Panel Session
Has Exploitable ILP Reached a Point of Diminishing Returns?

Moderator:

R. Govindarajan, Indian Institute of Science, Bangalore, India.

Panelists:

Anant Agarwal, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

Manoj Franklin, Clemson University, Clemson, SC, U.S.A.

K. Gopinath, Indian Institute of Science, Bangalore, India.

Vinod Kathail, Hewlett Packard Labs., Palo Alto, CA, U.S.A.

Krishna Palem, New York University, New York, NY, U.S.A.

Vivek Sarkar, IBM Academy of Technology, IBM Software Solutions Division, CA, U.S.A.
Mateo Valero, Universidad Politecnica de Catalunya, Barcelona, Spain.

Modern processor architectures are becoming increas-
ingly sophisticated, with advanced architectural tech-
niques for exploiting greater instruction-level paral-
lelism {ILP). Most of today’s superscalar processors
support 4-way instruction issue supported by multi-
ple execution units. Aggressive compilation techniques
have been employed to expose more ILP in programs.
Yet the return - the exploited instruction-level paral-
lelism — is low, questioning the investments.

Why is exploitable ILP still low? Is there any hope it
will improve? Where should we look?

The panelists’ position statements are given below:

Anant Agarwal

Rapid advances in technology force a re-evaluation
of current architectural approaches. Current architec-
tures, such as hardware scheduled superscalars, are
hitting performance and complexity limits and can-
not be scaled indefinitely. I believe a much simpler
software-supported architecture will replace existing
methods. Such an architectural approach, called Raw,
uses a simple, replicated, wire-efficient architecture
that scales with increasing VLSI gate densities, and
exposes completely its hardware details to the software
system. Raw architectures allow the software system
to discover and schedule instruction-level parallelism
and stands to exploit current trends towards stream-
based multimedia computations.

Manoj Franklin

I do not believe that exploitable ILP has reached
the point of diminishing returns. The number of tran-
sistors integrated on a single chip has been steadily
increasing, and computer architects have been find-

ing ways to make use of the additional transistor bud-
get for exploiting more ILP. The major hurdles that
need to be overcome, to exploit further ILP, are: fre-
quent control flow changes, complexity of scheduling
hardware, and memory latencies. The hurdles due to
control dependences are being overcome by inventing
better prediction schemes. The scheduling hardware
is being simplified by inventing good decentralization
schemes. Cache memories, which have been used to
reduce memory latencies, appear to be running out of
steam. To handle the wide disparities between pro-
cessor and memory speeds, computer architects are
investigating schemes to integrate the two. Compiler
capabilities have also been steadily improving.

Vinod Kathail

There have been significant advances in ILP archi-
tectures and compilers, but we are nowhere close to
reaching the point of diminishing returns. A substan-
tial amount of work remains to be done to fully realize
the potential of the ILP technology.

ILP compilers need accurate and unambiguous in-
formation about program in areas such as memory de-
pendences and branching behavior. Language support
and more accurate analysis techniques will certainly
help. In addition, there is a shift towards “statis-
tical compilation” in which program statistics, such
as memory dependence profile and branch frequencies,
are used to guide the compilation process. Statistical
compilation relies upon and makes use of novel archi-
tectural features such as predication, control specu-
lation, data speculation and programmatic control of
caches.

The performance of a program on ILP processor
is often limited by control and data dependences.
Such performance limits can be avoided using pro-

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on High-Performance Computing (HICS’97)
1094-7256/97 $17.00 © 1997 |IEEE

gram transformations that reduce the height of critical
paths. As the parallelism provided by the processor
increases, critical path reduction techniques become
increasingly important.

An ILP compiler’s task is inherently complex. As a
result, its speed and robustness are serious issues that
needs to be addressed. Compiler complexity escalates
with new hardware features and more complex algo-
rithms for improving performance. Research is needed
to improve the algorithms as well as the compiler archi-
tecture into which they are integrated. Region-based
compiling provides an architectural framework to ad-
dress some of these issues.

