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Abstract—This paper establishes a formal connection between two common, but previously unconnected methods for analyzing data

streams: discovering frequent episodes in a computer science framework and learning generative models in a statistics framework. We

introduce a special class of discrete Hidden Markov Models (HMMs), called Episode Generating HMMs (EGHs), and associate each

episode with a unique EGH. We prove that, given any two episodes, the EGH that is more likely to generate a given data sequence is

the one associated with the more frequent episode. To be able to establish such a relationship, we define a new measure of frequency

of an episode, based on what we call nonoverlapping occurrences of the episode in the data. An efficient algorithm is proposed for

counting the frequencies for a set of episodes. Through extensive simulations, we show that our algorithm is both effective and more

efficient than current methods for frequent episode discovery. We also show how the association between frequent episodes and EGHs

can be exploited to assess the significance of frequent episodes discovered and illustrate empirically how this idea may be used to

improve the efficiency of the frequent episode discovery.

Index Terms—Temporal data mining, sequential data, frequent episodes, Hidden Markov Models, statistical significance.
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1 INTRODUCTION

DATA sets with temporal dependencies frequently occur
in business, engineering, and scientific scenarios. Over

the years, many data mining techniques for analyzing such
data streams have been proposed [1], [2], [3], [4], [5], [6].
The general techniques for such analysis can be broadly
classified into two approaches: pattern discovery and
learning generative models.

Searching for interesting or frequently occurring patterns
has attracted a lot of attention in temporal datamining [1], [2],
[5]. The central idea in frequent pattern discovery is to seek
expressive patterns and fast discovery algorithms that render
the technique both useful as well as efficient in the data
mining context. The patterns sought could be, e.g., tempo-
rally ordered sequences of attribute values [1], [2], [6] or such
sequences with more sophisticated structure [7], [8], [9].

Learning generative models is another important
perspective in time-series analysis. Hidden Markov Mod-
els (HMMs) constitute a rich class of models that are
popularly used for describing time-series data. Many such
Markovian models have been used in a variety of
applications [3], [10], [11], [12], [13], [14].

Overall, techniques for pattern discovery are often more
useful for data summarization and rule generation applica-
tions. Most such techniques use counting-type arguments
and have what may be called a computer science viewpoint.
Model-based techniques, on the other hand, use stochastic
methods and have a statistical framework. These techniques

provide a principled approach to describing/modeling the

statistics that govern data generation. For data mining, both

approaches are important and should be used to comple-

ment each other [15]. This paper is motivated by such

considerations.
This paper establishes a formal connection between a

pattern discovery framework based on frequent episodes

and a class of generative models based on HMMs. We

define a specialized class of HMMs and correspond each

episode with a unique HMM in this class. We prove that,

given any two episodes, the HMM associated with the more

frequent episode is more likely to generate the data and vice

versa. This allows one to rigorously relate frequent episodes

with HMMs. To our knowledge, this is the first instance of

such a formal connection and it has interesting conse-

quences. For example, we show that it gives us a

mechanism to test whether a frequent episode discovered

is, in a sense, statistically significant. This also leads to a

mechanism whereby a reasonable frequency threshold can

be automatically calculated, thus leading to what may be

termed parameterless data mining.
A second contribution of this paper is a new frequency

measure for episodes, namely, the number of nonoverlap-

ping occurrences of an episode, and an algorithm for

obtaining the corresponding set of frequent episodes. It is

this new frequency count which makes it possible to

formally connect frequent episode discovery and HMM

learning. In addition, it also significantly speeds up the

frequent episode discovery process. We illustrate all these

through some simulations.
The rest of the paper is organized as follows. Section 2

provides a brief overview of frequent episodes in event

streams. Section 3 presents our new frequency measure and

the counting algorithm. Section 4 proves our main results

connecting episodes and HMMs. In Section 5, we discuss the
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consequences of this formal connection. Simulation results
are presented in Section 6 and conclusions in Section 7.

2 FREQUENT EPISODES IN EVENT STREAMS

This section briefly introduces the framework of frequent
episode discovery [1]. The data is a sequence of events,
hðE1; t1Þ; ðE2; t2Þ; . . .i, where Ei represents an event type and
ti the time of occurrence of the ith event. The Ei take values
from a finite set of event types. For example, the following
is an event sequence containing eight events:

hðA; 1Þ; ðB; 3Þ; ðD; 4Þ; ðC; 6Þ;
ðE; 12Þ; ðA; 14Þ; ðB; 15Þ; ðC; 17Þi:

ð1Þ

An episode is an ordered tuple of event types. (In the
formalism of [1], this corresponds to the serial episode). For
example, ðA ! B ! CÞ is a 3-node episode. An episode is
said to occur in an event sequence if there are events in the
sequence with the same time ordering as specified by the
episode. In the example sequence (1), the events
fðA; 1Þ; ðB; 3Þ; ðC; 6Þg constitute an occurrence of the epi-
sode ðA ! B ! CÞ, while fðA; 14Þ; ðB; 3Þ; ðC; 6Þg do not.

A subepisode is a subsequence of the episode which has
the same ordering as the episode. For example, ðA ! BÞ,
ðA ! CÞ, and ðB ! CÞ are 2-node subepisodes of the
3-node episode ðA ! B ! CÞ, while ðB ! AÞ is not.

The frequency of an episode can be defined in many ways.
A reasonable frequency count must guarantee that any
subepisode is at least as frequent as the episode.

A frequent episode is one whose frequency exceeds a
user-specified threshold. The procedure for discovering
frequent episodes proposed in [1] is based on the same
general idea as the Apriori algorithm [2]. This method
exploits the fact that a necessary condition for an N-node
episode to be frequent is that all its ðN � 1Þ-node sub-
episodes should also be frequent. We use the same general
procedure and, since such a procedure for candidate
generation is fairly standard in data mining algorithms,
we omit the details here.

Calculating the frequencies of a set of candidate episodes
is the main computationally intensive step in frequent
episode discovery. In [1], the frequency of an episode is
defined as the number of (fixed width) windows (over the
data) in which it occurs at least once. Recently, it was
proposed [16] that the window width can be automatically
adjusted by specifying the maximum allowable time
separation between events. The windows-based count is
not immediately relatable to the more intuitive notion of
frequency, namely, the number of occurrences. Another
frequency proposed in [1] is the number of minimal
occurrences. A minimal occurrence is a window containing
the episode such that no proper subwindow of it contains
an occurrence of the episode. The method indicated in [1]
for counting minimal occurrences is inefficient (with
memory needed being of the order of data length). In
contrast, the memory needed by the windows-based count
is only of the order of the number of nodes in the episode.
However, it is shown through simulations in [1] that the
minimal occurrences-based count typically runs 30-40 times
faster.

In the next section, we present a new definition for
episode frequency by restricting the count to certain
precisely defined types of occurrences of the episode. The
algorithm we present for frequency counting has the same
order of space complexity as that of the windows-based
frequency (and, as a matter of fact, needs less temporary
memory). We show through simulations that it runs much
faster.

