
A MATLAB Code for Three Dimensional Linear Elastostatics 

using Constant Boundary Elements 

 

Kirana Kumara P 

Centre for Product Design and Manufacturing 

Indian Institute of Science 

Bangalore, India 

e-mail: kiranakumarap@gmail.com 

 

 

Abstract—Present work presents a code written in the 

very simple programming language MATLAB, for three 

dimensional linear elastostatics, using constant 

boundary elements. The code, in full or in part, is not a 

translation or a copy of any of the existing codes. Present 

paper explains how the code is written, and lists all the 

formulae used. Code is verified by using the code to 

solve a simple problem which has the well known 

approximate analytical solution. Of course, present work 

does not make any contribution to research on boundary 

elements, in terms of theory. But the work is justified by 

the fact that, to the best of author’s knowledge, as of 

now, one cannot find an open access MATLAB code for 

three dimensional linear elastostatics using constant 

boundary elements. Author hopes this paper to be of 

help to beginners who wish to understand how a simple 

but complete boundary element code works, so that they 

can build upon and modify the present open access code 

to solve complex engineering problems quickly and 

easily. The code is available online for open access (as 

supplementary file for the present paper), and may be 

downloaded from the website for the present journal. 
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I.  INTRODUCTION 

Ready availability of computer codes encourages the use 
of any numerical technique. Reference [1], in its last 
paragraph of the section “Conclusion”, opines that boundary 
elements are a good idea in principle but not in practice 
because of the lack of proper software. This opinion remains 
true even today.  

There are some open source BEM libraries. Helsinki 
BEM library [2] is a MATLAB source code library for 
problems that obey the Laplace or Poisson equation. The 
web source [3] contains codes that are specifically useful for 
solving acoustics problems. The source also contains codes 
for solving Laplace problems and Helmholtz problems. Book 
[4] gives FORTRAN codes for Laplace’s equation and 
Helmholtz equation, in two and three dimensions. The codes 
can be freely downloaded from [5], website for the book. A 

BEM code for two dimensional (2D) pulsating cylinders is 
available from [6]. 

Fast Multipole Boundary Element Method (FastBEM) 
software is available from [7]. Software for three 
dimensional (3D) elasticity is also available here. Still, 
source codes are not available here. 

The website [8] for the book [9] contains many programs 
in Fortran. It contains programs for 3D elasticity also. But 
the website tells that the programs supplied there are for use 
by purchasers of the book only. Here, the Fortran program 
for 3D elasticity is not written as a single program; the main 
program calls different modules to perform different tasks. It 
is difficult to fully understand programs, without referring to 
the book. 

But, although three dimensional elasticity is such an 
important area, apart from the codes which might be 
available in the websites (e.g., the website [8]) that are 
companions to some non open access books, one cannot find 
an open access source code in any of the programming 
languages, although author of this paper could find a 
program on two dimensional elasticity in a file sharing 
system. Extension of a code on two dimensional elasticity 
into three dimensions is not very trivial and one needs some 
new formulae also. Also, file sharing systems sometimes 
delete some of the hosted files. Since codes are readily 
available for potential problems in three dimensions, it may 
be possible to cast a three dimensional elasticity problem as a 
three dimensional potential problem using potential 
representations like Papkovich-Neuber representation, but 
this is not the standard way an elasticity problem is solved 
using boundary elements. Hence, author of the present work 
thought of writing the present code on three dimensional 
elasticity and making it available for open access, through 
the present paper in the present open access journal. Present 
paper does not explain the theory behind boundary elements 
in detail. Aim is to list all the formulae that are needed to 
write the code, and explain how these formulae are 
assembled to produce a working code. The present paper is 
helpful to understand the working of the present code. 