Novel architectural features, statistical compiling,
critical path reduction techniques and the region-based
framework have the potential to deliver practical sys-
tems that achieve high levels of ILP.

K. Gopinath

Many studies (based on data-flow architectures or
based on trace-generated instruction streams) have
shown that there exists considerable potential for ILP
parallelism. Current architectures, however, are not in
a position to effectively exploit ILP present due to lack
of support for speculation, predicated execution, mem-
ory disambiguation and software pipelining; inability
to be resilient to long latencies due to cache misses
(as instruction scheduling is handled by a compiler),
etc. In addition, compiler technology has not been suf-
ficiently developed for predicated architectures, con-
trol and data critical path reduction, predicated data
flow analysis (liveness analysis, alias analysis, - - -), ete.
It may be premature to say that exploitable ILP has
reached the point of diminishing returns until we ex-
amine the combined potential of such newer archi-
tectural designs and compiler technology as they co-
evolve synergistically.

Krishna Palem

The evolution of RISC technology has enabled ac-
cess to substantial computing power at relatively low
cost by exploiting instruction level parallelism (ILP).
The very attractive cost-performance ratio and scal-
able nature of ILP has the potential for enabling
wide ranging applications in the embedded domain.
Typical applications include high-performance video
servers for multimedia applications, and controllers in
hand-held video games. However, in order to harness
the promised high performance of processors via ILP,
several key research questions have to be addressed.
These challenges arise from the fact that quite often,
embedded applications have “timing-constraints” that
have to hold between parts of the application program.
Consequently, response-time and related metrics tend
to dominate traditional metrics of performance such as
throughput or utilization. Thus, the source programs
have to be scheduled by the compiler, preserving the

timing constraints between parts of the program; Also,
the timing behavior of the programs as they execute
on the targets ought to be predictable; compile-time
management of the memory hierarchy, so that cache
access latencies are predictable is again important.

We posit that attractive that the opportunity might
be, embedded applications raise serious and exciting
challenges that need to be addressed, before ILP tech-
nology can be used effectively. I will outline some of
the emerging research questions to be tackled.

Vivek Sarkar

I believe exploitation of instruction-level parallelism
started on the wrong foot and was at a point of di-
minished returns right from the beginning. Though
modern optimizing compilers deliver a reliable perfor-
mance improvement due to instruction scheduling for a
wide range of programs, the magnitude of the improve-
ment due to instruction scheduling is disappointingly
modest (in the range of 20%). This is in contrast to
parallel speedups of 2X or more obtained by exploit-
ing medium-grain multithreaded parallelism on SMPs.
I believe one reason for this discrepancy is that ex-
ploitation of instruction-level parallelism was initially
conceived at the basic block level. Most global in-
struction scheduling algorithms such as trace schedul-
ing and superblock scheduling strive to use a basic-
block scheduling framework in a wider scope and hence
retain many of its limitations (e.g., preserving the or-
der of branches and only allowing instructions to be
moved “upwards”). There is an opportunity for better
exploitation of instruction-level parallelism by taking
a fresh look at global instruction scheduling in a way
that encompasses the full range of permissible code
motion transformations that can be performed across
all regions of a program.

Mateo Valero

Current superescalars processors, that are able to
issue four instructions for processor cycle, obtain a
speed of not much more than one instruction per cycle
in average. On the other hand, many papers indicate
that programs contain much more high levels of par-
allelism and this is the reason why the ILP paradigm
is important.

Collaboration between compilers and architectures
is necessary in order to exploit the available ILP of pro-
grams. This seems to be harder for integer codes than
for floating point codes. For integer codes, architec-
tures such as Multiscalar or Trace Driven Multiscalar
try to do the best. In the later case, the compiler can
extract enough parallelism than can be exploited in
multiprocessor, multithreaded or VLIW architectures.
For vectorizable codes, the addition of a vector accel-
erator hardware to current superescalar processors is a
very cost/eflicient mechanism that permit to get more
than one order of magnitude the speed of the current
superescalar processors.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the Fourth International Conference on High-Performance Computing (HICS’97)
1094-7256/97 $17.00 © 1997 |IEEE

