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Abstract-Many instructions in a dynamically scheduled 
superscalar processor spend a significant time in the Instruction 
Window (IW) waiting to be selected even though their depen- 
dencies are satisfied. These “delays” are due to resource con- 
straints and the oldest first selection policy used in many pro- 
cessors that gives a higher priority to older ready instructions 
than younger ones. In this paper, we study the “delay” and 
criticality characteristics of instructions based on their readi- 
ness during dispatch. We observe that most ready-on-dispatch 
(ROD) instructions are non critical and show that 57% of these 
instructions spend more than 1 cycle in the IW. We analyze the 
impact of (i) steering ROD instructions to slow low power func- 
tional units and (ii) early issue of ROD instructions, on power 
and performance. We find that the “early issue and slow exe- 
cution” of ROD instructions reduces power consumption by 4- 
12% while degrading performance by about 5%. On the other 
hand, “early issue normal execution” of ROD instructions re- 
sults in 3.5% power savings with less than 1% performance 
loss. Further, we find that the above policies reduce the energy 
expended in executing wrong path instructions by about 2%. 

I .  INTRODUCTION 

The design considerations for high performance embedded 
processors and System on a Chip (SoC) solutions is not only 
governed by real time performance requirements but also by 
power dissipation (since power translates directly to heat) and 
cost considerations. In case of embedded microprocessors, en- 
ergy consumption is important since battery life is the main 
design concern. An interesting trend that is emerging is the 
increased dependence on existing programmable processors 
and platform architectures to run application specific code [l]. 
This reduces the design time (time-to-market), but compro- 
mises on factors such as power which is typically larger in 
more general programmable processors. Also, due to the ever 
changing standards/protocols, emerging applications such as 
media and packet processing require programmable architec- 
tures comprising of high performance embedded micropro- 
cessors that exploit parallelism at instruction level (e.g. out- 
of-order superscalar, VLIWs and vector processors), thread 
level (e.g. multithreaded processors) and task level (homoge- 
neousheterogeneous chip multiprocessors). The use of such 
programmable processors for domain specific embedded appli- 
cations opens up new possibilities for optimizing power and 
performance. For instance (as will be discussed later in this 
paper), depending on the nature of instructions, the selection 
policy may be tunedkustomized for a set of applications. 
Motivation: Instructions that are fetched are renamed to re- 
move false dependencies and are allocated entries in the In- 
struction Window (IW). The number of resources (Functional 
Units (FU), memory ports etc) and the sizes of various queues 
(fetch queue, IW etc), in a typical processor is fixed based 

on cost, performance, power and Instruction Level Parallelism 
(ILP). The motivation for this work arises from the fact that 
processors with “limited” resources, while being power effi- 
cient, can result in instructions spending significant time in 
the IW waiting to be issued even afer their dependencies 
are resolved. In this paper, we quantify this “delay” for dif- 
ferent media and networking applications and examine prior- 
ity schemes for reducing this delay. For the purpose of this 
study, we divide instructions into two classes (i) Ready On 
DispatcNDecode (ROD) - instructions whose data dependen- 
cies are satisfied when they are dispatched and (ii) Not Ready 
On DispatcNDecode (NROD) - instructions whose data depen- 
dencies are not satisfied when they are dispatched. Classifying 
instructions into ROD/NROD groups is easy to implement and 
is particularly suitable for power-aware [Z] embedded systems 
in which cost and complexity considerations tend to influence 
design. We show that most ROD instructions are non critical 
and that 40% of ROD instructions spend more than 3 cycles in 
the IW. To reduce power dissipation, we evaluate an early is- 
sue policy in which ROD instructions are given higher priority 
but are issued to slow low power FUs. In general, we observe 
that delaying the execution of ROD instructions is beneficial in 
obtaining energy savings (with minimal performance degrada- 
tion) compared to delaying other types of instructions. 

