crop model 
inversion

Relative Error (RE) in parameter estimation for 
each combination case (Table 3) shows that combi-
nations of observed variables of soil moisture and 
crop canopy (L1, L3 and L4) gave better parameter 
estimates and lower uncertainty. L4 (SSM + BM) 

Figure 6: Results of calibration of STICS model for turmeric crop using OptimiSTICS (a) Simulates versus 
observed LAI, (b) Simulated versus observed biomass in t/ha, (c) Simulated versus observed yield in t/ha 
and (d) Simulated versus observed root zone soil moisture (HR3) in g/g.
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gave better estimates than L3 (SSM + LAI), show-
ing that among crop canopy variables, BM holds 
more information than LAI. Combination of 
the 3 observed variables (L1) gave same kind of 
results as L4, showing that additional information 
on crop canopy is not improving much parameter 
estimability. Though this method is found to be 
applicable for the crop consider here, it has to be 
evaluated under varying agro-climatic conditions 
with several crop-soil combinations.

Crop variables like Leaf Area Index (LAI) and 
biomass can be estimated by optical and micro-
wave remote sensing techniques, which make this 
approach a potential tool for estimating soil prop-
erties at catchment scales. The availability of multi-
satellite microwave data (RADARSAT-2, RISAT-1, 

Figure 6: Continued.

Table 3: Relative error (REi) for HCC1, 
HCC2 and EPC2 for the various combinations 
L1 to L7.

Likelihood  
combination

Relative error (REi)

HCC(1) HCC(2) EPC(2)

L1 0.09 0.19 0.36

L2 0.94 0.62 0.88

L3 0.1 0.44 1.4

L4 0.09 0.28 0.39

L5 0.88 0.9 0.92

L6 0.99 0.63 0.88

L7 0.11 0.84 1.51
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SMAP etc. apart from optical remote sensing data) 
on crop variables and soil moisture can be useful 
to map soil hydraulic properties. Here we dem-
onstrate an example of estimating soil hydraulic 
properties from satellite data. Figure 7 shows the 
mean and uncertainty of the estimates of HCC1 
and HCC2 using field and satellite data for the 
case of turmeric crop. Uncertainty in the estimate 
of HCC1 is very low in the case of satellite data 

inversion. The mean of the estimate of HCC1 is 
similar in both field and satellite inversion case.

Satellite inversion case slightly underestimates 
the mean of HCC2, whereas the uncertainty range 
in HCC2 is similar in both field and satellite inver-
sion cases. The mean of the estimate of EPC2 of 
field case is very close to that of the satellite inver-
sion case but uncertainty in the satellite inversion 
case is on the higher side (Fig. 8). This is because of 

Figure 7: Box plot of HCC1 and HCC2 for field and satellite inversions.

Figure 8: Box plot of EPC2 for field and satellite inversions.
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the higher RMSE in the estimate of the LAI from 
satellite data.

The observed mean of the estimate of HCC1 
is 19.5 g/g, which is very close to the estimates 
obtained from field inversion (19.79 g/g) than 
that from satellite inversion (19.93 g/g). In case 
of HCC2 the observed mean is 20 g/g. The mean 
of the field inversion estimates is closer to the 
observed mean, whereas the satellite inversion 
case underestimates HCC2. This is because of the 
higher RMSE in the estimate of LAI from satellite 
data and the estimate of HCC2 and EPC2 are sen-
sitive to the value of the LAI. The estimate of EPC2 
from both field and satellite inversion case are 
close to the observed mean which is 70 cm. These 
results indicate that the satellite data has a good 
potential to estimate soil hydraulic properties.

3.3  Estimation of spatial variation 
of potential recharge using STICS 
crop model

The soil hydraulic parameters are estimated using 
the inversion approach described in the previ-
ous section, the ensemble of behavioural param-
eters for each soil group is selected based on the 
likelihood function. Using the ensemble of the 

behavioural parameters in the STICS model, the 
potential recharge and its variability correspond-
ing to each soil group is simulated and is shown in 
Fig. 9. The hydrological budget and the inter-soil 
variability of potential recharge simulated for irri-
gated turmeric crop is shown in Fig. 9.

The inter-soil variability of potential recharge 
is captured well by the crop model, thus under-
lining the theory that crop models are best 
suited to simulate the potential recharge and 
its spatial and temporal variability. The simu-
lated and observed root zone soil moisture for 
the case of sandy loam and clay soil are shown 
in Fig. 10 (a) and (b) respectively. The observed 
root zone soil moisture and the simulated root 
zone soil moisture closely agree in both the soil 
types demonstrating the model’s ability to sim-
ulate the soil moisture and hence the potential 
recharge.

In general, the approach discussed here shows 
promise as a method for estimating potential 
recharge from a semi-arid agricultural area. Even 
though the crop model approach is more data 
intensive when compared with other traditional 
approaches, often soil parameters are available 
from existing databases or can be built by the crop 

Figure 9: Hydrological budget: Inter-soil variability and potential recharge among various soil types 
(ET—evapotranspiration, recharge and runoff are in mm).
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model inversion methodology described in the 
previous section. The results presented here are 
based on the experiments and simulations on irri-
gated turmeric crop, future study in this aspect is 
aimed at quantifying the potential recharge and its 
uncertainty with multiple soil-crop matrix.

