
A MATLAB Code for Three Dimensional Linear Elastostatics

using Constant Boundary Elements

Kirana Kumara P

Centre for Product Design and Manufacturing

Indian Institute of Science

Bangalore, India

e-mail: kiranakumarap@gmail.com

Abstract—Present work presents a code written in the

very simple programming language MATLAB, for three

dimensional linear elastostatics, using constant

boundary elements. The code, in full or in part, is not a

translation or a copy of any of the existing codes. Present

paper explains how the code is written, and lists all the

formulae used. Code is verified by using the code to

solve a simple problem which has the well known

approximate analytical solution. Of course, present work

does not make any contribution to research on boundary

elements, in terms of theory. But the work is justified by

the fact that, to the best of author’s knowledge, as of

now, one cannot find an open access MATLAB code for

three dimensional linear elastostatics using constant

boundary elements. Author hopes this paper to be of

help to beginners who wish to understand how a simple

but complete boundary element code works, so that they

can build upon and modify the present open access code

to solve complex engineering problems quickly and

easily. The code is available online for open access (as

supplementary file for the present paper), and may be

downloaded from the website for the present journal.

Keywords-elastostatics; BEM; constant; code;MATLAB

I. INTRODUCTION

Ready availability of computer codes encourages the use
of any numerical technique. Reference [1], in its last
paragraph of the section “Conclusion”, opines that boundary
elements are a good idea in principle but not in practice
because of the lack of proper software. This opinion remains
true even today.

There are some open source BEM libraries. Helsinki
BEM library [2] is a MATLAB source code library for
problems that obey the Laplace or Poisson equation. The
web source [3] contains codes that are specifically useful for
solving acoustics problems. The source also contains codes
for solving Laplace problems and Helmholtz problems. Book
[4] gives FORTRAN codes for Laplace’s equation and
Helmholtz equation, in two and three dimensions. The codes
can be freely downloaded from [5], website for the book. A

BEM code for two dimensional (2D) pulsating cylinders is
available from [6].

Fast Multipole Boundary Element Method (FastBEM)
software is available from [7]. Software for three
dimensional (3D) elasticity is also available here. Still,
source codes are not available here.

The website [8] for the book [9] contains many programs
in Fortran. It contains programs for 3D elasticity also. But
the website tells that the programs supplied there are for use
by purchasers of the book only. Here, the Fortran program
for 3D elasticity is not written as a single program; the main
program calls different modules to perform different tasks. It
is difficult to fully understand programs, without referring to
the book.

But, although three dimensional elasticity is such an
important area, apart from the codes which might be
available in the websites (e.g., the website [8]) that are
companions to some non open access books, one cannot find
an open access source code in any of the programming
languages, although author of this paper could find a
program on two dimensional elasticity in a file sharing
system. Extension of a code on two dimensional elasticity
into three dimensions is not very trivial and one needs some
new formulae also. Also, file sharing systems sometimes
delete some of the hosted files. Since codes are readily
available for potential problems in three dimensions, it may
be possible to cast a three dimensional elasticity problem as a
three dimensional potential problem using potential
representations like Papkovich-Neuber representation, but
this is not the standard way an elasticity problem is solved
using boundary elements. Hence, author of the present work
thought of writing the present code on three dimensional
elasticity and making it available for open access, through
the present paper in the present open access journal. Present
paper does not explain the theory behind boundary elements
in detail. Aim is to list all the formulae that are needed to
write the code, and explain how these formulae are
assembled to produce a working code. The present paper is
helpful to understand the working of the present code.

Present work does not aim to provide source code for
whole of three dimensional elasticity. It provides a
MATLAB code only for the most basic form of three
dimensional elasticity, i.e., three dimensional linear
elastostatics. Although very basic, three dimensional linear

elastostatics has wide applications in product design and
structural design. Purpose of selecting MATLAB is that it is
very easy to learn, and people who do not know the language
also can follow the logic of the code. Using Parallel
Computing Toolbox, now a MATLAB code can very easily
be parallelized to run on multiple CPUs/GPUs. Code can be
precompiled to increase speed. While solving complex real-
world problems, a MATLAB code can readily interact with
already developed subroutines in other languages like C/C++
and Fortran, using ‘External Interfaces’ feature of
MATLAB. With little modification, a MATLAB code may
be executed in one of open source and free equivalents of
MATLAB such as GNU Octave, FreeMat and Scilab.
Although very simple and very basic, the present code is not
a subroutine but a complete program. Also, the present code
does not contain any subroutines. Even input data has to be
entered in the code itself. In terms of theory, present work
does not make any contribution to research on boundary
elements. All theory behind the present code, including all
formulae, is taken from [9] and [4]. But the present code, in
full or in part, is not a translation or a copy of any of the
existing codes.

The present work may also be useful as an educational
aid to learn the basics of the boundary element method as
applied to 3D linear elastostatics especially since it uses the
most basic form of 3D elasticity, i.e., 3D linear elastostatics,
and the most basic form of elements, constant elements. It
may be noted that [10] presents a way of implementing the
boundary element method using MATLAB, including details
on coding, but for solving the Laplace's equation only. With
detailed explanation of the theory, a MATLAB code for two
dimensional Laplace’s equation is presented in [11]; it makes
use of constant elements.

Present paper is organized as follows. Next section
describes the theory that is essential to develop the code. The
subsequent section explains the code. The section that
follows illustrates the use of the code to solve a well known
simple problem which has a well known solution, and thus
verifies the code.

II. THEORY

Only theory that is essential to understand the present
code is explained here. One can refer to [4] and [9] for
further details.

