An Efficient Distributed Group Key Management Algorithm

S. Rahul
Dept. of Computer Sc. & Automation
Indian Institute of Science
Bangalore - 560012
India
email: srahul@csa.iisc.ernet.in

Abstract

A key agreement protocol is an important part of a
secure group communication system(SGCS) which pro-
vides secure message passing services to its members.
Among the various distributed key agreement protocols
proposed in the literature, the tree-based group Diffie-
Hellman(TGDH) protocol is the most efficient in terms
of the number of keys that need to be maintained at each
member and distribution of DH exponentiation opera-
tions among group members. In TGDH, on a group
change, the group members need to perform between
one and O(log, n) exponentiation operations ! serially.
Also, the messages that are passed during group key
agreement must be authenticated using digital signa-
tures. In this paper, we propose a new key agreement
protocol which minimizes the number of exponentiation
operations at each member. The member join oper-
ation requires only three members to perform one or
two exponentiation operations each while the member
leave operation requires only two or five group mem-
bers to perform one or two exponentiation operations
each. This is achieved at the cost of O(log, n) causal
messages per member leave operation.

1 Introduction

Establishment of a common group key for encrypt-
ing group communication traffic is one of the most im-
portant functions of a SGCS. Key establishment proto-
cols can be classified into two categories - key distribu-
tion protocols and key agreement protocols. Though
centralized key distribution protocols[1, 2, 3, 4, 5, 6,
7, 8] can establish new group keys on change of group
membership very efficiently and with minimum delay,
distributed key agreement protocols are a better choice

LIf the tree is balanced

R. C. Hansdah
Dept. of Computer Sc. & Automation
Indian Institute of Science
Bangalore - 560012
India
email: hansdah@csa.iisc.ernet.in

for SGCSs because of the inherent fault tolerant prop-
erties of these distributed algorithms.

Many distributed group key agreement protocols
have been proposed in literature [9, 10, 11, 12, 13].
Most of these protocols make use of some extension of
the two-party DH key agreement protocol to a group.
The protocols GDH1, GDH2 and GDH3 [10] are di-
rect extensions of the DH protocol to a group and in
the following, they are referred to as GDH* protocols.
These protocols are not very efficient for the following
reasons.

e Average number of exponentiation operations per-
formed by members during initial establishment of
group key is O(n).

o There is a large delay incurred during initial estab-
lishment of group key, since exponentiation oper-
ations at each member are pesformed only after it
receives the result of an exponentiation from its
previous member.

o The group leader will have to do O(n) exponen-
tiation operations on every membership change
event. This causes a large delay in the formation
of the new group key.

The TGDH protocol[9] solves many of the problems
associated with the GDH* protocols. Each member
participating in the secure group communication(SGC)
maintains a binary key tree. The members occupy the
leaf nodes. Every internal node nd of the binary tree
represents a key shared by all members which are leaf
nodes of the binary subtree rooted at nd and is com-
puted by a single DH key agreement protocol between
two groups of members occupying the leaf nodes of the
two subtrees rooted at the two child nodes of nd. This
protocol is more efficient than the GDH* protocols be-
cause of the following reasons.

e In the TGDH protocol, during initial establish-
ment of group key, every member performs only

TEEE ':a

COMPUTER

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
SOCIETY

1521-9097/04 $ 20.00 IEEE

O(log, n) DH exponentiation operations.

e In the TGDH protocol, whenever the group mem-
bership changes, every member performs at most
O(log, n) DH exponentiation operations.

Though the TGDH protocol is very efficient, it loads
the members of the SGCS because of the 2D 2 serial ex-
ponentiation operations per membership change. This
causes a lot of delay in resuming normal group com-
munication. In this paper, we explore the possibility
of further reducing the number of DH exponentiations
required by a key agreement protocol. We present a
distributed key management algorithm which reaches
key agreement in O(log, n) rounds. The member-join
operation requires at most four concurrent DH expo-
nentiation operations. The member-leave operation re-
quires at most six concurrent DH exponentiation op-
erations and may require upto O(log, n) messages to
be passed. Though there is an increase in the message
complexity for handling member-leave events, because
of reduction in the number of DH exponentiations, the
increase in delay is small.