3.4  Application of satellite weather 
products for simulating STICS 
crop model

The Kalpana rainfall estimates showed an error of 
10% when compared with the Maddur gage data. 
The number of rainy days also differed by 12% 
with Kalpana data on the higher side. Number 
of days of significant rainfall (>5 mm) differed 
by 25%, with Kalpana estimates showing more 

number of rainy days. These indicate that Kalpana 
data is over estimating the rainfall by about 10%. 
It was observed also that in a wet year, a 10% error 
in satellite rainfall data induces an error of 10% 
in crop growth variables such as biomass and leaf 
area index, whereas crop yield varied by 15%. The 
simulated LAI and crop yield from gauge and sat-
ellite data are shown in Fig. 11.

The rainfall estimates from TRMM after bias cor-
rection, provided good estimates of crop yield, leaf 
area index and biomass. The comparison of poten-
tial recharge simulated by STICS model using gauge 
and satellite data is shown in Fig. 12. The potential 
recharge simulated using TRMM data closely agrees 
with the simulations using gauge data. The error 
in the estimates of rainfall from Kalpana satellite 

Figure 10: Simulated (red line) and observed (circles) root zone soil moisture and 95% upper and lower 
confidence interval (blue dashed line) for (a) Sandy loam soil and (b) Clay soil.
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produces an error of similar magnitude in the case 
of crop variables such crop yield, LAI and biomass, 
whereas from the TRMM data the error is signifi-
cantly less. Hence there is a potential to use satellite 
data for agro-hydrological simulation given that 
we quantify the propagation of error from data to 
model.

4 Summary and Perspectives
Groundwater extraction for irrigation is draw-
ing down water tables and reducing base flows; 
groundwater declines affect water yields especially 
in hard rock aquifers and affect the irrigated crop 
productivity; prices of agricultural inputs and 
products as well as climate change affect irrigation 

Figure 11: Comparison of LAI and yield (inset figure) simulated by STICS model using gauge and satellite 
rainfall data.

Figure 12: Comparison of potential recharge simulated by STICS model using gauge and satellite rainfall 
data.
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water demand; changes in aquifer recharge and 
groundwater depletion may feedback to crop pro-
ductivity. Depletion of water tables, groundwater 
quality (fluoride and nitrates) and over-extraction 
of groundwater have become critical issues in sev-
eral regions. Availability of groundwater resources 
is critically important in semiarid watersheds, 
which primarily depend on groundwater irriga-
tion. The effect of groundwater availability and its 
quality on the agricultural systems can be under-
stood by modeling the feedback between these 
two systems. Coupling a crop-groundwater model 
provides a scheme to understand the dynamics of 
the feedback between a crop and a groundwater 
system.

Crop models simulate the potential recharge, 
which may reach the water table and add to the 
groundwater resource, and in turn groundwa-
ter is being pumped out to facilitate irrigation. 
Fig. 13 shows the scheme by which a coupled 
crop-groundwater model can be developed. The 
primary variables of exchange are the ground-
water recharge and the groundwater pumping or 
draft. The potential recharge estimated by the crop 
model is given as a recharge into the groundwater 
model and the pumping from the groundwater 
model is given as irrigation to the crop model. 
Such a model can be calibrated and validated 

at field scale by using observations of ground-
water level and data on pumping and irrigation 
practices.

The groundwater recharge and its spatio-
temporal variability are critical components of 
the water balance with respect to sustainability 
of groundwater resources in a groundwater irri-
gated semi-arid agricultural catchment. Precise 
quantification of recharge to groundwater from 
a soil-crop system is essential to understand the 
interactions between a crop and groundwater 
system in a coupled crop-groundwater model. 
In this we demonstrated that a crop model based 
approach is best suited to estimate the recharge 
flux and its variability in a heterogeneous soil/
crop system. Accurate representation of soil 
hydraulic parameters in the crop model is nec-
essary to quantify the potential recharge and its 
variability because the potential recharge is sen-
sitive to the soil hydraulic parameters. We also 
demonstrated that a crop model based inver-
sion approach using ground and satellite data 
is a promising approach for estimating surface 
and root zone soil hydraulic properties in a mul-
tilayered heterogeneous soil system. As these 
variables can be estimated from remote sensing 
data (microwave and optical), this approach has 
the potential to map soil hydraulic properties 

Figure 13: Scheme for coupling a crop-groundwater model.
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at large spatial scales. The method needs to be 
further explored by using multi-satellite data to 
compensate for the short growing period of most 
crops. The spatial variability of crop type and 
farming practices bring in additional uncertainty 
in the estimation of soil parameters. Future stud-
ies should aim at quantifying these uncertainties 
and understanding the effect of these uncertain-
ties in the model simulations. The satellite based 
weather data can be used for agro-hydrological 
simulation given that we quantify the propaga-
tion of error from data to model. With the avail-
ability of weather satellites and given the high 
spatial variability of climate variables in semi-
arid region, the usefulness of satellite weather 
data to capture the spatial variability of crop 
yield, recharge and soil moisture status needs to 
be explored at large spatial scales. The perform-
ance of a coupled agro-hydrological model can 
be improved by the process of data assimilation. 
In addition to surface soil moisture, crop vari-
ables like leaf area index and biomass can also 
be estimated from satellite remote sensing. By 
assimilating these variables into the coupled 
model, a more realistic representation of vari-
ability of crop growth can be obtained.
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