Present work does not aim to provide source code for 
whole of three dimensional elasticity. It provides a 
MATLAB code only for the most basic form of three 
dimensional elasticity, i.e., three dimensional linear 
elastostatics. Although very basic, three dimensional linear 



elastostatics has wide applications in product design and 
structural design. Purpose of selecting MATLAB is that it is 
very easy to learn, and people who do not know the language 
also can follow the logic of the code. Using Parallel 
Computing Toolbox, now a MATLAB code can very easily 
be parallelized to run on multiple CPUs/GPUs. Code can be 
precompiled to increase speed. While solving complex real-
world problems, a MATLAB code can readily interact with 
already developed subroutines in other languages like C/C++ 
and Fortran, using ‘External Interfaces’ feature of 
MATLAB. With little modification, a MATLAB code may 
be executed in one of open source and free equivalents of 
MATLAB such as GNU Octave, FreeMat and Scilab. 
Although very simple and very basic, the present code is not 
a subroutine but a complete program. Also, the present code 
does not contain any subroutines. Even input data has to be 
entered in the code itself. In terms of theory, present work 
does not make any contribution to research on boundary 
elements. All theory behind the present code, including all 
formulae, is taken from [9] and [4]. But the present code, in 
full or in part, is not a translation or a copy of any of the 
existing codes. 

The present work may also be useful as an educational 
aid to learn the basics of the boundary element method as 
applied to 3D linear elastostatics especially since it uses the 
most basic form of 3D elasticity, i.e., 3D linear elastostatics, 
and the most basic form of elements, constant elements. It 
may be noted that [10] presents a way of implementing the 
boundary element method using MATLAB, including details 
on coding, but for solving the Laplace's equation only. With 
detailed explanation of the theory, a MATLAB code for two 
dimensional Laplace’s equation is presented in [11]; it makes 
use of constant elements. 

Present paper is organized as follows. Next section 
describes the theory that is essential to develop the code. The 
subsequent section explains the code. The section that 
follows illustrates the use of the code to solve a well known 
simple problem which has a well known solution, and thus 
verifies the code. 

II. THEORY 

Only theory that is essential to understand the present 
code is explained here. One can refer to [4] and [9] for 
further details. 

From the Appendix of [9], for static elasticity, in indicial 

notation, the displacement iu at an internal point P, in the 

absence of initial stresses and strains, is given by 
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where ii tu , (or jj tu , ) are the displacements and tractions 
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            the geometry 

 

For 3D problems, the fundamental solutions are given by 
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In (2) and (3), r is the distance between P and Q , and 

in and jn are the outward normals. The derivative of r with 

respect to the Cartesian axis i is denoted as ir, and the 

derivative of r with respect to the Cartesian axis j is 

denoted as jr, . The term θcos is given by  
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The values of the constants are given by 
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where ν is the Poisson’s ratio. 

 

The shear modulus G is given by 
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E
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where E is the modulus of elasticity. 

 

In the present work, a 3D solid is represented by 3D 

boundary triangles, i.e., 3D triangular surface mesh. T is the 

total number of triangles which together represent the 3D 

solid; hence, the total number of elements is equal to T . Let 
m

S be the surface of the element with element number m . 

Here, since constant elements are used, over each of the 

elements, displacements and tractions are assumed constant. 

For each of the elements, either displacement or traction is 

known, the other being an unknown that has to be 

calculated. In this work, solution is sought only on the 

boundary. For a point P  on the boundary of a solid, if P  

is located inside a smooth region of the boundary, (1) can be 

reduced to the following three equations, i.e., (8), (9) and 

(10). 
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To be clearer, equations (8)-(10) may also be written in the 

expanded form given by the following three equations, i.e., 

(11), (12) and (13). 
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          where m  takes values from 1 to T  .  

Equations (8)-(10) (or equations (11)-(13)) are the basic 

equations upon which the present code is developed. Since 

displacements and tractions are constants over each of the 

elements, for each of the elements, displacements and 

tractions are considered only for just one chosen point inside 

each element. eP   and mQ refer to these points; here, the 

subscripts e or m in eP or mQ refer to the element number. 

The subscript e in eP varies from 1 to T which is the total 

number of elements. Further, m = e implies that eP = mQ . 

Hence, if a solid is discretized by T boundary elements, 

equation (8)-(10) (or equation (11)-(13)) give rise to a set of 

coupled T3  linear algebraic equations in T3 unknowns. 

Unknowns are either displacements ( xu , yu  or zu at 

eP or mQ ) or tractions ( xt , yt or zt at mQ (or eP when 

e = m )). For elements with prescribed displacements 

( xu , yu  and zu ), the tractions ( xt , yt and zt ) are the 

unknowns. On the other hand, for elements with prescribed 

tractions ( xt , yt and zt ), the displacements ( xu , yu  and 

zu ) are the unknowns. The set of T3 algebraic equations 

may be written in the form 
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where { }U  denotes the vector of unknowns, which consists 

of unknown displacements and unknown tractions. The 

matrix [ ]K  is fully populated, in general. Solving (14) for 

{ }U , one can straight away obtain the values of the 

unknowns, be it unknown displacements or unknown 

tractions. 

