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Abstract

An optimal learning scheme is proposed for
a class of Bidirectional Associative Memories
(BAM’s). This scheme, based on the Perceptron
Learning Algorithm, is motivated by the inade-
quacies / incompleteness of the weighted learn-
ing by global optimization, as derived by Wang
et al [1]. It is shown that the new scheme has
superior properties : (1) Convergence to the cor-
rect solution, when il erists ; and (2) A larger
basin of attraction for the given set of patterns.

Introduction
How to achieve. versatile processing power
by inter-connecting a large number of neurons
(which are widely acknowledged to be simple
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and primitive) to create the so-called Artificial -

Neural Networks (ANN’s) has assumed consid-
erable significance in recent years. The inputs to
the neurons consist of weighted sums of neuron
outputs. And, as is well known, the input / out-
put characteristic of a neuron can be modelled
by a sigmoidal function.

In practice, the ANN’s range from feed-
through systems with no feedback, e.g., Per-
ceptrons, to systems endowed with local feed-
back interconnections (e.g., cellular networks),
to fully interconnected feedback systems. For
instance, the Hopfield network exemplifies the
last class.

As processing units for information analy-
sis, neural networks are quite interesting, be-
cause, dynamically, they exhibit, at times, some
stable states which act as basins of attraction.
That is, when the neural network, starting from
an arbitrary point in state-space, is allowed to
evolve in time, it reaches a stable equilibrium
point which, in effect, ’attracts’ the neighbor-
ing states. Therefore, while referring to the be-
haviour of a neural network. as a Pattern An-
alyzer, the convergence of its dynamics toward
an equilibrium point is interpreted as the recog-
nition (or labelling) of an imperfect pattern in
terms of the correct (or stored) pattern. Con-
ceptually, this is very similar (see Kohonen [2])
to the storage of information in an Associative
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Memory (AM).
2 Synthesis-of an AM

Literature abounds in the study of neural net-
works to implement AM’s. As indicated above,
an AM can ’recall’ the correct pattern when fed
with either a part or corrupted version of it. In
particular, the Hopfield neural network models
have been shown [3] to implement AM’s to some
extent. :

If these AM’s are to be useful in practice as
Pattern Recognizers, we need to design them
in such a way that the memory patterns to be
stored are its stable equilibrium points. Imple-
mentation of this requirement leads to designing
an AM in which the patterns are input as vec-
tors, which, in turn, are transformed, by an ap-
propriate Learning Strategy, to interconnection
strengths in the AM. After the Learning Stage,
when the AM is used to recognize patterns, the
input pattern vector initiates the dynamics of
the AM which evolves, in time, in such a way
that an energy function of the AM assumes a
minimum. If the input pattern is similar to
a pattern stored (as interconnection strengths,
during the learning phase) in the AM, the dy-
namical evolution will result in convergence to
the nearest stored pattern. This is because the
AM design implies that all of its trajectories seek
the local minima of the energy function.

Mathematically, if the vector x represents a
given pattern stored in an AM, then if the input
vector is x+ 6x, the AM will dynamically evolve
to x, provided that an appropriate norm of éx
(say | éz |, || 6z || ) is sufficiently small.

2.1 Bidirectional Associative Mem-
ory ,

BAM is a two layer feedback neural network,
which can be used to store associations between
patterns. See Fig.l. The neurons in one layer
are connected to the neurons in the other layer,
but there are no connections within a layer. Let
N and P be the number of neurons in the first
and second layers respectively. Let W;; be the
connection weight between neuron'i in the first
layer and neuron j in the second layer.. Let
{(Xe,Yx)}, £ = 1,.., M be the set of pattern



pairs to be stored, where X;’s and Y;’s are
N- and P-dimensional vectors, respectively. In
the standard recall procedure, each neuron state
X (1) and Y () is updated as follows:

X(# ¢[E,";1Wijy(j)] i=1,.,N
(1)
Y(§) = ¢[Z,Wi; X(5) i=1,..,P

where X (i)’ and Y(j) are the new states of the
i*% unit in the first layer and j** unit in the
second layer respectively. The function ¢(z) is
+1 for z > 0 and -1 for z < 0.