From the Appendix of [9], for static elasticity, in indicial

notation, the displacement iu at an internal point P, in the

absence of initial stresses and strains, is given by

∫ ∫−=
S S

jijjiji dSQuQPTdSQtQPUpu)(),()(),()(

(1)

where ii tu , (or jj tu ,) are the displacements and tractions

),(),,(QPTQPU ijij are called the fundamental

 solutions

 P is called the source point and Q is called the field

 point

 S is the surface (for 3D problems) which represents

 the geometry

For 3D problems, the fundamental solutions are given by

)
1

ln(),(,,1 jiijij rr
r

CCQPU += δ

(2)

()
()()

−−−

++−
=

jiijij

jiij

nij
rnrnC

rrnC

r

C
QPT

,,3

,,32

1

cos)1(
),(

δ

θδ

(3)

In (2) and (3), r is the distance between P and Q , and

in and jn are the outward normals. The derivative of r with

respect to the Cartesian axis i is denoted as ir, and the

derivative of r with respect to the Cartesian axis j is

denoted as jr, . The term θcos is given by

nr
r

rr
•=

1
cosθ

(4)

ijδ is given by

()
()

≠

=
=

jifor

jifor
ij

0

1
δ

(5)

The values of the constants are given by

2=n

()νπ −
=

116

1

G
C

ν431 −=C

()νπ −
=

18

1
2C

ν213 −=C

(6)

where ν is the Poisson’s ratio.

The shear modulus G is given by

()ν+
=

12

E
G

(7)

where E is the modulus of elasticity.

In the present work, a 3D solid is represented by 3D

boundary triangles, i.e., 3D triangular surface mesh. T is the

total number of triangles which together represent the 3D

solid; hence, the total number of elements is equal to T . Let
m

S be the surface of the element with element number m .

Here, since constant elements are used, over each of the

elements, displacements and tractions are assumed constant.

For each of the elements, either displacement or traction is

known, the other being an unknown that has to be

calculated. In this work, solution is sought only on the

boundary. For a point P on the boundary of a solid, if P

is located inside a smooth region of the boundary, (1) can be

reduced to the following three equations, i.e., (8), (9) and

(10).

() []∑
=

−−−++=
T

m

ex BBBAAAPu
1

321321
2

1

(8)

[]∑
=

−−−++=
T

m

ey BBBAAAPu
1

654654)(
2

1

(9)

[]∑
=

−−−++=
T

m

ez BBBAAAPu
1

987987)(
2

1

(10)

where () () m

S

mexxmx dSQPUQtA
m

∫= ,1

() () m

S

mexymy dSQPUQtA
m

∫= ,2

() () m

S

mexzmz dSQPUQtA
m

∫= ,3

() () m

S

mexxmx dSQPTQuB
m

∫= ,1

() () m

S

mexymy dSQPTQuB
m

∫= ,2

() () m

S

mexzmz dSQPTQuB
m

∫= ,3

() () m

S

meyxmx dSQPUQtA
m

∫= ,4

() () m

S

meyymy dSQPUQtA
m

∫= ,5

() () m

S

meyzmz dSQPUQtA
m

∫= ,6

() () m

S

meyxmx dSQPTQuB
m

∫= ,4

() () m

S

meyymy dSQPTQuB
m

∫= ,5

() () m

S

meyzmz dSQPTQuB
m

∫= ,6

() () m

S

mezxmx dSQPUQtA
m

∫= ,7

() () m

S

mezymy dSQPUQtA
m

∫= ,8

() () m

S

mezzmz dSQPUQtA
m

∫= ,9

() () m

S

mezxmx dSQPTQuB
m

∫= ,7

() () m

S

mezymy dSQPTQuB
m

∫= ,8

() () m

S

mezzmz dSQPTQuB
m

∫= ,9

To be clearer, equations (8)-(10) may also be written in the

expanded form given by the following three equations, i.e.,

(11), (12) and (13).

[]312111312111)(
2

1
BBBAAAPu ex −−−++=

(11)

[]TBTBTBTATATA 321321 −−−+++K

[] K+−−−+++ 322212322212 BBBAAA

[] KK +−−−+++ mBmBmBmAmAmA 321321

[]615141615141)(
2

1
BBBAAAPu ey −−−++=

(12)

[]918171918171)(
2

1
BBBAAAPu ez −−−++=

(13)

where () ()∫=
m

S

m

mexxmx dSQPUQtmA ,1

() () m

S

mexymy dSQPUQtmA
m

∫= ,2

() () m

S

mexzmz dSQPUQtmA
m

∫= ,3

() () m

S

mexxmx dSQPTQumB
m

∫= ,1

() () m

S

mexymy dSQPTQumB
m

∫= ,2

() () m

S

mexzmz dSQPTQumB
m

∫= ,3

() () m

S

meyxmx dSQPUQtmA
m

∫= ,4

() () m

S

meyymy dSQPUQtmA
m

∫= ,5

() () m

S

meyzmz dSQPUQtmA
m

∫= ,6

() () m

S

meyxmx dSQPTQumB
m

∫= ,4

() () m

S

meyymy dSQPTQumB
m

∫= ,5

() () m

S

meyzmz dSQPTQumB
m

∫= ,6

() () m

S

mezxmx dSQPUQtmA
m

∫= ,7

() () m

S

mezymy dSQPUQtmA
m

∫= ,8

() () m

S

mezzmz dSQPUQtmA
m

∫= ,9

() () m

S

mezxmx dSQPTQumB
m

∫= ,7

() () m

S

mezymy dSQPTQumB
m

∫= ,8

() () m

S

mezzmz dSQPTQumB
m

∫= ,9

 where m takes values from 1 to T .