 

Now, the method used to find the integrals of the 

fundamental solutions over the elements is explained, i.e., 

the goal now is to evaluate the integrals  
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These integrals are evaluated by numerical integration, as 

explained in Chapter 6 of [4]. All these integrals are 

evaluated by using the common formula  
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Equation (15) may simply be written as  
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In equation (16), ( )zyxf ,,  is the fundamental solution 

(i.e., xxU , xxT , xyU , xyT , xzU , xzT , yxU , yxT , yyU , 

yyT , yzU , yzT , zxU , zxT , zyU , zyT , zzU , zzT ) which 

needs to be integrated over the element that has the element 

number m . 

Let ( )aaa zyx ,, , ( )bbb zyx ,,  and ( )ccc zyx ,,  be the 

coordinates of the vertices which define the triangular 

element m . Of course, the vertices always have to be 

properly ordered such that the normal vector to 
m

S points 

out of the 3D solid under consideration. Then 
m

J in (16) is 

given by 
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To evaluate kx , ky  and kz  in (16), the following values for 

( )kk vt ,  have to be noted down. 
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Now, ku  is calculated as 
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Next, to calculate kx , ky  and kz  in (16), one needs to also 

calculate the components of the unit normal vector to the 

element surface 
m

S . Again, assuming that ( )aaa zyx ,,  , 

( )bbb zyx ,,  and ( )ccc zyx ,,  are the coordinates of the 

vertices of the triangular element m ,  the components of 

the unit normal vector in the x ,  y  and z  direction are 

given by 

( )( ) ( )( )
d

yyzzzzyy
n acabacabm

x

−−−−−
=  

( )( ) ( )( )
d

zzxxxxzz
n acabacabm

y

−−−−−
=  

( )( ) ( )( )
d

xxyyyyxx
n acabacabm

z

−−−−−
=  

                                                                                                   

(20) 

 

where =d [ ( )( ) ( )( )( )2

acabacab yyzzzzyy −−−−−  

                           

+ ( )( ) ( )( )( )2

acabacab zzxxxxzz −−−−−  

                                  

+ ( )( ) ( )( )( )2

acabacab xxyyyyxx −−−−− ]
1/2

 

 

Now, depending on the values of 
m
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m

yn , kx , ky  

and kz  in (16) can be calculated using the appropriate 

equation from one of the following (21)-(23). 
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Equations (21)-(23) are also used to evaluate the Cartesian 

coordinates of eP  or mQ , which may be denoted as 

( )mmm zyx ,, , by setting 
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where displacement or traction is considered (the other 

points on the element having the same value of 

displacement or traction as that of this point), is given by 

(24)-(26).  
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Now, one can see that (16) can now be evaluated if one 

knows the expressions for the fundamental solutions (i.e., 

xxU , xxT , xyU , xyT , xzU , xzT , yxU , yxT , yyU , yyT , 

yzU , yzT , zxU , zxT , zyU , zyT , zzU , zzT ). Using (2) and 

(3), expressions for the fundamental solutions may be 

written in the expanded form as given by (27) below. In 

these equations, ),,( 111 zyx  denotes the coordinates of the 

point eP  while ),,( 222 zyx   denotes the coordinates of the 

point ( )kkk zyx ,, .  
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where ( ) ( ) ( )2
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                    (From equation (4)) 

            Other notations have the same meanings as earlier 

           
m

y

m

x nn ,  and 
m

zn  are constant over an element m  

           
m

y

m

x nn ,  and 
m

zn  are different for different elements, 

            in general 

Here one can note that since there are sixteen ( )kkk zyx ,,  

for every element m , when one integrates a fundamental 

solution over an element surface 
m

S (which contains the 

point mQ ), for every ),,( 111 zyx , there are sixteen different 

),,( 222 zyx . Further, when the whole code is considered, 

since the total number of elements equals T , for every 

),,( 111 zyx , there are T16   different ),,( 222 zyx ; and 

there are T different ),,( 111 zyx  in total. 

III. THE CODE EXPLAINED 

The present code is explained in this section. The 
variables in the program (code) may or may not be identical 
to the corresponding notations in the previous (i.e., ‘Theory’) 
section.  