11. SIMULATION ENVIRONMENT 

We use Wattch [3], a performance and power analysis simula- 
tion tool that is built on top of SimpleScalar [4] and make nec- 
essary changes to the Out-Of-Order (000) simulator to carry 
out our study. Throughout this paper, we use the cc3 style of 
clock gating provided by Wattch, which scales power linearly 
with unit usage. The base processor configuration is a 4-way 
superscalar processor with a combined branch predictor having 
7 cycles misprediction penalty, 128(32) entry RUU(LSQ) (see 
[4]), 4 integer FUs, on-chip Ll instructioddata caches (8K, 
2way, 32 byte block size) with 1 cycle hit latency and a L2 
cache (256K, 4 way, 32 byte block size) of 12 cycle latency. 
These parameters roughly match those of a modem processor 
used in desktop as well as high performance embedded ap- 
plications (it has been shown in [5] that 000 issue does not 
lead to unpredictable execution time and is suitable for real 
time applications) such as in set-top boxes, routers etc. Super- 
scalar processors have been used in embedded media applica- 
tions (e.g. NEC’s V83OWAV [6]) as well as in network proces- 
sors (e.g. Ezchip’s TOPcore architecture - www.ezchip.com) 
since they achieve high performance by hiding latency effec- 
tively [7]. Architectures such as simultaneous multithreaded 
processors which are derived from superscalar processors are 
also common in the network processing domain. We chose 
consumer and telecom related benchmarks from MiBench [8] 
(adpcm encldec, jpeg encldec, mpeg2 encldec, mp3 encod- 
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ing) and packet processing benchmarks from CommBench [9] 
(frug, rtr; reed enddec, drc dh) for this study. We compile 
the benchmarks with - 0 3  optimization and collected statistics 
until at least 200M instructions were committed after initial- 
ization phases were skipped. Unless otherwise mentioned, all 
simulation results are normalized with respect to the above base 
processor configuration. 
When an instruction is issued for execution, its tag is broad- 
cast to all entries in the IW to wakeup dependent instructions. 
It has been observed that many of these broadcasts are redun- 
dant and consume significant energy [lo]. Folegnani et. al. 
[IO] propose a gating scheme and eliminate tag broadcasts to 
instructions that have one or more operands ready. In this paper 
we implement a limited version of the scheme proposed in [ 101 
and eliminate unnecessary tag broadcasts to ROD instructions 
(since both their operands are ready). This optimization does 
not degrade performance and results in 1.5% power savings. 
All the results discussed in this paper are with this optimiza- 
tion in place. 

111. ROD/NROD INSTRUCTIONS 

The classification of instructions based on their readiness 
when dispatched, rather than their opcode has several advan- 
tages - (i) This classification is dependent on the microarchi- 
tecture and is more representative of the dynamic state of the 
processor (e.g. availability of resources, cache misses etc., can 
alter the number of RODNROD instructions). In other words, 
microarchitectural features such as instruction selection pol- 
icy, branch prediction accuracy, IW size, number of FUs, issue 
width etc are easily "tracked" by this classification. (ii) It en- 
sures that the instruction mix is dependent on the application 
and the compiler optimization. For example, a higher com- 
piler optimization could do a better job in ensuring that depen- 
dent instructions are placed as far apart as possible in the code 
schedule. This results in a consuming (dependent) instruction 
becoming ROD as the producing instruction would have com- 
pleted execution. (iii) Identifying an instruction as being ready 
or not is a task that is routinely camed out by the processor 
and is deterministic in nature. This implies that no extra hard- 
ware is necessary to implement the above classification. (iv) It 
helps us analyze instruction criticality from the perspective of 
a whole class (i.e. RODNROD) of instructions enabling us to 
focus on one particular class for future optimizations. This is 
possible since the above classification closely reflects the mi- 
croarchitecture and dynamic behavior of instructions. 
Figure 1 shows the number of ROD and NROD dynamic in- 
structions for different benchmarks. Each bar in the figure 
consists of 3 portions indicated by different shades. The top 
most portion denoted by "All" represents instructions with all 
operands ready on decode i.e. ROD instructions. The remain- 
ing portions represent instructions with some and none of the 
operands ready on decode i.e. NROD instructions. The fig- 
ure also depicts the composition of performance limiting in- 
structions such as loads (Ld), branches (Br),  multiply/divide 
( A 4 4  and others (Ot). Others (Ot), represent instructions not 
belonging to any of the above classes and mostly consist of in- 
teger ALU instructions. It is observed that about 25% of all 
issued instructions belong to the ROD class while 75% are of 
the NROD type. Further, it is observed that most ROD instruc- 
tions belong to the ALU class of instructions. 

Ready instructions spend more than one cycle in the IW if 

Fig. 1. RODMROD instruction mix. For example, in cjpeg, 22.6% (20.2+2.4) of all 
instructions issued are ROD; 2.4% branch instructions are ROD; 37.6% (18.2+19.4) of 
instructions issued are NROD with none of their operands ready when dispatched. Only 
contributions 2 1% are shown 

they are not immediately selected for issue by the selection 
logic. There are two possible reasons for this. First, if the 
functional unit than can execute the instruction is busy and sec- 
ondly, if the instruction is not selected because there are other 
older ready instructions that are selected earlier and the issue 
bandwidth is exhausted. For instance, with the configuration 
mentioned in section 2, the processor is capable of issuing at its 
peak rate only 58% of the time while no instructions are issued 
for nearly 27% of the time. One to three instructions are issued 
per cycle for the remaining 15% of the time. The position of an 
instruction in the IW gives a rough estimate of whether it will 
be issued immediately or not since most instructions selected 
for issue are from the first few entries of the IW [lo]. 

Fig. 2. Top: Fraction of ROD instructions that spend (A) I cycle, (B) 2 cycles, ( C )  >=3 
cycles in 1W. Bottom: Fraction of NROD instructions issued in 1 cycle. For example, in 
cjpeg, 53.8% of ROD instructions spend > = 3  cycles in the IW. 13.6% of NROD instruc- 
tions spend more than I cycle in the IW afer they become ready to issue; 24.4% of NROD 
instructions (which happen to be loads) are issued immediately after they become ready. 

Figure 2 (Top) shows the fraction of ROD instructions that 
spend 1 cycle, 2 cycles, and 3 or more cycles in the IW uf- 
fer their dependencies are satisfied. Each bar in the top figure 
(ROD instructions) is further subdivided into three distinct por- 
tions (having different shades) denoted by A, B, and C (see 
extreme right of the figure). Portion C represents ROD instruc- 
tions that spend more than 3 cycles in the IW. Portion B depicts 
ROD instructions that spend 2 cycles in the IW while portion 
A represents ROD instructions that are immediately issued (in 
the next cycle) after dispatch. We find that for the base pro- 
cessor configuration nearly 60% of all ROD instructions spend 
more than 1 cycle in the IW while 40% spend more than 3 
cycles waiting to be issued (these values are even larger for a 
2-way superscalar processor). Fortunately, most ROD instruc- 
tions that spend greater than 3 cycles in the IW belong to the 
integer ALU (Ot) class (followed by branches) which normally 
complete execution in 1 cycle. In other words, the execution la- 
tency of these instructions is smaller than the latency incurred 
due to waiting for FUs. The bottom portion of figure 2 shows 
the number of NROD instructions issued immediately (in the 
next cycle) after they become ready. Most NROD instructions 
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(this is nearly 100% for the adpcm benchmark) are not delayed 
in the IW once their dependencies are satisfied. This is due 
to the oldest first selection policy which gives priority to these 
older instructions. A further breakup indicating the types of 
instructions issued in 1 cycle is also shown. The portion in- 
dicated by the white shade (denoted by “Rest” in the legend) 
represents NROD instructions that spend more than 1 cycle in 
the IW after they become ready. We see that only about 11% 
of NROD instructions belong to this category. 

Compiler optimizations such as pipeline scheduling and loop 
unrolling separate dependent instructions and introduce un- 
related instructions, thus minimizing pipeline stalls due to 
true data dependencies. Figure 3 shows the waiting time of 
ROD/NROD instructions with -01 compiler optimization. A 
comparison between this and figure 2 (which uses -03 opti- 
mization) reveals that with higher optimization, the time spent 
by ROD instructions in the IW increases in all benchmarks (ad- 
pcm enc/dec is an exception). This implies that as compiler 
optimizations improve, pipeline stalls due to IW overflows be- 
come more pronounced especially in microarchitectures with 
small IW’s. The fraction of NROD instructions that spend more 
than one cycle in the IW (denoted by “Rest” in the legend) in- 
creases for some benchmarks and decreases in others. 

em em- dec- 
. 

em dec 
Fig. 3. Top: Fraction of ROD instructions that spend (A) I :Tclef?B) 2 cycles (C) 
>=3 cycles in the IW. Bottom: Fraction of NROD instructions issued in I cycle with -01 
optimization 

Though several processor resources affect the time spent by 
instructions in the IW, we study only the impact of FUs in this 
paper. Figure 4 shows the waiting time of RODNROD instruc- 
tions with two and six integer FUs. The remaining processor 
parameters are the same as that of the base configuration de- 
scribed in section 2. A comparison between figure 2 (which 
uses four FUs) and figure 4 indicates that the waiting time of 
both ROD and NROD instructions in the IW increase as the 
number of resources are reduced. 
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Fig. 4. Impact of FUs on RODLNROD delays. (a) with 2 FUs (left) (b) with 6 F U s  (right); 
Top: ROD instructions that spend (A) I cycle, (B) 2 cycles, (C) >=3 cycles in the IW. 
Bottom: NROD instructions issued in I cycle. Only il few values are shown for clarity. 

We also evaluate the criticality of ROD and NROD instruc- 
tions (see table 1) using the critical path predictor of Fields et. 
a1 [ 1 I] and observe that on average 5% and 21 % of all instruc- 
tions are ROD and critical and NROD and critical respectively. 
These results confirm the fact that criticality is predominantly 
determined by data dependencies. 

TABLE I 
Criticality of ROD and NROD instructions. Col 2,3 - fraction of ROD(NR0D) 

instructions that are marked critical. Col 4.5 - fraction of all instructions dispatched that 
are ROD(NR0D) critical. For example, in cjpeg. 31.51% of ROD and 35.18% of NROD 
instructions are critical. This implies that 9.3% and 24.78% of all dispatched instructions 

are ROD and critical and NROD and critical respectively. 
Benchmark 1 %ROO 1 %NKOU [ %allKOU [ %all- 

IV. EXPLOITING DELAYED EXECUTION 

Now that we have analyzed the delay and criticality of ROD 
and NROD instructions, we examine how the above instruction 
classification is used for trading performance for power bene- 
fits. Previous work has focused on steering non-critical instruc- 
tions to slow FUs [ 121 and scheduling critical instructions with 
higher priority in a clustered architecture[ 111. This involves 
complicated mechanisms to detect critical path instructions. To 
avoid such complicated schemes, we sacrifice accuracy for sim- 
plicity and make use of the fact that most ROD instructions are 
non-critical and give them a higher priority to execute on slow 
low power FUs. These slow FUs consume low power by oper- 
ating at a constant reduced voltagelfrequency. Consequently, 
the operation and issue latencies of the slow FUs are larger 
(we assume these to be twice that of normal Fus in our ex- 
periments) than normal FUs. Further, we assume slow FUs of 
the integer ALU class since most ROD instructions are of this 
type i.e. only ALU instructions are executed slowly. Since the 
ratio of the number of ROD and NROD instructions is roughly 
1 to 3, we use 3 normal FUs (that operate at 2SV, 600MHz) 
and 1 slow FU (that operates at 1.75V, 300MHz). Though the 
above values are for a 0 . 3 5 ~  technology (this is the default pro- 
vided by Wattch) which is quite dated, it serves to illustrate the 
effectiveness of our scheme. The voltage of 1.75V for the slow 
FU is obtained from the first order approximation of the rela- 
tionship between circuit delay and supply voltage [13]. We do 
not use any dynamic scaling of voltage and frequency since in 
practice supply voltages cannot be varied on a continuous scale 
and each variation takes a certain finite time which can be as 
much as 150p sec [14]. 

We use a modified instruction selection policy and examine 
its effect in the presence of slow and normal FUs. The combi- 
nation of selection and steering policies leads to 4 cases - 
Normal issue normal execution: This is the base policy used 
by simplescalar [4] and all values reported are normalized with 
respect to this scheme. The selection mechanism employed 
here is the oldest first policy in which a higher priority is given 
to load and branch instructions. There are no slow FUs used in 
this technique. 
Normal issue slow execution: In this scheme, the issue policy 