The rest of the paper is organized as follows. Section
2 contains an informal description of the algorithm.
Section 3 contains the formal description of the algo-
rithm along with correctness proofs and we conclude
the paper in section 4.

2 Informal description of the algorithm

The following notations have been used to describe
the algorithm.

n The number of members in the
group
M;(1 <i<n) | The i** member of the group.
T The key tree
root(T] Root node of T
{m}x Encryption of message m with key
K
{c}x—1 Decryption of cipher text ¢ using key
K
P The DH modulus. Both p and P;—I
are prime.
g The DH generator of order p — 1
modulo p
a; Member M;’s long term private se-
cret
g%t mod p Member M;’s public key

The heart of the algorithm involves maintaining a bal-
anced binary key tree T' at all members with the leaf

2D is the depth at which a new member is added to the tree
or an old member is removed from the tree

nodes representing the group members and each inter-
nal node associated with a key shared between all those
members which are at the leaves of the binary subtree
rooted at the node having the key. Each internal node
of the binary tree has exactly two children and is bal-
anced in the sense that the difference in depths of any
two leaf nodes is at most one, which is a much stronger
requirement for balancing. The tree is securely built
using a novel idea of a secure chain of leaf nodes which
is established using DH key agreement between adja-
cent members in the chain. The performance of the
group key management algorithm is ensured by using
efficient algorithms for key management and keeping
the tree balanced in the above sense.

Every node nd of T is associated with the following
variables.

left (right) | The left (right) child of nd (nil if nd is

a leaf).
par The parent node of nd.
key The key associated with nd. It is nil if

key is unknown or if nd is a leaf node.
The ID of the left (right) most leaf
node of the subtree rooted at nd if nd
is not a leaf node. Otherwise, it is the
ID of nd.

first (last)

A variable z associated with a node nd is referred to
by the notation z[nd].

2.1 Group key agreement

The algorithm proceeds in two phases. The mem-
bers are arranged in a logical line. In the rest of the
section, we will consider a group of nine members and
describe the algorithm with respect to this group.

Phase 1 : In the first phase, every member M; en-

gages in a DH key agreement protocol with every other
M;(li—j |=1). At the end of this phase, every pair
of adjacent members M;, M;,1(1 < i < n) will share
a secret key. The two keys that a member M; shares
with its two neighbours are known locally as leftkey
and rightkey.

Figure 1: Formation of the DH chain

Phase 2 : In the second phase, a balanced binary
tree is built in a distributed fashion with the result
that every node knows only the keys at nodes along the
path from itself to root[T]. In Figure 2, the darkened

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

Figure 2: The key tree

nodes are the ones whose keys are known to members
M; and M>. The dashed lines represent the secure
channels formed in stage 1.

The keys corresponding to the nodes of the tree are
generated from bottom of the tree to the top, i.e , the
key for a node nd is generated after generating the keys
for left[nd] and right[nd] (unless nd is a leaf node).
Consider the node nd in Figure 2. key[nd] is generated
after generating key(left[nd]] and key[right[nd]].

The member corresponding to the rightmost leaf
node of the subtree rooted at left[nd] selects a random
value for key[nd] and multicasts {key[nd]} ., e fina)) t©
the members corresponding to the leaf nodes of the sub-
tree rooted at left[nd]. It also sends {key[nd]},; nirey
to the member corresponding to the leftmost leaf node
of the subtree rooted at right{nd]. The leftmost leaf
node of right[nd] then decrypts it using its leftkey and
multicasts {key[nd]} ., ighs[na) t© the leaf nodes of the
subtree rooted at right[nd]. Now, all leaf nodes of the
subtree rooted at nd will know key[nd].

2.2 Key change on member join

When a new member joins the group, first all mem-
bers insert a node corresponding to the new member
in their locally maintained trees. Then the keys along
the path from the new member to the root node are
modified in two phases.