One can note that there are eight supplementary files that 
are available with the online version of the present paper. 
Logging into the website (after creating an account for free) 
of the present journal may be necessary to access the 
supplementary files. The present code is available through 
either of ‘code_medium.m’ or ‘code_high.m’. The only 
difference between the files is that they contain different 
input data; otherwise codes are the same. Since the .m files 
‘code_medium.m’ and ‘code_high.m’ are self-contained 
(i.e., since they contain input data also), they may readily be 
run from within MATLAB (author has used MATLAB 
R2010b). When the file ‘code_medium.m’ is run, the result 
obtained in the MATLAB Command Window is manually 
saved into ‘result_medium.txt’. Similarly, when the file 
‘code_high.m’ is run, the result obtained is manually saved 
into ‘result_high.txt’. To use the present code to solve any 
other 3D linear elastostatic problem, one need to just change 
the input data portion of either of ‘code_medium.m’ or 
‘code_high.m’. 

The file ‘mesh_medium.stl’ is the .stl file which 
represents the example 3D geometry discretized into 172 
boundary elements. The file ‘mesh_high.stl’ represents the 

same geometry with 428 boundary elements. The .stl files 
are manually edited and formatted in a text editor such as 
Notepad into the format of the input mesh for the present 
code ‘code_medium.m’ or ‘code_high.m’, and saved as .txt 
files. The ‘mesh_medium.stl’ is edited, formatted and then 
saved as ‘mesh_medium.txt’ whereas ‘mesh_high.stl’ is 
edited, formatted and saved as ‘mesh_high.txt’. Since 
‘code_medium.m’ and ‘code_high.m’ contain input data 
also, ‘code_medium.m’ already contains ‘mesh_medium.txt’ 
and ‘code_high.m’ already contains ‘mesh_high.txt’. To use 
the present code to solve problems other than the present test 
problem, in the similar fashion, one needs to prepare a mesh 
for the geometry under consideration, and use the prepared 
mesh as an input data for either of ‘code_medium.m’ or 
‘code_high.m’, the other input data being the specification of 
boundary conditions, i.e., the specification of displacements 
for elements with specified displacements and the 
specification of tractions for the rest of the elements. 

Now, the code ‘code_medium.m’ is explained in detail, 
line by line. Except input data portion, ‘code_medium.m’ 
and ‘code_high.m’ are identical. For that matter, except input 
data portion, the code to solve any other 3D linear 
elastostatic problem would be the same as 
‘code_medium.m’. 

The 5
th

 line of ‘code_medium.m’ specifies the modulus 
of elasticity, while the 6

th
 line specifies the Poisson’s ratio. 

The 7
th
 line specifies the displacement boundary conditions; 

“161 0 0 0” here means that the element number 161 has 
specified zero displacements along x, y and z directions; 
similarly, “162 0 0 0” means the element 161 is fixed; same 
for elements up to 166. The 8

th
 line specifies the nonzero 

force boundary conditions; “167 0 0 10000” here means that 
the element 167 is subjected to zero traction along x 
direction, zero traction along y direction, but 10000 units of 
traction along the z direction; same is the case for elements 
up to 172. Now, one can see that the elements which are not 
subjected to displacement boundary conditions and are not 
subjected to nonzero force boundary conditions also, are 
subjected to zero force boundary conditions; Lines 9-12 
specify zero force boundary conditions; tractions on the 
elements mentioned here are zero in x, y and z directions. 
Line 13 combines zero and nonzero force boundary 
conditions. The variable ‘xyzofelements’ in line 14 takes a 
mesh as input; the mesh has 172 elements; the mesh 
describes the 3D geometry under consideration; mesh is just 
copy-pasted from ‘mesh_medium.txt’; “1 2.000000e+000 
0.000000e+000 1.000000e+001; 1 1.000000e+000 
0.000000e+000 1.000000e+001; 1 1.000000e+000 
0.000000e+000 5.000000e+000” in line 14 means that for 

element 1, ax =2.000000e+000, ay = 0.000000e+000, az = 

1.000000e+001, again for element 1, bx = 1.000000e+000, 

by = 0.000000e+000, bz = 1.000000e+001, again for 

element 1, cx = 1.000000e+000, cy  = 0.000000e+000, cz = 

5.000000e+000; lines 15-185 have similar meaning. 
Data entered until now form the input portion of the 

code. The code now contains the geometry, boundary 



conditions, and the material property. One can use the code 
‘code_medium.m’ to solve any other 3D linear elastostatic 
problem by just changing this portion of the code to provide 
the data that are relevant to the new problem. 

Lines 186-191 evaluate the constants G, C, C1, C2, C3 and 
n. Lines 192-193 calculate the total number of elements. 
Lines 194-195 calculate the total number of elements with 
displacement boundary condition. Lines 196-197 calculate 
the total number of elements with force boundary condition. 
Lines 198-204 are initializations. Lines 205-237, using (20) 

calculate 
m

xn , 
m

yn , 
m

zn , using (17) calculate 
m

J , using (24) 

or (25) or (26) calculate 
m

x , 
my , 

mz ; these are calculated 

for each and every element. Lines 238-239 input the values 

of kt  and kv , as given in (18). Line 240 calculates ku  using 

(19). Lines 241-242 are initializations. 

Purpose of lines 243-520 is to calculate [ ]K  and { }F  of 

(14). The outermost for loop starts at line 243 and ends at 

line 520; the iteration here is for different values of eP ; 

hence, there are as many iterations of this loop as the total 
number of elements. The for loop starting at line 244 and 
ending at line 381 iterates for every element with force 

boundary condition, for a fixed eP defined by the outer loop; 

lines 245-284 evaluate the values of kx , ky , kz  using (21) 

or (22) or (23) (here, x1 means ax , y2 means by  etc.); lines 

285-302 are just initializations. There is one more for loop 
which starts at line 303 and ends at line 345; the loop is 
within the previous loop; purpose of this loop is to evaluate 
(16); of course, the loop evaluates sixteen times the value of 
the right hand side of (16); lines 304-308 evaluate the values 

of r, dr/dx, dr/dy, dr/dz and θcos , for every ( )kkk zyx ,,  

of the element defined by the outer loop; lines 309-317 and 
lines 327-335 evaluate the expressions in (27) at each of 

( )kkk zyx ,, , and lines 318-326 and lines 336-344 add the 

evaluated values to accumulate to sixteen times the value of 
the right hand side of (16). Coming out of the innermost for 
loop, lines 346-363 evaluate the right hand side of (16); lines 

364-375 build [ ]K  and { }F  of (14); here one can 

remember that (14) is the same as (11)-(13) considered 
together. Lines 376-380 address the case while, during 
iterations, me = ; in this case, terms on the left hand side of 

(11)-(13) are unknowns and hence belong to [ ]{ }UK and 

hence [ ]K  (not { }F ) has to be modified by adding ‘0.5’ to 

the appropriate elements of [ ]K , as has been done in lines 

376-380; ‘0.5’ here arises out of ‘1/2’ in xu
2

1
, yu

2

1
 and 

zu
2

1
, on the left hand side of (11)-(13). Now, the for loop 

from the line 382 to the line 520 iterates for every element 

with force boundary condition, for a fixed eP defined by the 

outer loop; here, lines 382-513 have the same purpose as the 
lines 244-375. Again, lines 514-518 address the case while, 
during iterations, me = ; in this case, terms on the left hand 

side of (11)-(13) are known and hence belong to { }F  and 

hence { }F  (not [ ]K ) has to be modified, as has been done 

in lines 514-518; again, ‘0.5’ here arises out of ‘1/2’ in 

xu
2

1
, yu

2

1
 and zu

2

1
, on the left hand side of (11)-(13). 

Now, line 522 calculates { }U  of (14). Line 524 displays 

calculated values of the unknowns in the MATLAB 
Command Window; the unknowns could be either 

displacements ( )
zyx uuu ,,  or tractions ( )

zyx ttt ,, ; for 

elements with known displacements, tractions are the 
unknowns; for elements with known tractions, displacements 

are the unknowns; line 524 displays the result { }U  in this 

format: value of the unknown (in the x direction, for element 
number 1), value of the unknown (in the y direction, for 
element number 1), value of the unknown (in the z direction, 
for element number 1), value of the unknown (in the x 
direction, for element number 2), value of the unknown (in 
the y direction, for element number 2), value of the unknown 
(in the z direction, for element number 2), value of the 
unknown (in the x direction, for element number 3) etc. 

IV. ILLUSTRATION AND VERIFICATION 

In the present section, the present code is tested by using 
the code to solve a simple problem with the known solution, 
i.e., a bar subjected to end force. 

Geometry of the test problem is a prismatic bar. The bar 
has a (4 mm x 4 mm) cross section, and the bar is 100 mm 
long. One end of the bar is fixed, while the other end is 
loaded with 160000 N force in the axial direction. The 
coordinates of the vertices which describe the fixed end of 
the bar are given by (0,4,0), (4,4,0), (4,0,0) and (0,0,0). The 
coordinates of the vertices which describe the loaded end are 
given by (0,0,100), (4,0,100), (4,4,100) and (0,4,100). All 
dimensions here are expressed in millimeters. The problem is 
to find the displacement at the loaded end upon the 
application of the load.  Modulus of elasticity is assumed as 
200000 N/mm

2
, and the Poisson’s ratio is assumed to be 

equal to 0.33. 
For simple geometries like a prismatic bar, one can 

manually prepare a mesh. But, here, since it is a cumbersome 
and also an error prone process to manually prepare the 
mesh, the commercial software Rhinoceros (Version 3.0) is 
used for this purpose. Of course, the mesh may be prepared 
by using any of the much commercial or free software that 
can do the job. First, the prismatic bar is constructed in 
Rhinoceros; then the geometry is saved as a .stl file. A .stl 
file describes a 3D geometry in terms of a 3D surface mesh 
consisting of triangles. Rhinoceros has the option to save a 
3D geometry as an .stl file, with different total number of 
triangles, i.e., one can save the geometry in different 
resolutions. One should remember to save .stl files in the 
ASCII format; this format is human readable. Here, the 



geometry constructed in Rhinoceros is saved with two 
different resolutions, which resulted in a total of 172 and 428 
elements. The  mesh with 172 elements is named as 
‘mesh_medium.stl’, and the mesh with 428 elements is 
named as ‘mesh_high.stl’. When ‘mesh_medium.stl’ is 
opened in Notepad, on the 4

th
 line, one can read this: “vertex 

2.000000e+000 0.000000e+000 1.000000e+001”. This 
means that for the first element, xa = 2.000000e+000, ya= 
0.000000e+000, za=1.000000e+001. The 5

th
 line reads as: 

“vertex 1.000000e+000 0.000000e+000 1.000000e+001” 
which means that for the first element, xb = 1.000000e+000, 
yb= 0.000000e+000, zb=1.000000e+001. Similarly 6

th
 line 

means that xc = 1.000000e+000, yc= 0.000000e+000, 
zc=5.000000e+000, for the first element. In the same way, 
lines 11-13 give the coordinates of xa, ya, za, xb, yb, zb, xc, yc, 
zc, for the second element; lines 18-20 give the coordinates 
of these for the third element, and so on. Now, the file 
‘mesh_medium.stl’ is edited and formatted to the form that is 
saved as ‘mesh_medium.txt’. Same way, ‘mesh_high.txt’ is 
obtained from ‘mesh_high.stl’. Mesh data from 
‘mesh_medium.txt’ or ‘mesh_high.txt’ can readily be cut-
pasted into the present code. 

Now, one needs to identify the elements which are fixed, 
and the elements which are subjected to tractions. For the 
example problem considered here, one can note that the 
elements that have the z coordinates of all  their vertices 
equal to zero are the ones which are fixed, i.e., they are the 
elements that are subjected to displacement boundary 
conditions, with all the displacements being zero. One can 
also note that the elements that have the z coordinates of all 
their vertices equal to 100 are subjected to traction in the z 
direction. Hence, for the lower resolution mesh, by looking 
at ‘mesh_medium.txt’, one can note that the elements 161-
166 are fixed, the elements 167-172 are subjected to nonzero 
tractions, and the other elements (i.e., the elements 1-160) 
are subjected to zero traction. Similarly, for the higher 
resolution mesh, by looking at ‘mesh_high.txt’, one can note 
that the elements 409-418 are fixed, the elements 419-428 
are subjected to nonzero tractions, and the other elements 
(i.e., the elements 1-408) are subjected to zero traction. 

The nonzero traction in the z direction (for the elements 
on the loaded end) is given by 

2/10000
44

160000
mmN

Area

Force
tz =

×
==  

This value is the same whether one uses a medium 

resolution mesh or a high resolution mesh.  
For the test problem considered here, all input data 

(discussed in the previous four paragraphs) are already 
contained in the codes ‘code_medium.m’ and ‘code_high.m’, 
for the medium resolution mesh and high resolution mesh 
cases respectively.  

After running the codes ‘code_medium.m’ and 
‘code_high.m’, results are saved in the files 
‘result_medium.txt’ and ‘result_high.txt’ respectively. 

Considering ‘result_medium.txt’, the last eighteen rows 
give the displacement solutions for the last six elements (the 
last six elements are the ones which are subjected to nonzero 

tractions). The solutions, as obtained from the last eighteen 
rows of the file ‘result_medium.txt’, are tabulated in Table I. 

TABLE I.  DISPLACEMENT SOLUTIONS AT THE LOADED END (FOR 

MEDIUM RESOLUTION MESH) 

Ele-

ment 

No. 

ux*103 

mm 

uy*103 

mm 

uz*103 

mm 

167 0.000475723884518 0.000239277914653 0.004667990981856 

168 -0.000288557449754 0.000350459191737 0.004640913749073 

169 -0.000227579883863 -0.000253099680184 0.004662295196899 

170 0.000350870893377 -0.000146245484676 0.004666785214835 

171 0.000061463916240 0.000227509412390 0.004136294937252 

172 -0.000001691317047 -0.000015656433286 0.004147373087041 

 
Now, considering ‘result_high.txt’, the last thirty rows 

give the displacement solutions for the last ten elements (the 
last ten elements are the ones which are subjected to nonzero 
tractions). The solutions, as obtained from the last thirty 
rows of the file ‘result_high.txt’, are tabulated in Table II. 

TABLE II.  DISPLACEMENT SOLUTIONS AT THE LOADED END (FOR 

HIGH RESOLUTION MESH) 

Ele- 

ment  

No. 

ux*104 

mm 

uy*104 

mm 

uz*104 

mm 

419 0.000014972072838 0.000069229499481 0.000548700220572 

420 -0.000053933725093 0.000032473982250 0.000533494879700 

421 -0.000084785786018 0.000055690465021 0.000561328889982 

422 0.000019080155101 0.000032731914270 0.000534518762716 

423 -0.000027613176014 -0.000011163464531 0.000553379281037 

424 0.000005898472131 0.000062564046813 0.000530196484107 

425 0.000032708654327 0.000036306507440 0.000554565304403 

426 -0.000056504866697 0.000061990516729 0.000528972628751 

427 -0.000025959290317 0.000052674228475 0.000538346574184 

428 -0.000020851664801 0.000043533648613 0.000537601022532 

 
From Table I and Table II, one can note that 

displacements in the x and y directions are an order of 
magnitude less than the displacements in the z direction, for 
all the elements, in general. This is expected since, for the 
present example problem, displacements in the z direction 
should be dominant. In fact, as far as the present test problem 
is concerned, one is interested in the displacements along the 
z direction only. Now, considering only the displacements 
along the z direction and rounding off the decimal values into 
three digits, and comparing the results with the result from 
the analytical formula, one can compile the tables Table III 
and Table IV. 

For the present test problem, the analytical solution, i.e., 
the result from the well known analytical formula is obtained 
as 

EArea

LengthForce
ntDisplaceme

×

×
=   

       where ‘Displacement’ implies the displacement of the  

                    loaded end in the z direction 

                  ‘Force’ implies the total force applied at the  

                    loaded end (= 160000 N) 

                   



                   ‘Length’ implies the length of the prism  

                    (= 100 mm) 

                   ‘Area’ implies the cross sectional area of the    

                    prism (= (4 x 4) mm = 16 mm) 

                   E is the modulus of elasticity (= 200000 N/mm
2
) 

Using the above formula, the analytical result is found to 
be equal to 5 mm, for all the elements on the loaded end, for 
both medium resolution and high resolution meshes.   