I1 -443 



remains the same (as above) but we give a higher priority to 
ROD instructions to execute on the slow FU. 
Early issue normal execution: In this scheme, we change the 
selection policy and give a higher priority to all ROD instruc- 
tions. This scheme gives us an estimate of how a different se- 
lection policy affects performance and power. Since no slow 
FUs are used, any power changes incurred with this policy are 
due to effects induced by the early issue of ROD instructions. 
NROD instructions are not likely to be excessively starved of 
resources due to this policy since the ratio of ROD to NROD 
instructions is roughly 1.3. 
Early issue slow execution: To reduce the waiting time of 
ROD instructions in the IW, we use an early selection policy 
so that ROD instructions are given higher priority and hence 
are issued earlier than normal. Further, to obtain energy gains 
these ROD instructions are given higher preference to execute 
on the slow low power FU. Early issue with slow execution of 
non critical ROD instructions ensures that performance degra- 
dation does not exceed acceptable levels. 
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Fig. 5. C%&mr%n of differen%he%i@and steering policies. Norm_lssSlow: Nor- 
mal issue slow execution, EalssSlow: early issue slow execution and FalssNorm: early 
issue normal execution. All values are normalized w.r.1 the base i.e. normal issue normal 
execution policy. 

Figure 5 shows the impact of the above scheduling and steer- 
ing policies on IPC, power and energy per useful (committed) 
instruction (denoted by E/UI). We observe that the normal is- 
sue slow execution policy (bar 1) results in 7% average power 
reduction with about 5% degradation in throughput. The early 
issue slow execution policy (bar 2 )  results in lower performance 
degradation for most benchmarks and performs slightly bet- 
ter. The early issue normal execution scheme (bar 3 )  results in 
the least IPC degradation (average of less than 1 %) and yields 
3.5% average power gains. This implies that, early issue of 
ROD instructions is more power efficient than the normal old- 
est first selection policy. This is due to the fact that early issue 
of ROD instructions allows dependent branch instructions to 
be resolved earlier and therefore leads to fewer wrong path in- 
structions from entering the pipeline. This is confirmed by the 
E/UI metric which is reduced by an average of 2%. The IPC 
degradation in adpcm is very large due to the poor branch pre- 
diction accuracy for this benchmark and results in significant 
energy wastage over wrong path activity (note that the average 
values are skewed by this ill behaved benchmark). These re- 
sults highlight the fact that delayed execution of instructions 
reduces the number of wrong path instructions that enter the 
pipeline thereby reducing energy wastage. This is achieved in 
an indirect manner through a combination of IW stalls and slow 
initiation of instructions into the pipeline. The relatively small 
improvements in energy savings are due to (i) the usage of only 
1 slow low power ALU FU and (ii) less than 25% of all in- 
structions are subjected to delayed execution (this is the aver- 

age number of ROD instructions in the benchmarks evaluated). 

V. CONCLUSIONS 

In this paper we have analyzed the delay and criticality char- 
acteristics of instructions based on their readiness during dis- 
patch. This evaluation of instructions as a collective set rather 
than individual behavior obviously reduces accuracy but pro- 
vides useful insights into the kind of instructions one has to 
focus on for future designs. For example, our analysis indi- 
cates that as microarchitectures become larger and branch pre- 
diction accuracy improves, only a fraction of NROD instruc- 
tions contribute to criticality. We have shown that instructions 
that are normally ready-on-dispatch (ROD) suffer from delayed 
selection in an oldest first issue policy and that close to 40% 
ROD instructions spend more than 3 cycles in the IW. These 
delay and criticality features of ROD instructions are exploited 
to achieve power benefits by issuing them to slow low power 
functional units. Results indicate that using slow FUs reduces 
energy wastage incurred in executing wrong path instructions 
by an average of 2%. The early issue of ROD instructions with 
normal execution is the best scheme and results in 3.5% power 
savings with less than 1% degradation in throughput. Other 
schmes involving slow FUs incur about 5% average perfor- 
mance degradation and yield as much as 12% (7% average) 
power savings. 
We would like to emphasize that the primary goal of this pa- 
per was to bring out the properties of ROD/NROD instructions 
(e.g. how they spend time in the instruction window). The tech- 
niques suggested to obtain power savings are devised to exploit 
these properties and are not necessarily the best schemes. Fu- 
ture work will concentrate on developing better techniques that 
exploit "delays" faced by instructions in the IW to enable better 
power-performance trade-off. 
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