Equations (8)-(10) (or equations (11)-(13)) are the basic

equations upon which the present code is developed. Since

displacements and tractions are constants over each of the

elements, for each of the elements, displacements and

tractions are considered only for just one chosen point inside

each element. eP and mQ refer to these points; here, the

subscripts e or m in eP or mQ refer to the element number.

The subscript e in eP varies from 1 to T which is the total

number of elements. Further, m = e implies that eP = mQ .

Hence, if a solid is discretized by T boundary elements,

equation (8)-(10) (or equation (11)-(13)) give rise to a set of

coupled T3 linear algebraic equations in T3 unknowns.

Unknowns are either displacements (xu , yu or zu at

eP or mQ) or tractions (xt , yt or zt at mQ (or eP when

e = m)). For elements with prescribed displacements

(xu , yu and zu), the tractions (xt , yt and zt) are the

unknowns. On the other hand, for elements with prescribed

tractions (xt , yt and zt), the displacements (xu , yu and

zu) are the unknowns. The set of T3 algebraic equations

may be written in the form

[] { } { } 131333 ××× = TTTT FUK

(14)

[] K+−−−+++ 625242625242 BBBAAA

[]TBTBTBTATATA 654654 −−−+++K

[] K+−−−+++ 928272928272 BBBAAA

[]TBTBTBTATATA 987987 −−−+++K

[] KK +−−−+++ mBmBmBmAmAmA 654654

[] KK +−−−+++ mBmBmBmAmAmA 987987

where { }U denotes the vector of unknowns, which consists

of unknown displacements and unknown tractions. The

matrix []K is fully populated, in general. Solving (14) for

{ }U , one can straight away obtain the values of the

unknowns, be it unknown displacements or unknown

tractions.

Now, the method used to find the integrals of the

fundamental solutions over the elements is explained, i.e.,

the goal now is to evaluate the integrals

∫
mS

m

mexx dSQPU),(, ∫
mS

m

mexx dSQPT),(,

∫
mS

m

mexy dSQPU),(, ∫
mS

m

mexy dSQPT),(,

∫
mS

m

mexz dSQPU),(, ∫
mS

m

mexz dSQPT),(,

∫
mS

m

meyx dSQPU),(, ∫
mS

m

meyx dSQPT),(,

∫
mS

m

meyy dSQPU),(, ∫
mS

m

meyy dSQPT),(,

∫
mS

m

meyz dSQPU),(, ∫
mS

m

meyz dSQPT),(,

∫
mS

m

mezx dSQPU),(, ∫
mS

m

mezx dSQPT),(,

∫
mS

m

mezy dSQPU),(, ∫
mS

m

mezy dSQPT),(,

∫
mS

m

mezz dSQPU),(, ∫
mS

m

mezz dSQPT),(

These integrals are evaluated by numerical integration, as

explained in Chapter 6 of [4]. All these integrals are

evaluated by using the common formula

∫ ∫ ∫
−

=
m

S

v

mm dudvJzyxfdSzyxf

1

0

1

0

),,(),,(

 ∫ ∫ −=
1

0

1

0

)1)(,,(dtdvJvzyxf
m

 ()∑
=

≅
16

1

,
16

1

k

kk vtf

 ()()∑
=

−=
16

1

1,,
16

1

k

m

kkkk Jvzyxf

(15)

Equation (15) may simply be written as

∫
m

S

m
dSzyxf),,(()()∑

=

−=
16

1

1,,
16

1

k

m

kkkk Jvzyxf

(16)

In equation (16), ()zyxf ,, is the fundamental solution

(i.e., xxU , xxT , xyU , xyT , xzU , xzT , yxU , yxT , yyU ,

yyT , yzU , yzT , zxU , zxT , zyU , zyT , zzU , zzT) which

needs to be integrated over the element that has the element

number m .

Let ()aaa zyx ,, , ()bbb zyx ,, and ()ccc zyx ,, be the

coordinates of the vertices which define the triangular

element m . Of course, the vertices always have to be

properly ordered such that the normal vector to
m

S points

out of the 3D solid under consideration. Then
m

J in (16) is

given by

()()()mmmmmmmm
J γσβσασσ −−−= 2

(17)

where
2

mmm
m γβα

σ
++

=

 () () ()222

bababa

m
zzyyxx −+−+−=α

 () () ()222

cbcbcb

m
zzyyxx −+−+−=β

 () () ()222

acacac

m
zzyyxx −+−+−=γ

To evaluate kx , ky and kz in (16), the following values for

()kk vt , have to be noted down.

()

++=

34

1

4

1
,

34

1

4

1
, 11 vt

()

−+=

34

1

4

1
,

34

1

4

1
, 22 vt

()

+−=

34

1

4

1
,

34

1

4

1
, 33 vt

()

−−=

34

1

4

1
,

34

1

4

1
, 44 vt

()

++=

34

1

4

1
,

34

1

4

3
, 55 vt

()

−+=

34

1

4

1
,

34

1

4

3
, 66 vt

()

+−=

34

1

4

1
,

34

1

4

3
, 77 vt

()

−−=

34

1

4

1
,

34

1

4

3
, 88 vt

()

++=

34

1

4

3
,

34

1

4

3
, 99 vt

()

−+=

34

1

4

3
,

34

1

4

3
, 1010 vt

()

+−=

34

1

4

3
,

34

1

4

3
, 1111 vt

()

−−=

34

1

4

3
,

34

1

4

3
, 1212 vt

()

++=

34

1

4

3
,

34

1

4

1
, 1313 vt

()

−+=

34

1

4

3
,

34

1

4

1
, 1414 vt

()

+−=

34

1

4

3
,

34

1

4

1
, 1515 vt

()

−−=

34

1

4

3
,

34

1

4

1
, 1616 vt

(18)

Now, ku is calculated as

()kkk vtu −= 1

(19)

Next, to calculate kx , ky and kz in (16), one needs to also

calculate the components of the unit normal vector to the

element surface
m

S . Again, assuming that ()aaa zyx ,, ,

()bbb zyx ,, and ()ccc zyx ,, are the coordinates of the

vertices of the triangular element m , the components of

the unit normal vector in the x , y and z direction are

given by

()() ()()
d

yyzzzzyy
n acabacabm

x

−−−−−
=

()() ()()
d

zzxxxxzz
n acabacabm

y

−−−−−
=

()() ()()
d

xxyyyyxx
n acabacabm

z

−−−−−
=

(20)

where =d [()() ()()()2

acabacab yyzzzzyy −−−−−

+ ()() ()()()2

acabacab zzxxxxzz −−−−−

+ ()() ()()()2

acabacab xxyyyyxx −−−−−]
1/2

Now, depending on the values of
m

zn and
m

yn , kx , ky

and kz in (16) can be calculated using the appropriate

equation from one of the following (21)-(23).

If
3

1
≥m

zn

() () akackabk xvxxuxxx +−+−=

() () akackabk yvyyuyyy +−+−=

() () ()[] aak

m

yak

m

x

m

zk zyynxxnnz +−+−−=
−1

(21)

Else, if
3

1
<m

zn and
3

1
≥m

yn

() () akackabk xvxxuxxx +−+−=

() () akackabk zvzzuzzz +−+−=

() () ()[] aak

m

zak

m

x

m

yk yzznxxnny +−+−−=
−1

(22)

Else, if
3

1
<m

zn and
3

1
<m

yn

() () akackabk yvyyuyyy +−+−=

() () akackabk zvzzuzzz +−+−=

() () ()[] aak

m

zak

m

y

m

xk xzznyynnx +−+−−=
−1

(23)

Equations (21)-(23) are also used to evaluate the Cartesian

coordinates of eP or mQ , which may be denoted as

()mmm zyx ,, , by setting
4

1
=ku and

2

1
=kv . Hence, for

element m , ()mmm zyx ,, which is the chosen point inside

the element m and which is the only point on the element

where displacement or traction is considered (the other

points on the element having the same value of

displacement or traction as that of this point), is given by

(24)-(26).

If
3

1
≥m

zn

() () aacab

m
xxxxxx +−+−=

2

1

4

1

() () aacab

m
yyyyyy +−+−=

2

1

4

1

() () ()[] aa

mm

ya

mm

x

m

z

m
zyynxxnnz +−+−−=

−1

(24)

Else, if
3

1
<m

zn and
3

1
≥m

yn

() () aacab

m
xxxxxx +−+−=

2

1

4

1

() () aacab

m
zzzzzz +−+−=

2

1

4

1

() () ()[] aa

mm

za

mm

x

m

y

m
yzznxxnny +−+−−=

−1

(25)

Else, if
3

1
<m

zn and
3

1
<m

yn

() () aacab

m
yyyyyy +−+−=

2

1

4

1

() () aacab

m
zzzzzz +−+−=

2

1

4

1

() () ()[] aa

mm

za

mm

y

m

x

m
xzznyynnx +−+−−=

−1

(26)

Now, one can see that (16) can now be evaluated if one

knows the expressions for the fundamental solutions (i.e.,

xxU , xxT , xyU , xyT , xzU , xzT , yxU , yxT , yyU , yyT ,

yzU , yzT , zxU , zxT , zyU , zyT , zzU , zzT). Using (2) and

(3), expressions for the fundamental solutions may be

written in the expanded form as given by (27) below. In

these equations,),,(111 zyx denotes the coordinates of the

point eP while),,(222 zyx denotes the coordinates of the

point ()kkk zyx ,, .

+=

2

1
dx

dr
C

r

C
U xx

+=

2

1
dy

dr
C

r

C
U yy

+=

2

1
dz

dr
C

r

C
U zz

==

dy

dr

dx

dr

r

C
UU yxxy

==

dz

dr

dy

dr

r

C
UU zyyz

==

dx

dr

dz

dr

r

C
UU xzzx

+

−
= θcos3

2

32

2

dx

dr
C

r

C
Txx

+

−
= θcos3

2

32

2

dy

dr
C

r

C
Tyy

+

−
= θcos3

2

32

2

dz

dr
C

r

C
Tzz

−−

−
=

dy

dr
n

dx

dr
nC

dy

dr

dx

dr

r

C
T

m

x

m

yxy 32

2 cos3 θ

−−

−
=

dx

dr
n

dy

dr
nC

dx

dr

dy

dr

r

C
T

m

y

m

xyx 32

2 cos3 θ

−−

−
=

dz

dr
n

dy

dr
nC

dz

dr

dy

dr

r

C
T

m

y

m

zyz 32

2 cos3 θ

−−

−
=

dy

dr
n

dz

dr
nC

dy

dr

dz

dr

r

C
T

m

z

m

yzy 32

2 cos3 θ

−−

−
=

dx

dr
n

dz

dr
nC

dx

dr

dz

dr

r

C
T

m

z

m

xzx 32

2 cos3 θ

−−

−
=

dz

dr
n

dx

dr
nC

dz

dr

dx

dr

r

C
T

m

x

m

zxz 32

2 cos3 θ

(27)

where () () ()2

12

2

12

2

12 zzyyxxr −+−+−=

()

r

xx

dx

dr 12 −
=

()
r

yy

dy

dr 12 −
=

()

r

zz

dz

dr 12 −
=

() () ()[]m

z

m

y

m

x nzznyynxx
r

121212

1
cos −+−+−=θ

 (From equation (4))

 Other notations have the same meanings as earlier

m

y

m

x nn , and
m

zn are constant over an element m

m

y

m

x nn , and
m

zn are different for different elements,

 in general

Here one can note that since there are sixteen ()kkk zyx ,,

for every element m , when one integrates a fundamental

solution over an element surface
m

S (which contains the

point mQ), for every),,(111 zyx , there are sixteen different

),,(222 zyx . Further, when the whole code is considered,

since the total number of elements equals T , for every

),,(111 zyx , there are T16 different),,(222 zyx ; and

there are T different),,(111 zyx in total.

III. THE CODE EXPLAINED

The present code is explained in this section. The
variables in the program (code) may or may not be identical
to the corresponding notations in the previous (i.e., ‘Theory’)
section.

One can note that there are eight supplementary files that
are available with the online version of the present paper.
Logging into the website (after creating an account for free)
of the present journal may be necessary to access the
supplementary files. The present code is available through
either of ‘code_medium.m’ or ‘code_high.m’. The only
difference between the files is that they contain different
input data; otherwise codes are the same. Since the .m files
‘code_medium.m’ and ‘code_high.m’ are self-contained
(i.e., since they contain input data also), they may readily be
run from within MATLAB (author has used MATLAB
R2010b). When the file ‘code_medium.m’ is run, the result
obtained in the MATLAB Command Window is manually
saved into ‘result_medium.txt’. Similarly, when the file
‘code_high.m’ is run, the result obtained is manually saved
into ‘result_high.txt’. To use the present code to solve any
other 3D linear elastostatic problem, one need to just change
the input data portion of either of ‘code_medium.m’ or
‘code_high.m’.

The file ‘mesh_medium.stl’ is the .stl file which
represents the example 3D geometry discretized into 172
boundary elements. The file ‘mesh_high.stl’ represents the

same geometry with 428 boundary elements. The .stl files
are manually edited and formatted in a text editor such as
Notepad into the format of the input mesh for the present
code ‘code_medium.m’ or ‘code_high.m’, and saved as .txt
files. The ‘mesh_medium.stl’ is edited, formatted and then
saved as ‘mesh_medium.txt’ whereas ‘mesh_high.stl’ is
edited, formatted and saved as ‘mesh_high.txt’. Since
‘code_medium.m’ and ‘code_high.m’ contain input data
also, ‘code_medium.m’ already contains ‘mesh_medium.txt’
and ‘code_high.m’ already contains ‘mesh_high.txt’. To use
the present code to solve problems other than the present test
problem, in the similar fashion, one needs to prepare a mesh
for the geometry under consideration, and use the prepared
mesh as an input data for either of ‘code_medium.m’ or
‘code_high.m’, the other input data being the specification of
boundary conditions, i.e., the specification of displacements
for elements with specified displacements and the
specification of tractions for the rest of the elements.

Now, the code ‘code_medium.m’ is explained in detail,
line by line. Except input data portion, ‘code_medium.m’
and ‘code_high.m’ are identical. For that matter, except input
data portion, the code to solve any other 3D linear
elastostatic problem would be the same as
‘code_medium.m’.

The 5
th

 line of ‘code_medium.m’ specifies the modulus
of elasticity, while the 6

th
 line specifies the Poisson’s ratio.

The 7
th
 line specifies the displacement boundary conditions;

“161 0 0 0” here means that the element number 161 has
specified zero displacements along x, y and z directions;
similarly, “162 0 0 0” means the element 161 is fixed; same
for elements up to 166. The 8

th
 line specifies the nonzero

force boundary conditions; “167 0 0 10000” here means that
the element 167 is subjected to zero traction along x
direction, zero traction along y direction, but 10000 units of
traction along the z direction; same is the case for elements
up to 172. Now, one can see that the elements which are not
subjected to displacement boundary conditions and are not
subjected to nonzero force boundary conditions also, are
subjected to zero force boundary conditions; Lines 9-12
specify zero force boundary conditions; tractions on the
elements mentioned here are zero in x, y and z directions.
Line 13 combines zero and nonzero force boundary
conditions. The variable ‘xyzofelements’ in line 14 takes a
mesh as input; the mesh has 172 elements; the mesh
describes the 3D geometry under consideration; mesh is just
copy-pasted from ‘mesh_medium.txt’; “1 2.000000e+000
0.000000e+000 1.000000e+001; 1 1.000000e+000
0.000000e+000 1.000000e+001; 1 1.000000e+000
0.000000e+000 5.000000e+000” in line 14 means that for

element 1, ax =2.000000e+000, ay = 0.000000e+000, az =

1.000000e+001, again for element 1, bx = 1.000000e+000,

by = 0.000000e+000, bz = 1.000000e+001, again for

element 1, cx = 1.000000e+000, cy = 0.000000e+000, cz =

5.000000e+000; lines 15-185 have similar meaning.
Data entered until now form the input portion of the

code. The code now contains the geometry, boundary

conditions, and the material property. One can use the code
‘code_medium.m’ to solve any other 3D linear elastostatic
problem by just changing this portion of the code to provide
the data that are relevant to the new problem.

Lines 186-191 evaluate the constants G, C, C1, C2, C3 and
n. Lines 192-193 calculate the total number of elements.
Lines 194-195 calculate the total number of elements with
displacement boundary condition. Lines 196-197 calculate
the total number of elements with force boundary condition.
Lines 198-204 are initializations. Lines 205-237, using (20)

calculate
m

xn ,
m

yn ,
m

zn , using (17) calculate
m

J , using (24)

or (25) or (26) calculate
m

x ,
my ,

mz ; these are calculated

for each and every element. Lines 238-239 input the values

of kt and kv , as given in (18). Line 240 calculates ku using

(19). Lines 241-242 are initializations.

Purpose of lines 243-520 is to calculate []K and { }F of

(14). The outermost for loop starts at line 243 and ends at

line 520; the iteration here is for different values of eP ;

hence, there are as many iterations of this loop as the total
number of elements. The for loop starting at line 244 and
ending at line 381 iterates for every element with force

boundary condition, for a fixed eP defined by the outer loop;

lines 245-284 evaluate the values of kx , ky , kz using (21)

or (22) or (23) (here, x1 means ax , y2 means by etc.); lines

285-302 are just initializations. There is one more for loop
which starts at line 303 and ends at line 345; the loop is
within the previous loop; purpose of this loop is to evaluate
(16); of course, the loop evaluates sixteen times the value of
the right hand side of (16); lines 304-308 evaluate the values

of r, dr/dx, dr/dy, dr/dz and θcos , for every ()kkk zyx ,,

of the element defined by the outer loop; lines 309-317 and
lines 327-335 evaluate the expressions in (27) at each of

()kkk zyx ,, , and lines 318-326 and lines 336-344 add the

evaluated values to accumulate to sixteen times the value of
the right hand side of (16). Coming out of the innermost for
loop, lines 346-363 evaluate the right hand side of (16); lines

364-375 build []K and { }F of (14); here one can

remember that (14) is the same as (11)-(13) considered
together. Lines 376-380 address the case while, during
iterations, me = ; in this case, terms on the left hand side of

(11)-(13) are unknowns and hence belong to []{ }UK and

hence []K (not { }F) has to be modified by adding ‘0.5’ to

the appropriate elements of []K , as has been done in lines

376-380; ‘0.5’ here arises out of ‘1/2’ in xu
2

1
, yu

2

1
 and

zu
2

1
, on the left hand side of (11)-(13). Now, the for loop

from the line 382 to the line 520 iterates for every element

with force boundary condition, for a fixed eP defined by the

outer loop; here, lines 382-513 have the same purpose as the
lines 244-375. Again, lines 514-518 address the case while,
during iterations, me = ; in this case, terms on the left hand

side of (11)-(13) are known and hence belong to { }F and

hence { }F (not []K) has to be modified, as has been done

in lines 514-518; again, ‘0.5’ here arises out of ‘1/2’ in

xu
2

1
, yu

2

1
 and zu

2

1
, on the left hand side of (11)-(13).

Now, line 522 calculates { }U of (14). Line 524 displays

calculated values of the unknowns in the MATLAB
Command Window; the unknowns could be either

displacements ()
zyx uuu ,, or tractions ()

zyx ttt ,, ; for

elements with known displacements, tractions are the
unknowns; for elements with known tractions, displacements

are the unknowns; line 524 displays the result { }U in this

format: value of the unknown (in the x direction, for element
number 1), value of the unknown (in the y direction, for
element number 1), value of the unknown (in the z direction,
for element number 1), value of the unknown (in the x
direction, for element number 2), value of the unknown (in
the y direction, for element number 2), value of the unknown
(in the z direction, for element number 2), value of the
unknown (in the x direction, for element number 3) etc.

IV. ILLUSTRATION AND VERIFICATION

In the present section, the present code is tested by using
the code to solve a simple problem with the known solution,
i.e., a bar subjected to end force.

Geometry of the test problem is a prismatic bar. The bar
has a (4 mm x 4 mm) cross section, and the bar is 100 mm
long. One end of the bar is fixed, while the other end is
loaded with 160000 N force in the axial direction. The
coordinates of the vertices which describe the fixed end of
the bar are given by (0,4,0), (4,4,0), (4,0,0) and (0,0,0). The
coordinates of the vertices which describe the loaded end are
given by (0,0,100), (4,0,100), (4,4,100) and (0,4,100). All
dimensions here are expressed in millimeters. The problem is
to find the displacement at the loaded end upon the
application of the load. Modulus of elasticity is assumed as
200000 N/mm

2
, and the Poisson’s ratio is assumed to be

equal to 0.33.
For simple geometries like a prismatic bar, one can

manually prepare a mesh. But, here, since it is a cumbersome
and also an error prone process to manually prepare the
mesh, the commercial software Rhinoceros (Version 3.0) is
used for this purpose. Of course, the mesh may be prepared
by using any of the much commercial or free software that
can do the job. First, the prismatic bar is constructed in
Rhinoceros; then the geometry is saved as a .stl file. A .stl
file describes a 3D geometry in terms of a 3D surface mesh
consisting of triangles. Rhinoceros has the option to save a
3D geometry as an .stl file, with different total number of
triangles, i.e., one can save the geometry in different
resolutions. One should remember to save .stl files in the
ASCII format; this format is human readable. Here, the

geometry constructed in Rhinoceros is saved with two
different resolutions, which resulted in a total of 172 and 428
elements. The mesh with 172 elements is named as
‘mesh_medium.stl’, and the mesh with 428 elements is
named as ‘mesh_high.stl’. When ‘mesh_medium.stl’ is
opened in Notepad, on the 4

th
 line, one can read this: “vertex

2.000000e+000 0.000000e+000 1.000000e+001”. This
means that for the first element, xa = 2.000000e+000, ya=
0.000000e+000, za=1.000000e+001. The 5

th
 line reads as:

“vertex 1.000000e+000 0.000000e+000 1.000000e+001”
which means that for the first element, xb = 1.000000e+000,
yb= 0.000000e+000, zb=1.000000e+001. Similarly 6

th
 line

means that xc = 1.000000e+000, yc= 0.000000e+000,
zc=5.000000e+000, for the first element. In the same way,
lines 11-13 give the coordinates of xa, ya, za, xb, yb, zb, xc, yc,
zc, for the second element; lines 18-20 give the coordinates
of these for the third element, and so on. Now, the file
‘mesh_medium.stl’ is edited and formatted to the form that is
saved as ‘mesh_medium.txt’. Same way, ‘mesh_high.txt’ is
obtained from ‘mesh_high.stl’. Mesh data from
‘mesh_medium.txt’ or ‘mesh_high.txt’ can readily be cut-
pasted into the present code.

Now, one needs to identify the elements which are fixed,
and the elements which are subjected to tractions. For the
example problem considered here, one can note that the
elements that have the z coordinates of all their vertices
equal to zero are the ones which are fixed, i.e., they are the
elements that are subjected to displacement boundary
conditions, with all the displacements being zero. One can
also note that the elements that have the z coordinates of all
their vertices equal to 100 are subjected to traction in the z
direction. Hence, for the lower resolution mesh, by looking
at ‘mesh_medium.txt’, one can note that the elements 161-
166 are fixed, the elements 167-172 are subjected to nonzero
tractions, and the other elements (i.e., the elements 1-160)
are subjected to zero traction. Similarly, for the higher
resolution mesh, by looking at ‘mesh_high.txt’, one can note
that the elements 409-418 are fixed, the elements 419-428
are subjected to nonzero tractions, and the other elements
(i.e., the elements 1-408) are subjected to zero traction.

The nonzero traction in the z direction (for the elements
on the loaded end) is given by

2/10000
44

160000
mmN

Area

Force
tz =

×
==

This value is the same whether one uses a medium

resolution mesh or a high resolution mesh.
For the test problem considered here, all input data

(discussed in the previous four paragraphs) are already
contained in the codes ‘code_medium.m’ and ‘code_high.m’,
for the medium resolution mesh and high resolution mesh
cases respectively.

After running the codes ‘code_medium.m’ and
‘code_high.m’, results are saved in the files
‘result_medium.txt’ and ‘result_high.txt’ respectively.

Considering ‘result_medium.txt’, the last eighteen rows
give the displacement solutions for the last six elements (the
last six elements are the ones which are subjected to nonzero

tractions). The solutions, as obtained from the last eighteen
rows of the file ‘result_medium.txt’, are tabulated in Table I.

TABLE I. DISPLACEMENT SOLUTIONS AT THE LOADED END (FOR

MEDIUM RESOLUTION MESH)

Ele-

ment

No.

ux*103

mm

uy*103

mm

uz*103

mm

167 0.000475723884518 0.000239277914653 0.004667990981856

168 -0.000288557449754 0.000350459191737 0.004640913749073

169 -0.000227579883863 -0.000253099680184 0.004662295196899

170 0.000350870893377 -0.000146245484676 0.004666785214835

171 0.000061463916240 0.000227509412390 0.004136294937252

172 -0.000001691317047 -0.000015656433286 0.004147373087041

Now, considering ‘result_high.txt’, the last thirty rows

give the displacement solutions for the last ten elements (the
last ten elements are the ones which are subjected to nonzero
tractions). The solutions, as obtained from the last thirty
rows of the file ‘result_high.txt’, are tabulated in Table II.

TABLE II. DISPLACEMENT SOLUTIONS AT THE LOADED END (FOR

HIGH RESOLUTION MESH)

Ele-

ment

No.

ux*104

mm

uy*104

mm

uz*104

mm

419 0.000014972072838 0.000069229499481 0.000548700220572

420 -0.000053933725093 0.000032473982250 0.000533494879700

421 -0.000084785786018 0.000055690465021 0.000561328889982

422 0.000019080155101 0.000032731914270 0.000534518762716

423 -0.000027613176014 -0.000011163464531 0.000553379281037

424 0.000005898472131 0.000062564046813 0.000530196484107

425 0.000032708654327 0.000036306507440 0.000554565304403

426 -0.000056504866697 0.000061990516729 0.000528972628751

427 -0.000025959290317 0.000052674228475 0.000538346574184

428 -0.000020851664801 0.000043533648613 0.000537601022532

From Table I and Table II, one can note that

displacements in the x and y directions are an order of
magnitude less than the displacements in the z direction, for
all the elements, in general. This is expected since, for the
present example problem, displacements in the z direction
should be dominant. In fact, as far as the present test problem
is concerned, one is interested in the displacements along the
z direction only. Now, considering only the displacements
along the z direction and rounding off the decimal values into
three digits, and comparing the results with the result from
the analytical formula, one can compile the tables Table III
and Table IV.

For the present test problem, the analytical solution, i.e.,
the result from the well known analytical formula is obtained
as

EArea

LengthForce
ntDisplaceme

×

×
=

 where ‘Displacement’ implies the displacement of the

 loaded end in the z direction

 ‘Force’ implies the total force applied at the

 loaded end (= 160000 N)

 ‘Length’ implies the length of the prism

 (= 100 mm)

 ‘Area’ implies the cross sectional area of the

 prism (= (4 x 4) mm = 16 mm)

 E is the modulus of elasticity (= 200000 N/mm
2
)

Using the above formula, the analytical result is found to
be equal to 5 mm, for all the elements on the loaded end, for
both medium resolution and high resolution meshes.

TABLE III. COMPARISON OF THE RESULTS FROM THE CODE AND THE

ANALYTICAL FORMULA (FOR MEDIUM RESOLUTION MESH)

Element

Number

uz From the Code

(mm)

uz From the Analytical

Formula (mm)

167 4.668 5.000

168 4.641 5.000

169 4.662 5.000

170 4.667 5.000

171 4.136 5.000

172 4.147 5.000

TABLE IV. COMPARISON OF THE RESULTS FROM THE CODE AND THE

ANALYTICAL FORMULA (FOR HIGH RESOLUTION MESH)

Element

Number

uz From the Code

(mm)

uz From the Analytical

Formula (mm)

419 5.487 5.000

420 5.335 5.000

421 5.613 5.000

422 5.345 5.000

423 5.534 5.000

424 5.302 5.000

425 5.546 5.000

426 5.290 5.000

427 5.383 5.000

428 5.376 5.000

From Table 3 and Table 4, one can see that the results

from the code are in good agreement with the results from
the analytical formula. Thus, one can infer that the present
code has performed satisfactorily. However, one can note
that there is not much improvement in accuracy, when the
total number of elements is increased from 172 (which
corresponds to the medium resolution mesh) to 428 (which
corresponds to the high resolution mesh). The reasons could
be that the analytical formula itself is just an approximate
one, and the present code solves the present example
problem as a 3D problem; also, when the boundary elements
are limited in number, it may be difficult to apply the
boundary conditions accurately. Further, numerical
integration here always uses only sixteen function
evaluations per element, which may be insufficient
sometimes especially since singularity of the fundamental
solutions is not addressed in the present work. Using very
large number of elements might improve accuracy, or one
has to use linear or quadratic elements for better
convergence; to improve accuracy, one may need to do
higher number of function evaluations per element during
numerical integration; to improve the accuracy further, one
may have to properly address the singularities of the
fundamental solutions also.

V. CONCLUDING REMARKS

This work presents a code written in the very simple
programming language MATLAB, for three dimensional
linear elastostatics, using constant boundary elements.
Present work is justified by the fact that, to the best of his
knowledge, author of the present work, apart from the codes
which might be available in the websites that are companions
to some non open access books, is not aware of any open
access source code available in the internet that is written in
any of the programming languages. The present code is
tested by using the code to solve a simple problem with the
known solution, i.e., a bar subjected to end force. Result
from the code matched well with that obtained from the
analytical formula, thus verifying the code. The code may be
used to solve three dimensional linear elastostatic problems.
Present work could also be an educational aid to those who
would like to acquire just a working knowledge of the
boundary element method, as applied to three dimensional
elastostatics, quickly and easily. Since the code is available
for open access, and also since the code is properly
documented (documentation includes listing of all the
formulae used) through the present paper, present work
would also be of help to those who want to modify and/or
build upon the present very basic code to suit their
requirements.

The present code is applicable to homogeneous and
isotropic materials only, and self weight is not taken into
account. In this work, only constant boundary elements are
considered. Although constant boundary elements can
provide adequate accuracy upon fine discretization,
whenever greater accuracy is important, linear and quadratic
elements may help to get highly accurate results quickly.
Since the emphasis in this work is on readability, the code is
not optimized for efficiency. Numerical integration here
always uses only sixteen function evaluations per element,
which may be insufficient sometimes. Also, singularity of
the fundamental solutions is not addressed in the present
work and hence, while evaluating the integrals, whenever
integrand becomes singular, accuracy of the evaluation of the
value of the integrals may not be good enough, especially
since the present work always uses only sixteen function
evaluations per element; this may make the final results less
accurate, and even inaccurate sometimes. These are the
limitations of the present work.

As future work, singularity of the fundamental solutions
has to be properly addressed. Also, there should be a
provision in the code to use more number of function
evaluations per element, while evaluating the integrals. The
code may be improved for better performance, and the code
may be parallelized for multiple CPUs/GPUs. The code may
also be extended to cover three dimensional nonlinear
elasticity. Also, body forces and dynamics may be taken into
account. In addition to constant elements, linear and
quadratic elements may also be included. The code can
further be extended to cover inhomogeneous and anisotropic
materials also.

DISCLAIMER

Codes are provided without any guarantee and without
any warranty. Author is not responsible for any loss or
damage that may arise because of the use of the codes that
are made available with this paper.

ACKNOWLEDGMENT

Author is grateful to the Robotics Lab, Department of
Mechanical Engineering & Centre for Product Design and
Manufacturing, Indian Institute of Science, Bangalore,
INDIA, for providing the necessary infrastructure to carry
out this work.

REFERENCES

[1] Watson J. O., “Boundary Elements from 1960 to the Present Day,”
Electronic Journal of Boundary Elements, Vol. 1, No. 1, pp. 34-46,
2003.

[2] http://peili.hut.fi/BEM/

[3] http://www.boundary-element-method.com/

[4] Ang W.T., A Beginner's Course in Boundary Element Methods,
Universal Publishers, Boca Raton, USA, 2007.

[5] http://www.ntu.edu.sg/home/mwtang/bem2011.html

[6] http://www.mathworks.com/matlabcentral/fileexchange/16074-bem-
code-for-2d-pulsating-cylinder

[7] http://urbana.mie.uc.edu/yliu/Software/

[8] http://www.ifb.tugraz.at/BEM

[9] Beer G., Smith I. and Duenser C., The Boundary Element Method
with Programming, SpringerWienNewYork, 2008.

[10] Ang K.C., “Introducing the Boundary Element Method with
MATLAB,” International Journal of Mathematical Education in
Science and Technology, Vol. 39, No. 4, pp. 505-519, 2008.

[11] Kirkup S. and Yazdani J., “A Gentle Introduction to the Boundary
Element Method in Matlab/Freemat,” http://www.boundary-element-
method.com/AR0814BEM.pdf

.