3 FREQUENCY COUNTING

Intuitively, the total number of occurrences of an episode
seems to be the most natural choice for its frequency. As
proposed in [1], the occurrence of episodes in an event
sequence may be recognized using finite state automata. For
example, for the episode ðA ! B ! CÞ, there would be an
automaton that transits to state “A” on seeing an event of
type A and then waits for an event of type B to transit to its
next state and so on. When this automaton transits to its
final state, an occurrence of the episode is complete.
Different instances of the automaton of an episode are
needed to keep track of all state transition possibilities and,
hence, count all relevant occurrences. Counting all occur-
rences is inefficient and, further, it does not even guarantee
that the frequency of a subepisode is greater than or equal
to that of the episode.

Each occurrence of an episode is associated with a set of
events in the data stream. Two occurrences are said to be
distinct if they do not share any events. In the data sequence
(1), there are only two distinct occurrences of episode
ðA ! B ! CÞ, though the total number of occurrences is
four. While the number of distinct occurrences of an
episode seems attractive as a frequency measure, it is
difficult to count it efficiently. Consider the sequence

hðA; 1Þ; ðB; 2Þ; ðA; 3Þ; ðB; 4Þ; ðA; 7Þ; ðB; 8Þ; . . .i: ð2Þ

In such a case, (in principle) any number of instances of the
ðA ! B ! CÞ automaton may be needed, all waiting in the
second state, since any number of Cs may appear later in
the event sequence. Hence, there is a need for further
restricting the kind of occurrences to count.

Definition 1. Two occurrences of an episode are said to be
nonoverlapping if no event associated with one appears in
between the events associated with the other. The frequency
of an episode is defined as the maximum number of
nonoverlapping occurrences of the episode in the event
sequence.

There are at most two nonoverlapping occurrences of the
episode ðA ! B ! CÞ in (1): fðA; 1Þ; ðB; 3Þ; ðC; 6Þg and
fðA; 14Þ; ðB; 15Þ; ðC; 17Þg. Clearly, the set of nonoverlapping
occurrences is a subset of the collection of all possible
occurrences. In the event sequence (1), consider the occur-
rence of ðA ! B ! CÞ given by fðA; 1Þ; ðB; 15Þ; ðC; 17Þg. We
do not have any other occurrence of the episode which is
nonoverlapping with this occurrence. However, by not
considering this but by considering some other occurrences
(as above), it is possible to obtain a set of two nonoverlapping
occurrences. This is why Definition 1 prescribes the
frequency as the maximum number of nonoverlapping
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occurrences. Counting of nonoverlapping occurrences can be
done efficiently. For example, in (2), we need to keep track of
only the last pair of event types A and B since all we need to
recognize are nonoverlapping occurrences.

3.1 Counting Nonoverlapping Occurrences

This section presents an algorithm that counts the max-
imum number of nonoverlapping occurrences for each
episode in a set of (candidate) episodes. Proceeding left to
right along the event sequence and counting the innermost
occurrence in any set of overlapping occurrences always
yields the largest collection of nonoverlapping occurrences
for an episode.

Given a set of candidate episodes C, ALGORITHM I
returns the set of frequent episodes F . ALGORITHM I is an
automata-based counting scheme similar in spirit to that in
[1]. The main data structure here is the waitsð�Þ list. Since
there are many candidate episodes, for each of which there
are multiple occurrences, at any time there would be many
automata waiting for many event types to occur. In order to
access the automata efficiently, for each event type A,
automata that can now accept A are stored in the
list waitsðAÞ. This list contains entries of the form ð�; jÞ,
meaning that an automaton of episode � is waiting for
event type A as its jth event. That is, if event type A occurs
now in the event sequence, this automaton would accept it
and transit to the jth state. (For an episode �, the event type
of its jth node is denoted �½j�.) At any time (including at the
start of the counting process) there would be automata
waiting for event types corresponding to the first nodes of
all candidate episodes. This is how the waitsð�Þ list is
initialized (line 5 in pseudocode). After that, with every
event in the data stream, the waitsð�Þ list is appropriately
updated. If Ei is the next event in the input sequence, then
the waitsð�Þ list is updated as follows: ð�; jÞ is removed from
waitsðEiÞ and ð�; jþ 1Þ added to waitsð�½jþ 1�Þ (lines 9-15).
Since we loop over all elements in waitsðEiÞ, it is
inappropriate to add to it from within the loop when
�½jþ 1� ¼ Ei. Hence, in such cases, ð�; jþ 1Þ is added to a
temporary list, called bag, which is later emptied into
waitsðEiÞ on coming out of the loop (lines 12-13, 21).

ALGORITHM I, at the instant of completion of an
episode’s occurrence, resets all automata for that episode
(lines 18-20). This ensures that any collection of over-
lapping occurrences increments the episode frequency by
exactly one.

ALGORITHM I: NONOVERLAPPING OCCURRENCE

COUNT

Input: Set C of (candidate) episodes, event stream

s ¼ hðE1; t1Þ; . . . ; ðEn; tnÞÞi, frequency threshold

�min 2 ½0; 1�
Output: The set F of frequent episodes in C
1: Initialize bag ¼ �

2: for all event types A do

3: Initialize waitsðAÞ ¼ �

4: for all � 2 C do

5: Add ð�; 1Þ to waitsð�½1�Þ
6: Initialize �:freq ¼ 0

7: for i ¼ 1 to n do

8: for all ð�; jÞ 2 waitsðEiÞ do
9: if j 6¼ 1 then

10: Remove ð�; jÞ from waitsðEiÞ
11: if j < j�j then
12: if �½jþ 1� ¼ Ei then

13: Add ð�; jþ 1Þ to bag

14: else

15: Add ð�; jþ 1Þ to waitsð�½jþ 1�Þ
16: if j ¼ j�j then
17: Update �:freq ¼ �:freq þ 1

18: for all 1 � k < j�j do
19: Remove ð�; kþ 1Þ from waitsð�½kþ 1�Þ
20: Remove ð�; kþ 1Þ from bag

21: Empty bag into waitsðEiÞ
22: Output F ¼ f� 2 C such that �:freq � n�ming

In this algorithm, the user needs to specify only the
frequency threshold. No other parameters such as window
width, etc., are needed. At the same time, additional
temporal constraints (like those in [1] or [16]) can be readily
incorporated. For example, it may be useful to have an
expiry time for episode occurrences so that widely spread
out events are not regarded as an occurrence. Such
conditions may be enforced by testing the appropriate time
constraint before permitting a transition into a new state.

3.2 Space and Time Complexity

To count occurrences of an N-node episode �, the algorithm
needs N automata. Thus, when counting frequencies of a
collection C of such episodes, the space complexity is
OðjCjNÞ. This is same as the space complexity of the
windows-based count of [1]; however, the temporary
memory needed by ALGORITHM I is lesser since there is
no need for lists such as the beginsatðtÞ as was used in [1]
(which stores automata initialized at each time instant t)
whose size is data length dependent. In addition, the
algorithm in [1] needs to update the list to take care of
episodes “falling off” the left end of the window. This step
is absent in ALGORITHM I.