2.2.1 Inserting a new member into the tree

While inserting a new member into the tree, our
aim is to ensure that the resulting tree is as balanced as
possible. Starting from the root node, we descend down
the tree, at each node selecting the child node with
minimum number of leaf nodes as its descendants(or
the left node if the subtrees rooted at both child nodes
have the same number of leaves). When we come to

a leaf node, say L, we replace L by a new node, and
make L the right child of the new node and M({node
corresponding to new member) the left child of the new
node. Then, all members are reassigned IDs such that
the leaf nodes represent members My - - My, 1 from left
to right.

Figure 3: Breaking of DH chain on member join

The dark nodes in the tree shown in Figure 3 repre-
sent the nodes whose keys have to be changed to main-
tain backward secrecy. The establishment of these keys
proceeds in two phases.

Phase 1 : If the addition of the new member M;(ID
1 is assigned to the new member after inserting it into
the tree) to the tree causes the chain of leaf nodes to
break, the chain is completed using two DH key ex-
changes. If the chain is not broken (member is added
at the beginning or end of the chain), then the chain is
extended to include the new member by using one DH
key exchange.

In Figure 3, DH keys have to be generated between
members My and Mg, and between members Mg and
M.

Phase 2 In this phase, the keys of nodes along
the path from the leaf node corresponding to the new
member to the root are changed as follows.

Let IV be the set of nodes such that the subtree
rooted at each node nd € N contains the new member
M; as one of its leaf nodes. Every member M;(j #
i) belonging to the subtree rooted at k € N replaces
key[nd] with its hash3. Since the right neighbour of the
new member now has all new keys for nodes along the
path from the node corresponding to the new member
to the root, it can send these keys along with the logical
tree to the new member securely.

3 A strong one-way function like MD5 can be used

TEEE ':a

COMPUTER

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
SOCIETY

1521-9097/04 $ 20.00 IEEE

new member

Figure 4: Re-establishment of DH chain and the key
tree

2.3 Key change on member leave

When a member M leaves the group, first the node
corresponding to the member is deleted from all the lo-
cal trees maintained at other members of the group. If
the deletion causes the tree to become unbalanced, bal-
ance is restored by moving a suitable leaf node from an-
other part of the tree to occupy the position of the leaf
node of the leaving member. After this rebalancing,
the secure chain of leaf nodes is reestablished. Once
the secure chain is reestablished, the keys of the fol-
lowing nodes must be changed.

e Nodes from leaving member’s node to the root

e Nodes from the balancing member’s node to the
root(if a balancing is done)

The dark nodes in the tree shown in Figure 6 represent
the nodes whose keys have to be changed. The number
of such nodes is at most 2D — 1 (when tree balancing
is done after membership change) and at least D —
1(when tree remains balanced after the membership
change). The generation of these node keys is similar
to generation of node keys during group formation as
explained in section 2.1. Also, in the figure, it can be
seen that the DH chain is broken in three places. These
keys should be generated before the keys corresponding
to the internal nodes can be changed.

3 The algorithm

The following are some of the functions used in the
algorithm.

e A sequence of numbers ¢, - -- ,j can be divided into
two groups as follows

Figure 5: Deletion of a member from the key tree

Figure 6: Changing keys following member deletion

low(i, j) = (a,b),

wherea =1i,b=[i+(j —1i)/2],
high(i, j) = (a,b),

wherea = |i+ (j —1)/2]+1,b=j.

e The tuple (first[nd),last[nd]) associated with a
node nd is referred to by the notation id(nd)

In the following algorithm, we make use of a
balanced binary tree T. The binary tree T is
built independently by each member by calling
the function CONSTRUCTBT(1,n,T). The function
CONSTRUCT.BT(4, j, st) is defined below.