TABLE III.  COMPARISON OF THE RESULTS FROM THE CODE AND THE 

ANALYTICAL FORMULA (FOR MEDIUM RESOLUTION MESH) 

Element 

Number 

uz From the Code 

(mm) 

uz From the Analytical 

Formula (mm) 

167 4.668 5.000 

168 4.641 5.000 

169 4.662 5.000 

170 4.667 5.000 

171 4.136 5.000 

172 4.147 5.000 

TABLE IV.  COMPARISON OF THE RESULTS FROM THE CODE AND THE 

ANALYTICAL FORMULA (FOR HIGH RESOLUTION MESH) 

Element 

Number 

uz From the Code 

(mm) 

uz From the Analytical 

Formula (mm) 

419 5.487 5.000 

420 5.335 5.000 

421 5.613 5.000 

422 5.345 5.000 

423 5.534 5.000 

424 5.302 5.000 

425 5.546 5.000 

426 5.290 5.000 

427 5.383 5.000 

428 5.376 5.000 

 
From Table 3 and Table 4, one can see that the results 

from the code are in good agreement with the results from 
the analytical formula. Thus, one can infer that the present 
code has performed satisfactorily.  However, one can note 
that there is not much improvement in accuracy, when the 
total number of elements is increased from 172 (which 
corresponds to the medium resolution mesh) to 428 (which 
corresponds to the high resolution mesh). The reasons could 
be that the analytical formula itself is just an approximate 
one, and the present code solves the present example 
problem as a 3D problem; also, when the boundary elements 
are limited in number, it may be difficult to apply the 
boundary conditions accurately. Further, numerical 
integration here always uses only sixteen function 
evaluations per element, which may be insufficient 
sometimes especially since singularity of the fundamental 
solutions is not addressed in the present work. Using very 
large number of elements might improve accuracy, or one 
has to use linear or quadratic elements for better 
convergence; to improve accuracy, one may need to do 
higher number of function evaluations per element during 
numerical integration; to improve the accuracy further, one 
may have to properly address the singularities of the 
fundamental solutions also. 

V. CONCLUDING REMARKS 

This work presents a code written in the very simple 
programming language MATLAB, for three dimensional 
linear elastostatics, using constant boundary elements. 
Present work is justified by the fact that, to the best of his 
knowledge, author of the present work, apart from the codes 
which might be available in the websites that are companions 
to some non open access books, is not aware of any open 
access source code available in the internet that is written in 
any of the programming languages. The present code is 
tested by using the code to solve a simple problem with the 
known solution, i.e., a bar subjected to end force. Result 
from the code matched well with that obtained from the 
analytical formula, thus verifying the code. The code may be 
used to solve three dimensional linear elastostatic problems. 
Present work could also be an educational aid to those who 
would like to acquire just a working knowledge of the 
boundary element method, as applied to three dimensional 
elastostatics, quickly and easily. Since the code is available 
for open access, and also since the code is properly 
documented (documentation includes listing of all the 
formulae used) through the present paper, present work 
would also be of help to those who want to modify and/or 
build upon the present very basic code to suit their 
requirements. 

The present code is applicable to homogeneous and 
isotropic materials only, and self weight is not taken into 
account. In this work, only constant boundary elements are 
considered. Although constant boundary elements can 
provide adequate accuracy upon fine discretization, 
whenever greater accuracy is important, linear and quadratic 
elements may help to get highly accurate results quickly. 
Since the emphasis in this work is on readability, the code is 
not optimized for efficiency. Numerical integration here 
always uses only sixteen function evaluations per element, 
which may be insufficient sometimes. Also, singularity of 
the fundamental solutions is not addressed in the present 
work and hence, while evaluating the integrals, whenever 
integrand becomes singular, accuracy of the evaluation of the 
value of the integrals may not be good enough, especially 
since the present work always uses only sixteen function 
evaluations per element; this may make the final results less 
accurate, and even inaccurate sometimes. These are the 
limitations of the present work. 

As future work, singularity of the fundamental solutions 
has to be properly addressed. Also, there should be a 
provision in the code to use more number of function 
evaluations per element, while evaluating the integrals. The 
code may be improved for better performance, and the code 
may be parallelized for multiple CPUs/GPUs. The code may 
also be extended to cover three dimensional nonlinear 
elasticity. Also, body forces and dynamics may be taken into 
account. In addition to constant elements, linear and 
quadratic elements may also be included. The code can 
further be extended to cover inhomogeneous and anisotropic 
materials also. 

 
 



DISCLAIMER 

Codes are provided without any guarantee and without 
any warranty. Author is not responsible for any loss or 
damage that may arise because of the use of the codes that 
are made available with this paper. 
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