To determine the time complexity of ALGORITHM I, note
that it enters the main loop n times, once for each event in
the input sequence. Then, each automaton in the waits list
needs to be updated. There are jCj candidate episodes, each
with at most N automata (since they are N-node episodes).
Thus, the worst-case time complexity of ALGORITHM I is
OðjCjNnÞ. This expression is similar to the worst-case time
complexity of the windows-based count as obtained in [1],
the only difference being that, in our case, n is the number
of events in the input sequence, while, in [1], it is the
number of time-ticks spanning the input sequence. In the
windows-based count, the automata need to be updated for
every shift of the sliding window, while ALGORITHM I does
it only each time a new event occurs in the sequence. This is
an advantage if the time spanned far exceeds the number of
events in the input stream.

4 EPISODE GENERATING HMMS (EGHS)

The most important consequence of the new definition of
episode frequency introduced in the previous section is that
it allows us to formally connect frequent episode discovery
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with learning generative models for the data stream in the
form of some specialized Hidden Markov Models (HMMs).
We call this class of specialized HMMs Episode Generating
HMMs (EGHs). This section defines the class of EGHs and
formally proves the connection between frequent episodes
and EGHs.

HMMs are very popular for modeling and analysis of
time series data with applications in areas ranging from
speech processing to bioinformatics. For the sake of
completeness, we begin with a brief overview of discrete
HMMs [17], [18].

An HMM contains a Markov chain over some state space.
The states themselves are unobservable. In each state, the
model emits a symbol from a finite symbol set according to a
symbol probability distribution. This stream of symbols is
the observable output sequence of the model. A discrete
HMM is specified by the state space, S, the state transition
probability matrix, �PP , the initial state probabilities, � and the
symbol probability distributions, b. (We use the following
notation: For each i 2 S, �i is the probability that the initial
state is i and bið�Þ is a probability distribution according to
which symbols are emitted from state i. The element pij of
matrix �PP denotes the probability of making a transition from
state i to state j.) Often, the state space is clear from context
and we specify an HMM by the triple � ¼ ð�; �PP; bÞ.

Let o ¼ ðo1; o2; . . . ; oT Þ be an observed symbol sequence.
The joint probability of the output sequence o and a state
sequence q ¼ ðq1; q2; . . . ; qT Þ given an HMM � is

P ðo;q j �Þ ¼ �q1bq1ðo1Þ
YT
t¼2

pqt�1qt bqtðotÞ: ð3Þ

The probability of an HMM � outputting the sequence o is
obtained by summing the above over all state sequences:

P ðo j �Þ ¼
X
q

P ðo;q j �Þ: ð4Þ

Often, this data likelihood is assessed by simply evaluating
the joint likelihood of (3) only along a most likely state
sequence, q� (which may not be unique), where

q� ¼ argmax
q

P ðq j o;�Þ

¼ argmax
q

P ðo;q j �Þ:
ð5Þ

Note that q� is dependent on � and we use the notation q�
�

when it is necessary to show this dependence explicitly.
Given some data, an HMM for the data can be learned
through maximum-likelihood estimation by finding a �,
from among a given class of HMMs, to maximize P ðo j �Þ.
In many applications (e.g., speech recognition), one needs to
compare the probabilities of different HMMs generating a
given sequence o. In such cases, it is often assumed [18,
Chapters 25-26] that

A1 : argmax
�

P ðo j �Þ ¼ argmax
�

P ðo;q�
� j �Þ;

where the maximum is over some set of HMMs of interest.
This simplifies computation since we need to compute data
likelihood only along the most likely state sequence. We use
assumption A1 in some of our analysis to follow.

4.1 Structure of Episode Generating HMMs

We now introduce our specialized HMMs, namely, the

Episode Generating HMMs (EGHs). Since we want to

connect episodes with HMMs, the symbol set would be the

set of event types and the output sequences would be the

event sequences.1

In an Episode Generating HMM (EGH), the number of

states is always even and the state space is denoted by

S ¼ f1; . . . ; N;N þ 1; . . . ; 2Ng. This state space is partitioned
into two: the episode states, Se ¼ f1; . . . ; Ng, and the noise

states, Sn ¼ fN þ 1; . . . ; 2Ng. The symbol set would be the

set of event types. The symbol probability distribution is the

uniform distribution for all noise states and a delta function

for each of the episode states. (That is, in each episode, state

one of the symbols is emitted with probability 1.) We specify

all the episode state symbol probability distributions by

A ¼ ðA1; . . . ; ANÞ, where the notation is that episode state i

can only emit the symbol (or event of type) Ai. The state

transition probabilities have a restricted structure. All

transitions into noise states have probability � and all

transitions into episode states have probabilities ð1� �Þ,
where � 2 ð0; 1� is called the noise parameter. An episode

state k can transit into either the noise state ðN þ kÞ with

probability � or the episode state ðk mod NÞ þ 1 with

probability ð1� �Þ. A noise state ðN þ kÞ can either remain

there with probability � or transit to the episode state

ðk mod NÞ þ 1 with probability ð1� �Þ. The initial state is 1

with probability ð1� �Þ and 2N with probability �. Thus, all

transition and initial state probabilities are determined by a

single parameter, namely, �.
An EGH is specified by � ¼ ðS;A; �Þ. A ¼ ðA1; . . . ; ANÞ is

referred to as the episode state symbol parameters and � as the

noise parameter. E denotes the class of all EGHs.
An example EGH with six states is shown in Fig. 1. The

dotted circle labeled 0, along with its outgoing arcs,

represents the initial state probability distribution. The

symbol probability distributions are shown alongside

corresponding nodes. As per our notation, states 1, 2, 3

are episode states and states 4, 5, 6 are noise states. This

example EGH can only emit an “A” in state 1, a “B” in

state 2, and a “C” in state 3. It is easy to see that (if � is

small) the output sequence generated by this example EGH

would be an event sequence with many occurrences of

episode ðA ! B ! CÞ. Thus, the EGH in Fig. 1 is what we

would like to associate with that episode, as will be clear

from the discussion to follow.

4.2 Class of EGHs with a Fixed �

We begin our investigation of a formal connection between

frequent episodes and EGHs by first considering a subclass

of EGHs with a fixed �.

Definition 2. The subclass E� is defined as the collection of all

EGHs (out of E) with a fixed noise parameter �.
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Definition 3. The EGH associated with episode � ¼ ðA1 !
� � � ! ANÞ is �� ¼ ðS;A; �Þ 2 E�, where S ¼ f1; . . . ; 2Ng
and A ¼ ðA1; . . . ; ANÞ.

This episode-EGH association has an important property
which is stated below in Theorem 1.

Theorem 1. Consider the class E�, of EGHs with � < M
Mþ1 (where

M is the cardinality of the symbol set). Let o ¼ ðo1; . . . ; oT Þ be
the given event sequence. Let � and � be two N-node episodes
occurring in o. Let �� and �� be the EGHs from E� associated
with � and � according to Definition 3. Let f� and f� denote
the frequencies of � and �, respectively (where frequency is the
maximum number of nonoverlapping occurrences, as in
Definition 1). Let q�

� and q�
� be the most likely state sequences

for o under �� and ��, respectively. Then, 1) f� > f� implies
P ðo;q�

� j ��Þ > P ðo;q�
� j ��Þ, a n d 2 ) P ðo;q�

� j ��Þ >
P ðo;q�

� j ��Þ implies f� � f�.