CONSTRUCT _BT(i,j,st)

if i = j then
left[st], right[st] + nil
key[st] + nil

else
left[st] « NEW.NODE()
right[st] « NEW_NODE()
par[left[st]], par[right[st]] + st
(x1,v1),id(left[st]) « low(i, j)
(x2,¥2),id(right[st]) «+ high(i, j)
CONSTRUCT BT (x4, ¥1, left[st])

TEEE ':a

COMPUTER

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
SOCIETY

1521-9097/04 $ 20.00 IEEE

CONSTRUCT BT(x2, y2, right[st])
end if

3.1 Group key agreement

Let M;(1 < i < n) be the i** member in the group.
The aim of the algorithm is to build a balanced binary
tree T' with the members occupying the leaf nodes, ev-
ery pair of adjacent members sharing a secret key and
every internal node node, ; representing a key shared
by members M;(a < i < b). There are three kinds of
external events at each member M;.

1. SEND; j(msg) : Sending of a message msg from M;
to Mj.

2. MCAST; (a,5)(msg) : Sending of a message msg from
M; to all M]' (a S] < b)

3. RECV; i(msg) :
from M;.

Receipt of a message msg at M;

The algorithm proceeds in 2 phases. In the first
phase DH keys are established between pairs of mem-
bers M;, M;;; and in the second phase, keys corre-
sponding to all of the tree’s internal nodes are gener-
ated in a distributed fashion.

Phase 1 :

o M, — M;11(1<i<n):g* modp

o M; — M, 1(1<i<n):g% modp

e M;(1<1i<n):rightkey + g*“+' mod p
o M;(1<i<n):leftkey + g*-1% mod p

Phase 2 : Every member M; executes the following
algorithm.
x < par[M;]
while x # nil do {z is not the root node}
1 + left[x]
r « right(x]
if i = last[l] then {right most leaf node of
I}
key[x] + RAND()
MCASTi,(first[l],last[l]—1)({key[x]}key[l])
SEND; ; +1({key[x]}rightey)
else if first[l] < i < last[l] then
RECVlast[l],i({keY[x]}key[l])
keY[x] « {{keY[x]}key[l]}key[I]—x
else if i = first|r] then
RECV)age[1),:({key[x] }1eftrey)
key[x] + {{keY[x]}1ef'=ke¥}1eftkey—1

MCASTi,(first[r]+1,1ast[r])({keY[x]}key[r])
else if firstr] < i < last(r]| then

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)

1521-9097/04 $ 20.00 IEEE

RECVfirst[r],i({key[x]}key[r])
key[x] < {{keY[x]}keY[r]}key[r]_’
end if
x + par(x]
end while

The above algorithm requires a total of O(n) mes-
sages to be passed and requires O(log, n) rounds®. The
keys corresponding to the internal nodes are generated
from bottom to top. The key corresponding to the root
node is generated at the end of the above algorithm.
This is the secret group key which can be used to en-
crypt group communication traffic.

3.2 Group key change

The group key management(GKM) protocol has to
change the group key whenever the group membership
changes, and it is initiated on the occurrence of any
one of the following two events.

e When a new member wants to join the group

e When an existing member has to be removed from
the group

The algorithms for managing these events are explained
next.

3.2.1 Member join

The aim of this algorithm is to include the node
corresponding to the new member (say M) in the tree
as a leaf node. M is added to T by using ADD(M,T).
The function ADD is defined below. The function
ADD makes use of a function SHIFT RIGHT(nd) which
increments the value of first{nd’] and last[nd’] for
all nodes nd’ in the subtree rooted at nd.

ADD(M,st)
st_size « last[st] — first(st]+ 1
if st_size = 1 then {Leaf node}
new + NEW_NODE()
if st = left[par[st]] then
left[par[st]] + new
else
right[par[st]] ¢« new
end if
par[new] «+ par[st]
leftnew] < M
right[new] + st
first[M], last[M], firstnew] + first[st]
first[st],last[st], last|new] + first[st]+ 1

4 An iteration of the while loop is a round

TEEE ':a

COMPUTER
SOCIETY

par[M], par[st] + new
else {Non-leaf node}
last(st] + last[st]+ 1
1 « left[st]
1.size « last[l] — first[l]+1
r + right[st]
r_size ¢« last[r] — first[r] +1
if (r_size < 1_size) then
ADD(M, 1)
else
ADD(M, 1)
SHIFT RIGHT(r)
end if
end if

Lemma 1. The ezecution of the member join algo-
rithm in a balanced binary tree which has all leaf nodes
at depth of D or D —1 results in a balanced binary tree.