In the learning phase, a weight matrix to store
the given pattern pairs is obtained. Two aspects
are to be considered in learning;:

1. The desired patterns are to be stored as
stable states.

2. The stored patterns are to be made opti-
mally stable.

From (1), we see that a pattern pair (X,Y) is
a stable state, if and only if the following equa-
tions hold.

X() $EL, WyY(I>0  i=1,.,N

e . . )
Y(5) ¢[Z,Wi; X(2)] >0 j=1..,P

The first aspect of the learning phase is to
obtain the weight matrix satisfying the above
equations for al? pattern pairs to be stored. The
second aspect requires a W which gives wider
basins of attraction around each stored pattern
pair. In view of the difficulty of solving this
problem, we consider a simpler version of this,
namely, finding a W which satisfies the following
equations :

Xe(i) =L, WiVe(5)] > A,
(3)
Yi(§) $[EX Wi Xi ()] > A,

where i =1,..,N;j=1,...,P;k=1,..M; and
A is a positive number. An optimal learning
algorithm should maximise the A in the above
equations with respect to a normalized weight
matrix.

2.2 Learning in a BAM

Koskoii] has proposed a correlation learning
rule which obtains the connection weights using
the formula,

Wi = =M, Xi(i)) Ya(y) (4)

When the patterns are not orthogonal, this rule
does not work well. Even when there exists a
matrix W such that the given patterns are sta-
ble, this learning rule may fail in storing the pat-
terns.

To overcome this problem, and to obtain an
optimal weight matrix, a modified learning algo-
rithm based on multiple training has been pro-
posed in {1]. In this method, the connection
weight is of the form :
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Wij = T, Cx Xi(i) Ya(y) (5)

The algorithm proposed in [1] obtains Ci’s
which make the patterns stable. It is proved
therein that this algorithm converges whenever
there exists a set of C’s such that the given
patterns are stable. A condition for the exis-
tence of Cy’s is derived, and it is shown to be
equivalent to the linear separability of a set of
patterns which are constructed from the given
pattern set.

However a drawback of this method is that it
may not be able to store the patterns which can,
theoretically, be stored. This problem arises be-
cause, the algorithm obtains the solution only
when it is of the form given in (5). For some
pattern sets which can be stored, there may not
exist a set of Ci’s such that W in (5) makes
them stable.

For instance, consider the set of patterns in
Fig.2. It can be shown, by using the Ho-Kashyap
algorithm [6], that there do not exist Ci’s which
make the patterns stable, inspite of the fact that
these patterns can be stored.

X1t=[-1-1-11-1-1 1]
Yi=[-1-1-1-1 1 1-1];
2=[-1-111-1 1-1]
y2=[ 1 1 1-1 1-1-1];
x3=[1 1 1-1 1-1 1]
Y3=[-1 1 1-1-1 1-11];
4=[(-1 1-1-1 1-1 1]
Y4 =[ 1-1 1-1-1-1-1]

Fig.2
3 Main Results

In the present paper, we give an algorithm
which takes care of both the aspects of learn-
ing. First, we show the equivalence of the BAM
to a Perceptron, and then translate the opti-
mal learning algorithms of Perceptrons into the
structure of the BAM. To this end, consider the
BAM of Fig.3 with N = P = 3.

Let (Xi,Y:) be one pair of patterns to be
stored. The conditions on W;;’s for (X, Y:) to
be stable are given in (2).

Now consider the Perceptron of Fig.4. The
conditions (2) on W;;’s are equivalent to the fol-
lowing pattern set for this Perceptron with the
corresponding outputs.

Ye(1) 0
Vi 0
Ye(3 0
0 Ykglg
0 - > Xk(1); Ye(2 - > Xe(2)....
0 Yi(3)
0 0
0 0
0 0

Each pattern pair in the BAM structure gives
rise to (N + P) sub-patterns in the eqivalent per-
ceptron, corresponding to the (N + P) neurons



in the BAM. Now, storing M pattern pairs in
BAM is equivalent to learning 1n a Perceptron
with these M * (N 4 P) sub-patterns.

3.1 Optimal Learning

As BAM is equivalent to a Perceptron, we
can apply the optimal learning algorithms of the
Perceptron to BAM. One such algorithm is de-
scribed below. For further details, see [6].

Let (Z,..., ZL) be the pattern set for a Per-
ceptron, and let (y1,...,yr) be the set of corre-
sponding outputs. Let W = (w;, ..., w,) denote
‘the weight vector.

Then, adopt the following learning rule :
When the pattern Z, is presented, the change
in the weight w; is given by

6w,— = ¢P Zp(’) Yp (6)
where P is defined as

1/2 .
e = 48 [A (E}'ﬂwf 2 _ YE;-’___,w,-Z,,(])yp]
(M)
O[t] = 1ift > 0 and = 0 otherwise ; and A >= 0.
It can be shown [6] that this algorithm con-
verges whenever there exists a W such that

WT2) w > AL @)

for all i. Using this algorithm, we can obtain the
largest A for which (8) holds. :

Here we note that (see [7]) even if the weights
are modified only after presenting a set of pat-
terns instead of a single pattern, the algorithm
still converges. The convergence can be proved
on the same lines as found 1n [6].

Now we use these results to obtain a learn-
ing aiigorithm for BAM. When a pattern is pre-
sented in the equivalent Perceptron, it is equiva-
lent to (i) presenting a pattern to the BAM ; (ii)
checking the output of the corresponding neuron
; and (in) modifying the corresponding weights.
If all the (N + P) sub-patterns corresponding
to a pattern pair (Xx,Yy) are presented to the
Perceptron, and the weights are modified after
all these are presented, then the change in W;;
1s given by

§Wij = (e + €5;) Xi() V(i)  (9)
where
efi = 0[u]
e’éj = v,
and

1/2
u=A (Eﬁlzfzxwé) /

v=A (ZY

f=1

— (552, Wi Ya (7)) Xe (i)

1/2 ) )
S WE) = (B, Wi Xe(9)) Ye(G).

4 Experimental Results ,

We compare the proposed method with the
weighted learning method ‘of [1] using a set of
test patterns on a simulated neural BAM, with
N = P = 15, and M assuming values from 2 to
7. For each value of M, 100 experiments are per-
formed. In each experiment, patterns are gener-
ated randomly, and the two algorithms are ap-
plied. We call an experiment successful if the
algorithm is able to store all the given patterns.
Results of the comparison are summarized in Ta-
ble 1 and Table 2 : Table 1 gives the percentage
of succesful experiments ; and Table 2 contains
Aa/\w p,-{, averaged over all neurons and over
all succesful experiments, where || W [[; is the
Euclidian norm of the vector of weights connect-
ing neuron i to other neurons ; and A, as ob-
tained by the algorithm, is the largest positive
number that satisfies (3) . The superiority of
the proposed method is evident from the results
given.

5 Conclusions

For a class of Bidirectional Associative Mem-
ories (BAM’s), an optimal learning: scheme
has been proposed, inspired by the Perceptron
Learning Algorithm, and motivated by the inad-
equacies / incompleteness of the weighted learn-
ing by global optimization,gs derived by Wang
et al [1?. It is shown that the new scheme has
superior convergence and stability properties.
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M 2 31415 6 17
Weighted Learning | 94 [ 87 | 78 | 561 | 10 [ ©
Proposed Method | 100 | 100 [ 99 | 100 | 100 | 98
Table 1
M 2 3 4 5 6 7
Weighted Learning [ 2.51 [ 1.59 [ 1.14 [ 0.81 [ 0.69 | 0.02
Proposed Method [2.72 [T188 [ 15 [ 126 [ 1.137]1.01
Wi
W33
Fig. 3
>

Fig.4
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