Proof. Since the state space of an EGH is partitioned as
S ¼ Se þ Sn, given any state sequence q, we can
decompose it into two subsequences, qe and qn, each
of which consist of elements of q that are in Se and Sn,
respectively.

For any HMM, the joint probability of an observation
sequence and a state sequence is given by (3). For an
EGH, this expression is particularly simple. Each transi-
tion probability is either � or ð1� �Þ. Whenever the
transition probability pqt�1qt is ð1� �Þ, the state qt has to
be an episode state and, hence, the corresponding bqtðotÞ
is either 1 or 0, depending on whether or not the symbol
ot can be emitted in the episode state qt. Similarly,
whenever pqt�1qt is �, the corresponding bqtðotÞ is ð 1

MÞ. The
same thing is true for �q1 and bq1ðo1Þ. Thus, for any state
sequence such that the joint probability is nonzero and
for any EGH �, we have

P ðo;q j �Þ ¼ �

M

� �jqnj
1� �ð Þjqej ð6Þ

¼ �

M

� �T 1� �

�=M

� �jqej
: ð7Þ

Here, jqnj and jqej denote lengths of the respective
subsequences and we have used the fact that
jqnj þ jqej ¼ jqj ¼ T , the length of the output (or event)
sequence. Under the restriction � < ð M

Mþ1Þ, we have
ð1��
�=MÞ > 1. Hence, from (7), P ðo;q j �Þ is monotonically
increasing with jqej. Now, the most likely state sequence,
q�, is given by

q� ¼ argmax
q

�

M

� �T 1� �

�=M

� �jqej
; ð8Þ

¼ argmax
q

jqej: ð9Þ

Thus, any most likely state sequence is one that spends
the longest time in episode states. While q� does not
explicitly depend on � (as long as � < M

Mþ1 ), it very much
depends on the other parameters, S and A, of model �
(although the notation does not explicitly show this).
Now, we have

P ðo;q� j �Þ ¼ �

M

� �T 1� �

�=M

� �jq�
e j
; ð10Þ

where q�
e denotes the subsequence of episode states in a

most likely state sequence, q�.
Equations (9) and (10) are true for any EGH � with

� < ð M
Mþ1Þ. Now, consider episodes, � and �, and their

associated EGHs, �� and ��. Let q�
�e denote the

subsequence of episode states of a most likely state
sequence for EGH �� and, similarly, q�

�e. Given (10),
proof of the first part of Theorem 1 is now complete if we
can show that f� > f� implies jq�

�ej > jq�
�ej.

Due to the constraints imposed on the state transition
structure, in any state sequence (that has nonzero
probability) of EGH ��, episode states have to occur in
the same sequence as the event types in episode �. Also,
the episode state corresponding to the first event can
appear a second time in a state sequence only if one full
cycle of all episode states has already appeared in this
state sequence. Thus, if there are at least two nonover-
lapping occurrences of the N-node episode, �, in o, then
there is a state sequence having nonzero probability for
the EGH �� with at least 2N episode states in it.
Similarly, given a state sequence (with positive prob-
ability) that has 2N or more episode states, there are at
least two nonoverlapping occurrences of the episode �.
The reason for this is as follows: By the allowed
transitions in an EGH, 2N episode states can come about
only by having visited the episode states 1 to N , in that
same order, twice. Thus, the events in the event sequence
corresponding to the positions of the 2N episode states in
the state sequence constitute two nonoverlapping occur-
rences of the episode. As was seen earlier, q�

�, a most
likely state sequence of �� 2 E�, is one that has the
maximum possible number of episode states in it and the
number of episode states in it is jq�

�ej. By definition, f� is
the maximum possible number of nonoverlapping
occurrences of � in o. Hence, jq�

�ej � Nf�. By how much
can jq�

�ej exceed Nf�? The difference has to be less than
N since, otherwise, the extraN episode states in this state
sequence would constitute another occurrence of the
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uniform pdf over the symbol set.



episode which is nonoverlapping with all others; but, it
is given that f� is the maximum number of nonoverlap-
ping occurrences. Putting together all these (and noting
that what is said about � is also true for �), we get

Nf� � jq�
�ej � Nf� þN � 1

Nf� � jq�
�ej � Nf� þN � 1:

ð11Þ

Since f� and f� are integers, f� > f� implies
f� � ðf� � 1Þ. Now, using (11), we have

jq�
�ej � Nðf� � 1Þ þN � 1 ¼ Nf� � 1 < jq�

�ej:

This shows that f� > f� implies jq�
�ej > jq�

�ej and, hence,
proof for the first part of Theorem 1 is complete.

For the second part, first note from (10) that
P ðo;q�

� j ��Þ > P ðo;q�
� j ��Þ implies jq�

�ej > jq�
�ej. Using

(11) (which is true for any pair of episodes), we have

Nf� � jq�
�ej < jq�

�ej � Nf� þN � 1;

so that f� < ðf� þ N�1
N Þ, implying that f� � f� since both

of these have to be integers. This proves the second part
of the theorem. Proof of Theorem 1 is hence complete.tu
A consequence of the above result is that, under

assumption A1, if � is the most frequent episode, then the
probability of the data stream o under �� 2 E� is greater
than that under any other EGH in the class E� (so long as
� < M

Mþ1 ). This straightaway gives us our next theorem.

Theorem 2. Given a data stream o, under assumption A1, the
maximum-likelihood estimate for a 2N-state EGH over the
class of EGHs E� for any � < ð M

Mþ1Þ is the EGH corresponding
to the most frequent N-node episode.

Remark 1. Under assumption A1, given a class of EGHs, the
� that maximizes P ðo j �Þ also maximizes P ðo;q�

� j �Þ.
This extraassumptiongivesusTheorem2 fromTheorem1.
As stated earlier, assumptionA1 is fairly reasonable and is
often used in applications of HMMs. Note that the
assumption does not need P ðo j �Þ � P ðo;q�

� j �Þ. Now,
suppose that A1 holds when the maximum is taken over
any arbitrary set of HMMs. This gives us a stronger
version of Theorem 1, namely, that for any two episodes
f� > f� implies P ðo j ��Þ � P ðo j ��Þ.

Before moving on, we would like to make some

important observations regarding the upper bound on �

in Theorems 1 and 2. This upper bound, ð M
Mþ1Þ, is essentially

due to the structure of EGHs. For � < ð M
Mþ1Þ, the P ðo;q j �Þ

in (7) monotonically increases with jqej. If, instead,

� > ð M
Mþ1Þ, then P ðo;q j �Þwill monotonically decrease with

jqej (and increase with jqnj). Further, unlike episode states,

noise states can emit all symbols with equal probability.

Thus, the EGH can remain in a single noise state for the

entire duration of the symbol sequence and this will indeed

be the most likely state sequence for the � > M
Mþ1 case. When

� ¼ ð M
Mþ1Þ, all state sequences are equally likely. Thus, we

have the following.

Remark 2. A most likely state sequence, q�, for a 2N-node
EGH � ¼ ðS;A; �Þ (on data stream o) is 1) one that

spends the most time in episode states, if � < ð M
Mþ1Þ, and

2) one that spends all time in the noise state 2N , if

� � ð M
Mþ1Þ.

4.3 The Final Correspondence between Episodes
and EGHs

Consider an episode � ¼ ðA1 ! � � � ! ANÞ. In Section 4.2,

this episode was associated with the EGH ðS;A; �Þ, in E�,

where A ¼ ðA1; . . . ; ANÞ and � was an arbitrary constant.

Theorems 1 and 2 provide the basis for such an association

(so long as � < M
Mþ1 ). Now, we consider the full class of

EGHs E and seek a unique EGH here to associate with �.

For this, another subclass of E needs to be defined.

Definition 4. Given an episode � ¼ ðA1 ! � � � ! ANÞ,
subclass Eð�Þ is defined as the collection of EGHs in E of the

form ðS;A�; �Þ, where S ¼ f1; . . . ; 2Ng, A� ¼ ðA1; . . . ; ANÞ,
and � 2 ð0; 1�.

The only candidates in E that can be meaningfully

associated with an episode � are the EGHs in Eð�Þ. In Eð�Þ,
there are infinitely many EGHs since � takes all values in

ð0; 1�. Which of these would be a useful episode-EGH

association? It is reasonable to associate the episode � with

the EGH ðS;A�; b���Þ such that b��� maximizes the probability

of generating the given event sequence. From Remark 2, the

joint probability of o and a most likely state sequence for

EGH � ¼ ðS;A�; �Þ 2 Eð�Þ is

P ðo;q� j �Þ ¼
�
M

� �T 1��
�=M

� �K�eðoÞ
if 0 < � < M

Mþ1

�
M

� �T
if M

Mþ1 � � � 1;

8<: ð12Þ

where K�eðoÞ denotes the maximum possible number of

episode states in a state sequence with nonzero probability

when generating o from an EGH with episode state symbol

parameters A�.

Remark 3. For an EGH with � < ð M
Mþ1Þ, it is easy to see that

jq�
�ej ¼ K�eðoÞ and this new notation emphasizes the

dependence on o. However, if � � ð M
Mþ1Þ, the optimal state

sequence is comprised of only noise states and, hence,

jq�
�ej ¼ 0. Even in such cases, K�eðoÞ is well-defined.

Further, from the proof of Theorem 1, it is clear that we

would always have ðNf�Þ � K�eðoÞ � ðNf� þN � 1Þ,
where f� is the frequency of episode � (even if the state

sequence with K�eðoÞ episode states is not a most likely

state sequence).

To find the best �, we need to find the maxima of both

expressions on the RHS of (12) and then compare them. It is

clear by inspection that the second expression is maximized

at � ¼ 1 and the maximum value is ð 1
MÞT . If P ðo;q� j �Þ

given by (12) is maximized at � ¼ 1, then the best EGH

association for �would be one with � ¼ 1, which is merely a

random iid model. We discuss this case later on. For now,

let us assume that � that maximizes P ðo;q� j �Þ comes from

the maximizer of the first expression in the RHS of (12). This

expression is concave in � over ð0; 1� and its partial

derivative (with respect to �) is
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MðK�eðoÞ�T Þ�T
1� �

�

� �K�eðoÞ T

�
� K�eðoÞ
�ð1� �Þ

� �
:

By equating this expression to zero, it is easily seen that the

unique maximizer is

b��� ¼ T �K�eðoÞ
T

� �
: ð13Þ

This b��� value is used in our final episode-EGH association.

Note that, depending on how large or small K�eðoÞ is, b���
may or may not belong to the interval ð0; M

Mþ1Þ.
Definition 5. The EGH associated with episode � ¼ ðA1 !

� � � ! ANÞ is �� ¼ ðS;A�; ��Þ, where S ¼ f1; . . . ; 2Ng,
A� ¼ ðA1; . . . ; ANÞ, and �� is set equal to ðT�K�eðoÞ

T Þ if it is

less than M
Mþ1 and to 1 otherwise.

Earlier, Theorem 1 established that, when associating an

episode with an EGH from E�, the more frequent episodes

are associated with EGHs with higher likelihoods. Since, in

our final association, � is no longer a fixed quantity across

episodes (and is, in fact, data dependent as well), it is

relevant to ask whether the new association preserves such

ordering. The theorem below states that the answer to this

question is yes, thereby justifying this choice of episode-

EGH association.

Theorem 3. Let o ¼ ðo1; . . . ; oT Þ be the given event sequence. Let

� and � be two N-node episodes occurring in o with

frequencies f� and f�, respectively. Let �� and �� be the

EGHs associated with � and � according to Definition 5. Let

q�
� and q�

� be most likely state sequences for o under �� and

��, respectively. If �� and �� are both less than M
Mþ1 , then

1) f� > f� impl ies P ðo;q�
� j ��Þ > P ðo;q�

� j ��Þ and

2) P ðo;q�
� j ��Þ > P ðo;q�

� j ��Þ implies f� � f�.

Proof. Since �� < ð M
Mþ1Þ, from (12), we have

P ðo;q�
� j ��Þ ¼

��
M

� �T 1� ��
��=M

� �K�eðoÞ
: ð14Þ

A similar expression holds for P ðo;q�
� j ��Þ, too, because

we are given �� < ð M
Mþ1Þ. Since �� is the unique

maximizer of the first expression on the RHS of (12),

we have

��
M

� �T 1� ��
��=M

� �K�eðoÞ
>

��
M

� �T 1� ��
��=M

� �K�eðoÞ
: ð15Þ

For the first part of Theorem 3, note thatK�eðoÞ > K�eðoÞ
because it is given that f� > f�. Since �� < M

Mþ1 (which

means
1���
��=M

> 1) and since K�eðoÞ > K�eðoÞ, we have

��
M

� �T 1� ��
��=M

� �K�eðoÞ
>

��
M

� �T 1� ��
��=M

� �K�eðoÞ
: ð16Þ

Now, from (15)-(16) and (14), it follows that,

P ðo;q�
� j ��Þ > P ðo;q�

� j ��Þ;

which proves the first part of Theorem 3.

For the second part of Theorem 3, we have

��
M

� �T 1� ��
��=M

� �K�eðoÞ
>

��
M

� �T 1� ��
��=M

� �K�eðoÞ

>
��
M

� �T 1� ��
��=M

� �K�eðoÞ
;

ð17Þ

where the first inequality comes directly from
P ðo;q�

� j ��Þ > P ðo;q�
� j ��Þ (which is the condition

given) and the second one comes from the fact that ��
is the unique maximizer of the first expression on the
RHS of (12) for P ðo;q�

� j ��Þ. Equation (17) implies
K�eðoÞ > K�eðoÞ, which, from Remark 3, implies f� � f�.
This completes the proof of Theorem 3. tu

5 CONSEQUENCES OF THE EPISODE-EGH
CONNECTION

The theorems proven in the previous section provide a
formal connection between frequent episodes and genera-
tive models in the form of EGHs. We now explore a few
consequences of this formal connection.

5.1 Learning Generative Models

Occurrences of an episode in an event stream are like
certain kinds of substrings. An occurrence of ðA ! B ! CÞ
in o is like a substring Aw1Bw2C, where w1; w2 are any
strings of event types. Different occurrences of the episode
may involve different w1; w2. Thus, EGHs capture the basic
idea of episodes in event streams and, hence, are a good
class of generative models to consider.

Let o be the given event sequence of length T and let � be

an N-node episode whose frequency is f�. We associate

episode � with EGH �� from class E as given by

Definition 5. The noise parameter of this EGH is given by

�� ¼ T�K�eðoÞ
T

� �
if it is less than M

Mþ1 and by �� ¼ 1

otherwise. Now, let � be the most frequent N-node episode

in the given data stream o. Then, EGH �� would be a

maximum-likelihood estimate for a 2N-state EGH over the

class E of EGHs if b��� < M
Mþ1 and P ðo;q� j ��Þ > 1

M

� �T
.

Otherwise, the maximum-likelihood estimate is an EGH

with noise parameter � ¼ 1 (which is equivalent to a

uniformly distributed iid model). Given an episode �, we

only need the value of �� to obtain the associated EGH and

this can be obtained from the frequency counting algorithm.

From Remark 3, it is clear that Nf� is a very good

approximation for K�eðoÞ. Notwithstanding this, the exact

value of K�eðoÞ is also easily obtainable as a byproduct of

ALGORITHM 1, by adding to Nf�, the number of state

transitions of the longest partial occurrence of � available

on reaching the end of the event sequence. Thus, using only

the output of our frequency counting algorithm, we can

obtain a reasonable generative model for the data stream.
Another interesting consequence of the results proven

here is the possibility of deriving a generative model for the
data in terms of a mixture of our specialized HMMs. In
general, given a data stream, estimating a mixture of HMMs
is a hard problem. Our theoretical connection can help get
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to such a model. Consider q�
�, a most likely state sequence

of ��, the EGH corresponding to the most frequent episode
�. The subsequence of episode states, q�

�e, indicates which
part of the data is “explained” by episode �. Hence, one can
intuitively say that, to get a good mixture model, we need to
consider next not the next most frequent episode but that
frequent episode � whose q�

�e has the least intersection with
q�
�e. Such a procedure can yield a subset of frequent

episodes which together best explain the data. This can be
thought of as a way to partition the data into substreams,
each having different models. The formal connection
proven here can help develop such mixture models for data.

5.2 Significant Frequent Episodes

Our formal connection between episodes and EGHs also

gives rise to some interesting ideas regarding assessing the

significance of frequent episodes discovered.

There have been some recent results regarding assessing

the significance of frequent episodes in event sequences

[19], [20], [21]. Here, it is shown that, using the central limit

theorem, one can bound the probability that the frequency

of an episode is above or below some threshold given a

generative model for the data. Then, one can first use some

training data to estimate this model (assuming either

independence or Markovian dependence) and then assess

the significance of an episode (in another data stream from

the same source). In [22], similar probabilistic techniques

are used in the context of counting all occurrences of a

string with wild cards.

In [19], [20], [21], the frequency measure used is the

windows-based frequency of [1] and it appears difficult to

extend it to the case of nonoverlapping occurrences of an

episode. Moreover, we take a somewhat different view of

assessing the significance of episodes whereby we do not

need any training data to estimate a model for the data

generation process. Instead, the connection between epi-

sodes and EGHs is used to assess the significance of

episodes as explained below.

Consider the case when b��� > ð M
Mþ1Þ. This means that

P ðo;q� j �Þ is maximized (over E) at � ¼ 1. That is, the

likelihood of any EGH with � < 1 generating the data is less

than that of an iid model having generated the data

stream o. As was noted earlier, b��� > ð M
Mþ1Þ means f� is

below some threshold. Thus, we can test whether an

episode is “insignificant” based on its frequency. We put

this in a formal hypothesis testing framework below.

Consider an event sequence o and an episode �.

Definition 5 associates the EGH �� ¼ ðS;A�; ��Þ with �,

where �� ¼ ðT�K�eðoÞ
T Þ if it is less than ð M

Mþ1Þ and �� ¼ 1,

otherwise. We now wish to test the (alternate) hypothesis

H1: o is drawn from the EGH ��, against the (null)

hypothesis H0: o is drawn from an iid source.
The likelihood ratio test rejects the null hypothesis H0 if

LðoÞ ¼ P ½o ; H1�
P ½o ; H0�

> �; ð18Þ

where � is a positive threshold obtained by fixing the
probability of Type I error (i.e., the probability of wrong

rejection of the null hypothesis). LðoÞ is called the likelihood

ratio for o. Since P ½o;H1� > P ½o;q�;H1�, the test:

if L1ðoÞ ¼
P ½o;q� ; H1�
P ½o ; H0�

> �; reject H0; ð19Þ

would be more conservative in accepting an episode as

significant and, so, we consider L1ðoÞ as the test statistic.

If �� ¼ 1, then the test statistic is unity and the alternate

and null hypotheses are the same. Hence, we essentially

need to consider the case when �� ¼ ðT�K�eðoÞ
T Þ < ð M

Mþ1Þ. In
this case, given any positive �, there exists a � such that

having ½P ½o;q�;H1� > �� is equivalent to having ½K�eðoÞ >
�� (cf. (12)). Thus, K�eðoÞ is an equivalent test statistic and

we reformulate our test as:

if L2ðoÞ ¼ K�eðoÞ > �; reject H0: ð20Þ

The value of � to be used in the test is decided by fixing the

probability of Type I error. Since the likelihood under H0 of

any sequence of length T is ð 1
MÞT , the Type I error

probability, denoted PFA, is given by

PFA ¼ P ½L2ðoÞ > � ; H0�; ð21Þ

¼ 1

M

� �T

Qð�Þ; ð22Þ

where Qð�Þ denotes the number of sequences of length T

(over the M-size alphabet) for which L2ðoÞ > �, i.e.,

Qð�Þ ¼ o ; K�eðoÞ > �f gj j: ð23Þ

Now, the number of T -length sequences (over the M-size

alphabet) for which a most likely state sequence (for a given

EGH ��) spends exactly k instants in episode states is

bounded above by T
k

� �
ðM � 1ÞT�k. This is because, there are

T
k

� �
ways of choosing the k episode state positions and the

remaining ðT � kÞ positions can be filled with any of ðM �
1Þ symbols (i.e., any symbol except the one that may force

an earlier transition to the next episode state). This idea,

together with (23), yields an upper bound for Qð�Þ which,

in turn, gives an upper bound for PFA. Thus, we have

PFA � 1

M

� �TX
k>�

T
k

� �
ðM � 1ÞT�k; ð24Þ

¼ 1�
X
k��

T
k

� �
1

M

� �k

1� 1

M

� �T�k

; ð25Þ

� 1� �
�� T

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ð 1

MÞð1� 1
MÞ

q
0B@

1CA; ð26Þ

where �ð�Þ is the cumulative distribution function (cdf) of a

standard normal random variable and the last approxima-

tion holds for large T due to the central limit theorem.
Now, we summarize the procedure for testing the

significance of an episode �. Fix a level for the test by

choosing some upper bound, say 	, on Type I error
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probability, PFA. Since T and M are known, using (26)

and the standard normal tables, � is fixed as follows:

� ¼ T

M
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

M

� �
1� 1

M

� �s
��1ð1� 	Þ: ð27Þ

Then, reject the null hypothesis (that is, declare � as

significant) if K�eðoÞ > �. As stated earlier, Nf� is a good

estimate of K�eðoÞ and, if need be, we can find its exact

value at the end of the frequency counting algorithm.