Proof. Assume that this is false, i.e , the leaf node cor-
responding to the joining member is added at a node
n which is at a depth D resulting in a leaf node at a
depth D + 1 while there exists another member whose
node nd is at a depth D — 1. Consider the lowest node
p such that both the node n (at a depth D) and a node
n' (at a depth D —1) belong to the subtree rooted at p.
The fact that during some iteration of the algorithm,
the child node of p to whose subtree the new member
was added was selected for adding the member, implies
that the subtree had fewer leaf nodes than the subtree
rooted at the other child node of p. Since we have cho-
sen p to be the lowest node such that both the node n
and the node n' (at a depth D — 1) belong to the sub-
tree rooted at p, all leaves of the subtree rooted at the
child node of p to which n belongs are at height h. This
means that a subtree of height h which has all leaves
at depth h can have fewer members than a subtree of
height A which has some leaves at depth k — 1 which is
a contradiction. |

Before M is added to the group, the old members
of the group(n in number) are in a logical chain such
that every adjacent pair of members have established
a common key using DH key agreement protocol.

After M has been added to the tree at all members,
the following two steps need to be taken.

Round 1 : The new member has to engage in DH key
agreement protocol with its neighbours(at most
two).

Round 2 : Each key from M to the root of the tree
is replaced with its hash to preserve backward se-
crecy. The sibling of M sends its key tree to M
encrypted with its le ftkey.

When the above algorithm is being executed, the
group multicast services have to be suspended. The
delay before these activities can be resumed depends on
the delay in executing the above algorithm. There are
three types of delays incurred by the above algorithm.

1. Let the time taken for one large integer exponen-
tiation operation be d. Let the maximum time
required to reliably send a message be I. In the
first round, two such exponentiation operations
and one SEND() operation are performed serially
resulting in a maximum delay of 2d + [.

2. Since the second round involves a single SEND()
operation, the maximum delay in this round is I.

3. Other local calculations at each member introduce
a delay which is negligible compared to the above
two delays.

So, a member join operation causes a maximum delay
of 2d + 2l and at most five messages are passed. But
in the TGDH protocol, the member join operation re-
quires one DH key agreement round and in the next
round one member performs 2D serial exponentiations
and broadcasts the modified key tree(with new values
of blinded keys for the nodes along the path from the
joining member’s node to the root). So for the TGDH
protocol, the delay is d(2D + 3) + 2! and the messages
passed include two unicasts and one broadcast.

3.2.2 Member leave

The aim of the GKM algorithm handling member
leave events is to ensure that the tree remains balanced
after the leave operation(difference in depth of any two
leaves is at most one) and all the keys that the leaving
member knew have to be changed to ensure forward
secrecy. _

The DELETE_NODE(M) function is used to delete a leaf
node M from the tree T'. The removal of a leaf node
M might make the tree unbalanced. The tree is rebal-
anced as explained below. The DELETE NODE(M) func-
tion makes use of the following functions.

DELETE(M) : This function deletes the node M from
the tree T'. After deletion, the first and last val-
ues of the nodes of T are re-adjusted.

INVALIDATE KEYS(M) : This function sets the value of
key[nd) to nil for all nodes nd along the path from
M to the root of the tree.

GET_BALANCER(M) : This function returns a node nd in
the tree such that depth(nd) = depth{M) + 2.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
1521-9097/04 $ 20.00 IEEE

DELETE_NODE(M)
(sib,LN) « DELETE(M)
INVALIDATE KEYS(sib)
if (height(T) = depth(sib) + 2)
A(first[sib] = last[sib]) then {Tree has become
unbalanced}
balancer + GET_BALANCER(sib)
INVALIDATE KEYS(balancer)
DELETE(balancer)
p < NEW_NODE()
if LN = TRUE then {sib was left node before dele-
tion of M}
left[p] + sib
right[p] + balancer
else {sib was right node before deletion of M}
left[p] «+ balancer
right[p] + sib
end if
par(p| « par(sib]
if sib = left[par[sib]| then
left[par(sib]] « p
else
right[par[sib]] « p
end if
par[sib], par[balancer] + p

{Renumbering the members}
id « first[sib]
first(p], first[left[p]], last[leftp]] ¢ id
last[p], first[right[p]], last[right[p]] + id + 1
x ¢ par|p]
while x # nil do

last(x] + last(x] + 1

if x = left[par(x]] then

SHIFT RIGHT(right[par(x]])

end if

X + par[x]
end while

end if

Lemma 2. The ezecution of the member leave algo-
rithm in a balanced binary tree which has all nodes at
depth of D or D — 1, where D is the depth of the tree,
results in a balanced binary tree.

Proof. If the deletion of a leaf node causes an imbal-
ance, it means that the sibling of the removed member’s
node is at a depth D — 2 while another leaf node is at
a height D. When this happens, a leaf node at height
D is moved to take the place of the removed member’s
node. This ensures that the tree remains balanced. O

After M is deleted from the tree, the DH chain will
be broken. The DH chain is completed, and then all

the keys that were known to M and the member whose
sibling was moved to another portion of the tree, have
to be changed. These are changed by the following
algorithm at each member M;.

KEY_ CHANGE_ON_LEAVE()
x + par[M;]
while x # nil do
1 « leftfx]
r + rightx]
if key[x] = nil then
if i = last[l] then
key[x] « RAND()
MCASTi,(first[l],last[l]—1)({key{x]}key[1])
SEND; i +1({key[x] } rigntiey)
else if first[l] < i < last[l] then
RECVlast[l],i({key[x]}key[l])
key[x] {{key[x]}keY[l]}key[l]_1
else if i = first(r] then
RECV1a4e(1),: ({ke¥([X] }rettkey)
keY[X] A {{keyl:x]}l"ftl“ey}le:ftkey_1
MCASTi,(first[r]+1,1ast[r])({keY[x]}key[r])
else if first(r] < i < last|r]| then
RECVfirst[r],i({keY[x]}key[r])
key[x] « {{key[x]}key[r]}key[r]_1
end if
end if
X + par[x]

end while

The agreement algorithm for the key of any node
requires two MCAST() operations and a SEND() op-
eration. The first MCAST() operation and the SEND()
operation can be executed concurrently. The SEND()
operations of the different rounds can be executed con-
currently in the beginning itself since the keys required
to encrypt these messages are the DH keys which are
already available. So even though the SEND() opera-
tion causally precedes the second MCASTY() operation,
it does not cause additional delay. Let the maximum
time required to reliably send a message be [. As ex-
plained before, the authenticated DH key agreement in
the first round requires at least 2d + [time to com-
plete. Thus the member-leave operation of the GKM
algorithm is completed within a time 2d + ID.

In the TGDH protocol, the member which broad-
casts the changed blinded keys has to perform 2(D —1)
serial exponentiations and all other members have to
perform at least one and at most D — 1 exponentia-
tions. So the time taken by the TGDH protocol to
handle member-leave events is 2d(D — 1) +[. Thus,
TGDH is faster than our algorithm only if the time re-
quired for sending a message is greater than the time

TEEE ':a

COMPUTER

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
SOCIETY

1521-9097/04 $ 20.00 IEEE

required for performing two exponentiations.

Our algorithm requires O(logsn) messages to be sent
for each member leave event. This is because all keys
of the key tree from the leaving member to the root
have to be changed and each key change requires two
multicasts. If the underlying network does not sup-
port multicast, then multiple unicasts will have to be
used for key agreement. In such a case, our algorithm
would require at most five messages to be sent after a
member join event and about 2n messages to be sent
after a member leave event while the TGDH protocol
would require about n messages to be sent after any
membership change event.