Table 1 lists � for some example T , M, and 	 values.

Observe that there is no need to explicitly verify whetherb��� (cf. (13)) is less than M
Mþ1 before testing for the

significance of episode �. We simply compute K�eðoÞ (or

Nf�) by the frequency counting algorithm and do the test as

above. From Table 1 and (27), it can be seen that, when the

bound on Type I error probability is 0.5, � ¼ T
M and �

increases for lower 	 values. For any episode �, b��� � M
Mþ1

would imply K�eðoÞ � T
Mþ1 and, hence, � would automa-

tically be declared not significant by our test (under the very

reasonable assumption that the desired Type I error

probability is less than 0.5).
Note that there is no need to estimate any state sequences

of HMMs, etc., here. The structure of EGHs and the proofs

provided are needed only as a theoretical backbone. Due to

this theoretical development, there is now amethod to assess

the statistical significance of frequent episodes discovered.

5.3 Parameterless Data Mining

Recall from Section 3 that the only parameter needed for

our frequency counting algorithm is the frequency

threshold. The hypothesis testing framework developed

in Section 5.2 allows us to fix this frequency threshold

also automatically.
From (27), since T is usually much larger thanM, T

M is the

dominant factor in the value of �. This is also seen from

Table 1. This means T
NM is, in general, a good frequency

threshold to use for N-node episodes. Of course, in specific

situations, the user maywant to set a much higher threshold,

but, in the absence of any special knowledge about the data,
T

NM is a meaningful initial frequency threshold to try. We

illustrate this in Figs. 2 and 3 in Section 6.

Thus, the method presented in this paper gives rise to
what may be called parameterless data mining. Given only the
data (in the form of an event sequence), we can discover
episodes that are significant (in the sense explained earlier).

5.4 Improving Efficiency of Candidate Generation

The discussion in the previous section implies that, for the
frequency measure based on nonoverlapping occurrences,
there is a calculable lower bound on the frequency (which is
T

NM for N-node episodes) below which the discovered
episodes are not significant. Based on the desired Type I
error probability, the bound on the frequency may be higher
than this, but this is certainly the minimum frequency
below which the episode is not significant. An interesting
aspect of this bound is that, for a smaller N , we need a
larger frequency for the episode to be significant. Such a
relationship is intuitively very clear and what we have here
is a way of quantifying it. In analyzing large data sets, this
bound can be used as a heuristic to decide, e.g., which
frequent 3-node episodes need not be considered for
generating candidate 4-node episodes and so on. Using
such a frequency threshold, dependent on the episode
length, we can improve the efficiency of candidate genera-
tion. This is illustrated empirically in Section 6.5.

6 EXPERIMENTAL RESULTS

This section presents some results obtained with our new
frequent episode discovery algorithm. We discuss simula-
tion results on two types of data: synthetic data and data
from some manufacturing plants.

6.1 The Data

Synthetic data was generated by embedding one or more
temporal patterns or episodes (in an arbitrarily interleaved
fashion) into a random stream of events. For data genera-
tion, we maintain a counter for the current time. Whenever
an event is generated, it is timestamped with the current
time and the counter is incremented by a small random
integer. Each time, with probability 
, the next event is
generated randomly with a uniform distribution over all
event types (and is termed an iid event); with the remaining
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Comparison of � Values for Various Type I Error
Probability Bounds, 	, against the Fraction ðTMÞ

Fig. 2. The number of 2-node and 3-node frequent episodes versus the
frequency threshold in synthetic data. The number of event types M =
20, data length T = 50,000. The vertical lines ending with arrows on the
X-axis indicate the theoretical frequency thresholds (that is, 1

NM ). It is
0.025 for 2-node episodes and 0.0167 for 3-node episodes.



probability, it is determined by the patterns to be
embedded. Whenever the next event is to be from one of
the patterns to be embedded, we randomly decide between
continuing with a pattern partially embedded or starting a
new occurrence of a pattern. Thus, the synthetic data is like
arbitrarily interleaving outputs of many EGHs and an iid
noise source. Intuitively, frequent episode discovery is
about finding temporally repeating patterns that may be
embedded in noise. Our data contains such patterns and
makes it possible to objectively assess the effectiveness of
the algorithm.

The other data on which we tested our algorithm
consists of time-stamped status logs of assembly lines from
some manufacturing plants of General Motors (GM). For
each line in each plant, the database contains (round-the-
clock) information about the current status of the line
recorded using an extensive set of codes. Through
temporal data mining, it is possible to uncover some
interesting patterns or correlations that may help in
improving performance. Our new frequency count ren-
dered fast exploration of these large data sets feasible and
some interesting patterns were discovered that were
regarded as useful by the data owner. Here, we provide
some summary results on certain slices of the data to
illustrate the efficiency and effectiveness of the algorithm.

6.2 Effectiveness of Our Frequency Count

We demonstrate the effectiveness of our algorithm by
comparing the frequent episodes discovered when the
event sequence was iid with those when we embedded
some patterns. When 
 ¼ 1 (that is, when events occur
randomly), we expect any sequence of, say, four events to
be just as frequent as any other sequence of four events. If
the frequency threshold is increased starting from a low
value, initially, most episodes would be frequent and, after
some critical threshold, most would not be frequent. Now,
suppose we embedded a few four node patterns. Then,
some of their permutations and all their subepisodes would
have much higher frequencies than other “random”
episodes. Fig. 2 plots the number of 2-node and 3-node
frequent episodes discovered by the algorithm versus the
frequency threshold2 in the two cases of iid noise and data

with three 4-node patterns embedded in it. The sudden
transitions in the graphs for the iid noise cases are evident.
For the iid data, the number of frequent episodes falls off to zero;
however, since the plot uses log scale for the Y-axis, we showed
this at 0.1 on the Y-axis.

On the graphs, we also show, through vertical lines
ending with arrows on X-axis, the theoretical frequency
thresholds (cf. Section 5.3). With these thresholds, no
frequent episodes are detected in the iid data, while only
the embedded patterns (and their subepisodes) are detected
in the other data.

Fig. 3 plots the number of 2-node frequent episodes
versus the frequency threshold for five GM data sets. For
the sake of comparison, the graph also shows the plot for
the iid case for which a synthetic iid event sequence was
generated with a similar number of event types. Notice the
similarity of the plot when compared to those obtained for
the synthetic data. Similar plots were obtained for the case
of 3-node episodes as well. As in the case of synthetic data,
in this graph also, we show the theoretical frequency
threshold. (The actual value of M for different GM data sets
varies between 26 and 31; the threshold shown is for
M ¼ 29.) Once again, the utility of our theoretical frequency
threshold is evident.

6.3 Quality of Pattern Discovery

Next, we present some simulation results to show that our
frequency measure is good at picking up patterns from
noise. Data was generated by embedding two patterns in
varying degrees of iid noise. The two patterns embedded
were: � ¼ ðB ! C ! D ! EÞ and � ¼ ðI ! J ! KÞ. Data
sequences with 5,000 events each were generated for
different values of 
. The respective positions of � and �
(referred to as their ranks) in the (frequency) sorted lists of
3-node and 4-node frequent episodes discovered are shown
in Table 2. We compare our algorithm with the windows-
based algorithm of [1]. As can be seen from the tables, our
frequency measure is as effective as the windows-based
frequency in unearthing hidden temporal patterns. Also, it
was observed that the sets of frequent episodes discovered
by both algorithms were very similar. Similar results were
observed on GM data sets also.

6.4 Efficiency of Our Algorithm

After showing that our frequency measure delivers good
quality of output, we next discuss the runtimes.
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TABLE 2
Rank of � and � in Sorted Frequent Episode Lists

Fig. 3. The number of 2-node frequent episodes versus the frequency

threshold in GM data. The number of frequent episodes for the iid noise

case with frequency threshold 0.01 is 600. The vertical line ending with

an arrow on the X-axis indicates the theoretical frequency threshold,

2. In all graphs, the frequency threshold is given as a fraction of data
length.



To begin with, we present runtimes3 on synthetic data of
varying lengths. Two 4-node patterns were embedded in
the data generated with 
 ¼ 0:2 and the total number of
event types set to 20. Table 3 records runtimes of the two
algorithms for five different data lengths. The frequency
thresholds (which are not directly comparable for the two
algorithms) were chosen so as to generate roughly the same
number of frequent 4-node episodes. Not only does the
nonoverlapping occurrences-based algorithm run much
faster, it also scales much better with increasing sequence
lengths. Table 4 gives runtimes obtained on synthetic data
generated with different values for M, the number of event
types. The data length in all these cases was 50,000 with two
4-node patterns embedded in them under 
 ¼ 0:20. Once
again, the frequency thresholds were chosen in such a way
that a similar number of 4-node frequent episodes were
discovered. Again, it is seen that our algorithm is faster. A
similar kind of speed-up was also observed for various
values of 
with data length and number of event types kept
constant. Finally, Table 5 quotes the runtimes on the
GM data sets. Here also, it is noticed that our algorithm
results in significant speed-up.

From the results presented here, it is clear that our
frequency counting algorithm is more efficient than the
windows-based counting algorithm of [1]. As was men-
tioned earlier, it was shown in [1] that the minimal
occurrences-based count runs about 30-40 times faster than
the windows-based count, but it is many times more
expensive in terms of space. From the results in this section,

it is clear that our algorithm is at least as fast as the minimal
occurrences-based count (while it is much more efficient in
terms of space).

6.5 Utility of the Episode-EGH Association

In Section 4, a connection was established between episodes
and EGHs (cf. Definition 5). For establishing this connec-
tion, we need to obtain ��, the noise parameter of the
corresponding EGH. In synthetic data, if we put in only one
pattern, then 
 in the data generation process would be
equal to ��. It was empirically observed that the ��
calculated was equal to 
 up to the third decimal place.

The case of synthetic data with two patterns (not sharing
any event types) embedded in it is interesting. For such
synthetic data (with T ¼ 50; 000), Table 6 lists �� values of
the most frequent episode for various values of M and 
.
Even under heavy noise (except when 
 ¼ 1:0), the most
frequent episode (which always turned out to be one of the
patterns embedded) had �� less than ð M

Mþ1Þ. Moreover, it
was observed that embedded patterns (and their subepi-
sodes) had Nf� values greater than T

M and the Nf� values
for all spurious patterns discovered were below ðTMÞ.
Consider the �� values from Table 6 for 
 ¼ 0:4. In this
case, the data would roughly contain 40 percent noise (or
iid) events and 30 percent events from each of the two
episodes embedded. Since each EGH recognizing one of the
episodes would treat all other events as noise, the ��
obtained is about 0:7 (¼ 0:3þ 0:4).

In Section 5, we indicated how we can use episode-
length-dependent frequency thresholds for improving the
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TABLE 3
Runtimes (in Seconds) for Sequences of Different Lengths with

Number of Event Types 20 and 
 ¼ 0:2

TABLE 4
Runtimes (in Seconds) for Different Number of Event Types with

Length of Data Sequence 50,000 and 
 ¼ 0:2

TABLE 5
Runtimes (in Seconds) for GM Manufacturing Plants Data

TABLE 6
Values of �� for Various M and 
 Values on a Synthetic

Data Set with Two Episodes Embedded in It

3. All runtimes quoted are on a Pentium 4 machine with 2 GHz clock and
1 GB main memory running Linux.



efficiency of candidate generation. As explained there, if the
frequency of an N-node episode is less than ð T

NMÞ, then that
episode can be dropped. We tested this heuristic empiri-
cally and found that it does improve efficiency. These
results are summarized for one synthetic data set and one
GM data set in Table 7. As can be seen from the table, by
using the theoretically motivated higher threshold for
3-node episodes while keeping the same threshold for
4-node episodes, the number of candidates reduces by more
than 70 percent. (In both cases, the final 4-node frequent
episodes generated were the same.)

7 CONCLUSIONS

In this paper, we considered the problem of discovering
frequent episodes in event streams. A new definition the for
frequency of an episode was proposed, namely, the
maximum number of nonoverlapping occurrences of the
episode in the data stream. An algorithm for counting this
frequency was presented. Through extensive simulations, it
was shown that this method of frequent episode discovery
is both effective and efficient. The new frequency measure
yields qualitatively similar frequent episodes as the other
popular method for frequent episode discovery. However,
our algorithm is more efficient in terms of time taken and
temporary memory needed.

A very important consequence of this new notion of
frequency of an episode is that we are able to formally
connect frequent episodes to a class of specialized HMMs
termed EGHs. This result connects, for the first time, the
frequent pattern discovery approach to statistical model
learning in a formal manner. Some consequences of this
have been discussed in Section 5 and we have derived an
interesting test of significance for episodes based on their
frequencies and have pointed out how this can lead to
parameterless data mining.

Our approach for connecting frequent pattern discovery
with HMM-type models can be generalized further. For
example, if we look at EGHs with small values of �, then
state sequences with any appreciable probability would
correspond to episode occurrences that are sufficiently
compact and repetitive. So, we can use � as a handle to
specialize episodes to become compact or, e.g., resemble
motifs which are used extensively in bioinformatics. Instead

of using a delta function as the symbol probability

distribution, we can use peaked distributions and then

can bound the kind of “substitution error” that the system

can tolerate. Often, in data constituted as event streams,

different events persist for different durations and these

time intervals may be essential for analysis. We have

generalized the frequent episode framework to also handle

such data [9]. In this case, we may need Semi-Markov

models to obtain the necessary connections. Many of these

issues will be addressed in our future research.
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