4 Conclusion

In this paper we have presented a key management
algorithm for secure group communication. The al-
gorithm is fully distributed and secure, and it makes
minimum use of Diffie-Hellman key agreement algo-
rithm unlike other algorithms proposed in the literature
which solely rely on the Diffie-Hellman protocol. Our
protocol requires a fixed number (four for member join,
and two or six for member leave) of concurrent expo-
nentiation operations per membership change. In our
algorithm, the group key change protocol messages are
always authenticated because every member receives
only encrypted messages from another member with
whom it shares a secret key. So, the overhead of dig-
itally signing protocol messages is absent. Our algo-
rithm requires O(logan) messages to be sent for each
member leave event. But since the computation over-
head on group members per membership change is min-
imum, the algorithm is suitable for groups in which the
members do not have the resources to frequently per-
form a number of Diffie-Hellman exponentiation oper-
ations.

References

{1] Marcel Waldvogel, Germano Caronni, Dan Sun,
Nathalie Weiler, and Bernhard Plattner, “The ver-
sakey framework: Versatile group key management,”
IEEE Journal on Selected Areas in Communications,
vol. 17, no. 9, pp. 1614-1631, September 1999.

[2] David A. McGrew and Alan T. Sherman, “Key estab-
lishment in large dynamic groups using one-way func-
tion trees,” IEEE transactions on software engineer-
ing, vol. 29, no. 5, pp. 444-458, May 2003.

[3] P. McDaniel, P. Honeyman, and A. Prakash,
“Lightweight secure group communication,” Tech.
Rep., University of Michigan, April 1998.

[4] A. Rowley and J. Dollimore, “Secure group communi-
cation for groupware applications,” in European Re-
search Seminar on Advances in Distributed Systems
(ERSADS), Zinal, Switzerland, 1997.

[5] Patrick McDaniel, “Secure high performance group
communication,” September 1997,

[6] Ohad Rodeh, Ken Birman, and Danny Dolev, “A
study of group rekeying,” Tech. Rep. TR2000-1791,
Cornell University Computer Science, 2000.

[7] Chung Kei Wong, Mohamed G. Gouda, and Si-
mon S. Lam, “Secure group communications using key
graphs,” in Proceedings of the ACM SIGCOMM ’98
conference on Applications, technologies, architectures,

and protocols for computer communication., Septem-
ber 1998, pp. 68-79.

[8] Danny Dolev Ohad Rodeh, Kenneth P. Birman, “Us-
ing avl trees for fault-tolerant group key management,”
International Journal of Information Security, vol. 1,
no. 2, pp. 84-99, February 2002.

[9] Yongdae Kim, Adrian Perrig, and Gene Tsudik, “Tree-
based group key agreement,” Tech. Rep. 2002/009, De-
partment of Information and Computer Science, Uni-
versity of California at Irvine, CA, USA, 2002.

[10] Michael Steiner, Gene Tsudik, and Michael Waid-
ner, “Diffie-hellman key distribution extended to group
communication,” in Proceedings of the ACM Con-
ference on Computer and Communications Security,
1996, pp. 31-37.

[11] Mike Burmester and Yvo Desmedt, “A secure and
efficient conference key distribution system,” in Ad-
vances in Cryptology - EUROCRYPT ’94, May 1994,
pp- 275-286.

[12] Emmanuel Bresson, Olivier Chevassut, and David
Pointcheval, “Provably authenticated group Diffie-
Hellman key exchange — the dynamic case,” Lecture
Notes in Computer Science, vol. 2248, 2001.

[13] Yongdae Kim, Adrian Perrig, and Gene Tsudik,
“Communication-efficient group key agreement,” in
Proceedings of IFIP SEC 2001, June 2001.

TEEE ':a

COMPUTER

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04)
SOCIETY

1521-9097/04 $ 20.00 IEEE

	footer1:

