
The 47” IEEE International Midwest
Symposium on Circuits and Systems

Exploiting the Behavior of Ready Instructions for Power Benefits in a Dynamically
Scheduled Embedded Processor

G. Surendra, Subhasis Banerjee, S. K. Nandy
CAD Laboratory, Supercomputer Education and Research Center

Indian Institute of Science, Bangalore 560012, India
Email: { surendra@cadl, subhasis@cadl, nandy @serc}.iisc.ernet.in

Abstract-Many instructions in a dynamically scheduled
superscalar processor spend a significant time in the Instruction
Window (IW) waiting to be selected even though their depen-
dencies are satisfied. These “delays” are due to resource con-
straints and the oldest first selection policy used in many pro-
cessors that gives a higher priority to older ready instructions
than younger ones. In this paper, we study the “delay” and
criticality characteristics of instructions based on their readi-
ness during dispatch. We observe that most ready-on-dispatch
(ROD) instructions are non critical and show that 57% of these
instructions spend more than 1 cycle in the IW. We analyze the
impact of (i) steering ROD instructions to slow low power func-
tional units and (ii) early issue of ROD instructions, on power
and performance. We find that the “early issue and slow exe-
cution” of ROD instructions reduces power consumption by 4-
12% while degrading performance by about 5%. On the other
hand, “early issue normal execution” of ROD instructions re-
sults in 3.5% power savings with less than 1% performance
loss. Further, we find that the above policies reduce the energy
expended in executing wrong path instructions by about 2%.

I . INTRODUCTION

The design considerations for high performance embedded
processors and System on a Chip (SoC) solutions is not only
governed by real time performance requirements but also by
power dissipation (since power translates directly to heat) and
cost considerations. In case of embedded microprocessors, en-
ergy consumption is important since battery life is the main
design concern. An interesting trend that is emerging is the
increased dependence on existing programmable processors
and platform architectures to run application specific code [l].
This reduces the design time (time-to-market), but compro-
mises on factors such as power which is typically larger in
more general programmable processors. Also, due to the ever
changing standards/protocols, emerging applications such as
media and packet processing require programmable architec-
tures comprising of high performance embedded micropro-
cessors that exploit parallelism at instruction level (e.g. out-
of-order superscalar, VLIWs and vector processors), thread
level (e.g. multithreaded processors) and task level (homoge-
neousheterogeneous chip multiprocessors). The use of such
programmable processors for domain specific embedded appli-
cations opens up new possibilities for optimizing power and
performance. For instance (as will be discussed later in this
paper), depending on the nature of instructions, the selection
policy may be tunedkustomized for a set of applications.
Motivation: Instructions that are fetched are renamed to re-
move false dependencies and are allocated entries in the In-
struction Window (IW). The number of resources (Functional
Units (FU), memory ports etc) and the sizes of various queues
(fetch queue, IW etc), in a typical processor is fixed based

on cost, performance, power and Instruction Level Parallelism
(ILP). The motivation for this work arises from the fact that
processors with “limited” resources, while being power effi-
cient, can result in instructions spending significant time in
the IW waiting to be issued even afer their dependencies
are resolved. In this paper, we quantify this “delay” for dif-
ferent media and networking applications and examine prior-
ity schemes for reducing this delay. For the purpose of this
study, we divide instructions into two classes (i) Ready On
DispatcNDecode (ROD) - instructions whose data dependen-
cies are satisfied when they are dispatched and (ii) Not Ready
On DispatcNDecode (NROD) - instructions whose data depen-
dencies are not satisfied when they are dispatched. Classifying
instructions into ROD/NROD groups is easy to implement and
is particularly suitable for power-aware [Z] embedded systems
in which cost and complexity considerations tend to influence
design. We show that most ROD instructions are non critical
and that 40% of ROD instructions spend more than 3 cycles in
the IW. To reduce power dissipation, we evaluate an early is-
sue policy in which ROD instructions are given higher priority
but are issued to slow low power FUs. In general, we observe
that delaying the execution of ROD instructions is beneficial in
obtaining energy savings (with minimal performance degrada-
tion) compared to delaying other types of instructions.

11. SIMULATION ENVIRONMENT

We use Wattch [3], a performance and power analysis simula-
tion tool that is built on top of SimpleScalar [4] and make nec-
essary changes to the Out-Of-Order (000) simulator to carry
out our study. Throughout this paper, we use the cc3 style of
clock gating provided by Wattch, which scales power linearly
with unit usage. The base processor configuration is a 4-way
superscalar processor with a combined branch predictor having
7 cycles misprediction penalty, 128(32) entry RUU(LSQ) (see
[4]), 4 integer FUs, on-chip Ll instructioddata caches (8K,
2way, 32 byte block size) with 1 cycle hit latency and a L2
cache (256K, 4 way, 32 byte block size) of 12 cycle latency.
These parameters roughly match those of a modem processor
used in desktop as well as high performance embedded ap-
plications (it has been shown in [5] that 000 issue does not
lead to unpredictable execution time and is suitable for real
time applications) such as in set-top boxes, routers etc. Super-
scalar processors have been used in embedded media applica-
tions (e.g. NEC’s V83OWAV [6]) as well as in network proces-
sors (e.g. Ezchip’s TOPcore architecture - www.ezchip.com)
since they achieve high performance by hiding latency effec-
tively [7]. Architectures such as simultaneous multithreaded
processors which are derived from superscalar processors are
also common in the network processing domain. We chose
consumer and telecom related benchmarks from MiBench [8]
(adpcm encldec, jpeg encldec, mpeg2 encldec, mp3 encod-

0-7803-8346-X/04/$20.00 02004 IEEE

I1 -441

ing) and packet processing benchmarks from CommBench [9]
(frug, rtr; reed enddec, drc dh) for this study. We compile
the benchmarks with - 0 3 optimization and collected statistics
until at least 200M instructions were committed after initial-
ization phases were skipped. Unless otherwise mentioned, all
simulation results are normalized with respect to the above base
processor configuration.
When an instruction is issued for execution, its tag is broad-
cast to all entries in the IW to wakeup dependent instructions.
It has been observed that many of these broadcasts are redun-
dant and consume significant energy [lo]. Folegnani et. al.
[IO] propose a gating scheme and eliminate tag broadcasts to
instructions that have one or more operands ready. In this paper
we implement a limited version of the scheme proposed in [101
and eliminate unnecessary tag broadcasts to ROD instructions
(since both their operands are ready). This optimization does
not degrade performance and results in 1.5% power savings.
All the results discussed in this paper are with this optimiza-
tion in place.

111. ROD/NROD INSTRUCTIONS

The classification of instructions based on their readiness
when dispatched, rather than their opcode has several advan-
tages - (i) This classification is dependent on the microarchi-
tecture and is more representative of the dynamic state of the
processor (e.g. availability of resources, cache misses etc., can
alter the number of RODNROD instructions). In other words,
microarchitectural features such as instruction selection pol-
icy, branch prediction accuracy, IW size, number of FUs, issue
width etc are easily "tracked" by this classification. (ii) It en-
sures that the instruction mix is dependent on the application
and the compiler optimization. For example, a higher com-
piler optimization could do a better job in ensuring that depen-
dent instructions are placed as far apart as possible in the code
schedule. This results in a consuming (dependent) instruction
becoming ROD as the producing instruction would have com-
pleted execution. (iii) Identifying an instruction as being ready
or not is a task that is routinely camed out by the processor
and is deterministic in nature. This implies that no extra hard-
ware is necessary to implement the above classification. (iv) It
helps us analyze instruction criticality from the perspective of
a whole class (i.e. RODNROD) of instructions enabling us to
focus on one particular class for future optimizations. This is
possible since the above classification closely reflects the mi-
croarchitecture and dynamic behavior of instructions.
Figure 1 shows the number of ROD and NROD dynamic in-
structions for different benchmarks. Each bar in the figure
consists of 3 portions indicated by different shades. The top
most portion denoted by "All" represents instructions with all
operands ready on decode i.e. ROD instructions. The remain-
ing portions represent instructions with some and none of the
operands ready on decode i.e. NROD instructions. The fig-
ure also depicts the composition of performance limiting in-
structions such as loads (Ld), branches (Br), multiply/divide
(A 4 4 and others (Ot). Others (Ot), represent instructions not
belonging to any of the above classes and mostly consist of in-
teger ALU instructions. It is observed that about 25% of all
issued instructions belong to the ROD class while 75% are of
the NROD type. Further, it is observed that most ROD instruc-
tions belong to the ALU class of instructions.

Ready instructions spend more than one cycle in the IW if

Fig. 1. RODMROD instruction mix. For example, in cjpeg, 22.6% (20.2+2.4) of all
instructions issued are ROD; 2.4% branch instructions are ROD; 37.6% (18.2+19.4) of
instructions issued are NROD with none of their operands ready when dispatched. Only
contributions 2 1% are shown

they are not immediately selected for issue by the selection
logic. There are two possible reasons for this. First, if the
functional unit than can execute the instruction is busy and sec-
ondly, if the instruction is not selected because there are other
older ready instructions that are selected earlier and the issue
bandwidth is exhausted. For instance, with the configuration
mentioned in section 2, the processor is capable of issuing at its
peak rate only 58% of the time while no instructions are issued
for nearly 27% of the time. One to three instructions are issued
per cycle for the remaining 15% of the time. The position of an
instruction in the IW gives a rough estimate of whether it will
be issued immediately or not since most instructions selected
for issue are from the first few entries of the IW [lo].

Fig. 2. Top: Fraction of ROD instructions that spend (A) I cycle, (B) 2 cycles, (C) >=3
cycles in 1W. Bottom: Fraction of NROD instructions issued in 1 cycle. For example, in
cjpeg, 53.8% of ROD instructions spend > = 3 cycles in the IW. 13.6% of NROD instruc-
tions spend more than I cycle in the IW afer they become ready to issue; 24.4% of NROD
instructions (which happen to be loads) are issued immediately after they become ready.

Figure 2 (Top) shows the fraction of ROD instructions that
spend 1 cycle, 2 cycles, and 3 or more cycles in the IW uf-
fer their dependencies are satisfied. Each bar in the top figure
(ROD instructions) is further subdivided into three distinct por-
tions (having different shades) denoted by A, B, and C (see
extreme right of the figure). Portion C represents ROD instruc-
tions that spend more than 3 cycles in the IW. Portion B depicts
ROD instructions that spend 2 cycles in the IW while portion
A represents ROD instructions that are immediately issued (in
the next cycle) after dispatch. We find that for the base pro-
cessor configuration nearly 60% of all ROD instructions spend
more than 1 cycle in the IW while 40% spend more than 3
cycles waiting to be issued (these values are even larger for a
2-way superscalar processor). Fortunately, most ROD instruc-
tions that spend greater than 3 cycles in the IW belong to the
integer ALU (Ot) class (followed by branches) which normally
complete execution in 1 cycle. In other words, the execution la-
tency of these instructions is smaller than the latency incurred
due to waiting for FUs. The bottom portion of figure 2 shows
the number of NROD instructions issued immediately (in the
next cycle) after they become ready. Most NROD instructions

I1 -442

(this is nearly 100% for the adpcm benchmark) are not delayed
in the IW once their dependencies are satisfied. This is due
to the oldest first selection policy which gives priority to these
older instructions. A further breakup indicating the types of
instructions issued in 1 cycle is also shown. The portion in-
dicated by the white shade (denoted by “Rest” in the legend)
represents NROD instructions that spend more than 1 cycle in
the IW after they become ready. We see that only about 11%
of NROD instructions belong to this category.

Compiler optimizations such as pipeline scheduling and loop
unrolling separate dependent instructions and introduce un-
related instructions, thus minimizing pipeline stalls due to
true data dependencies. Figure 3 shows the waiting time of
ROD/NROD instructions with -01 compiler optimization. A
comparison between this and figure 2 (which uses -03 opti-
mization) reveals that with higher optimization, the time spent
by ROD instructions in the IW increases in all benchmarks (ad-
pcm enc/dec is an exception). This implies that as compiler
optimizations improve, pipeline stalls due to IW overflows be-
come more pronounced especially in microarchitectures with
small IW’s. The fraction of NROD instructions that spend more
than one cycle in the IW (denoted by “Rest” in the legend) in-
creases for some benchmarks and decreases in others.

em em- dec-
.

em dec
Fig. 3. Top: Fraction of ROD instructions that spend (A) I :Tclef?B) 2 cycles (C)
>=3 cycles in the IW. Bottom: Fraction of NROD instructions issued in I cycle with -01
optimization

Though several processor resources affect the time spent by
instructions in the IW, we study only the impact of FUs in this
paper. Figure 4 shows the waiting time of RODNROD instruc-
tions with two and six integer FUs. The remaining processor
parameters are the same as that of the base configuration de-
scribed in section 2. A comparison between figure 2 (which
uses four FUs) and figure 4 indicates that the waiting time of
both ROD and NROD instructions in the IW increase as the
number of resources are reduced.

1 0 0

80
C

M e
4”

2” A

Fig. 4. Impact of FUs on RODLNROD delays. (a) with 2 FUs (left) (b) with 6 F U s (right);
Top: ROD instructions that spend (A) I cycle, (B) 2 cycles, (C) >=3 cycles in the IW.
Bottom: NROD instructions issued in I cycle. Only il few values are shown for clarity.

We also evaluate the criticality of ROD and NROD instruc-
tions (see table 1) using the critical path predictor of Fields et.
a1 [1 I] and observe that on average 5% and 21 % of all instruc-
tions are ROD and critical and NROD and critical respectively.
These results confirm the fact that criticality is predominantly
determined by data dependencies.

TABLE I
Criticality of ROD and NROD instructions. Col 2,3 - fraction of ROD(NR0D)

instructions that are marked critical. Col 4.5 - fraction of all instructions dispatched that
are ROD(NR0D) critical. For example, in cjpeg. 31.51% of ROD and 35.18% of NROD
instructions are critical. This implies that 9.3% and 24.78% of all dispatched instructions

are ROD and critical and NROD and critical respectively.
Benchmark 1 %ROO 1 %NKOU [%allKOU [%all-

IV. EXPLOITING DELAYED EXECUTION

Now that we have analyzed the delay and criticality of ROD
and NROD instructions, we examine how the above instruction
classification is used for trading performance for power bene-
fits. Previous work has focused on steering non-critical instruc-
tions to slow FUs [121 and scheduling critical instructions with
higher priority in a clustered architecture[111. This involves
complicated mechanisms to detect critical path instructions. To
avoid such complicated schemes, we sacrifice accuracy for sim-
plicity and make use of the fact that most ROD instructions are
non-critical and give them a higher priority to execute on slow
low power FUs. These slow FUs consume low power by oper-
ating at a constant reduced voltagelfrequency. Consequently,
the operation and issue latencies of the slow FUs are larger
(we assume these to be twice that of normal Fus in our ex-
periments) than normal FUs. Further, we assume slow FUs of
the integer ALU class since most ROD instructions are of this
type i.e. only ALU instructions are executed slowly. Since the
ratio of the number of ROD and NROD instructions is roughly
1 to 3, we use 3 normal FUs (that operate at 2SV, 600MHz)
and 1 slow FU (that operates at 1.75V, 300MHz). Though the
above values are for a 0 . 3 5 ~ technology (this is the default pro-
vided by Wattch) which is quite dated, it serves to illustrate the
effectiveness of our scheme. The voltage of 1.75V for the slow
FU is obtained from the first order approximation of the rela-
tionship between circuit delay and supply voltage [13]. We do
not use any dynamic scaling of voltage and frequency since in
practice supply voltages cannot be varied on a continuous scale
and each variation takes a certain finite time which can be as
much as 150p sec [14].

We use a modified instruction selection policy and examine
its effect in the presence of slow and normal FUs. The combi-
nation of selection and steering policies leads to 4 cases -
Normal issue normal execution: This is the base policy used
by simplescalar [4] and all values reported are normalized with
respect to this scheme. The selection mechanism employed
here is the oldest first policy in which a higher priority is given
to load and branch instructions. There are no slow FUs used in
this technique.
Normal issue slow execution: In this scheme, the issue policy

I1 -443

remains the same (as above) but we give a higher priority to
ROD instructions to execute on the slow FU.
Early issue normal execution: In this scheme, we change the
selection policy and give a higher priority to all ROD instruc-
tions. This scheme gives us an estimate of how a different se-
lection policy affects performance and power. Since no slow
FUs are used, any power changes incurred with this policy are
due to effects induced by the early issue of ROD instructions.
NROD instructions are not likely to be excessively starved of
resources due to this policy since the ratio of ROD to NROD
instructions is roughly 1.3.
Early issue slow execution: To reduce the waiting time of
ROD instructions in the IW, we use an early selection policy
so that ROD instructions are given higher priority and hence
are issued earlier than normal. Further, to obtain energy gains
these ROD instructions are given higher preference to execute
on the slow low power FU. Early issue with slow execution of
non critical ROD instructions ensures that performance degra-
dation does not exceed acceptable levels.

1

go96

g o 9 2
z
088

0 5 096

a 0 9 3

0 9

0 8 7

1

a d m a d m cjpeg dipg mp3 mpeg mpeg fmg fl, reed reed dn dh Average
".-

enc dec
Fig. 5. C%&mr%n of differen%he%i@and steering policies. Norm_lssSlow: Nor-
mal issue slow execution, EalssSlow: early issue slow execution and FalssNorm: early
issue normal execution. All values are normalized w.r.1 the base i.e. normal issue normal
execution policy.

Figure 5 shows the impact of the above scheduling and steer-
ing policies on IPC, power and energy per useful (committed)
instruction (denoted by E/UI). We observe that the normal is-
sue slow execution policy (bar 1) results in 7% average power
reduction with about 5% degradation in throughput. The early
issue slow execution policy (bar 2) results in lower performance
degradation for most benchmarks and performs slightly bet-
ter. The early issue normal execution scheme (bar 3) results in
the least IPC degradation (average of less than 1 %) and yields
3.5% average power gains. This implies that, early issue of
ROD instructions is more power efficient than the normal old-
est first selection policy. This is due to the fact that early issue
of ROD instructions allows dependent branch instructions to
be resolved earlier and therefore leads to fewer wrong path in-
structions from entering the pipeline. This is confirmed by the
E/UI metric which is reduced by an average of 2%. The IPC
degradation in adpcm is very large due to the poor branch pre-
diction accuracy for this benchmark and results in significant
energy wastage over wrong path activity (note that the average
values are skewed by this ill behaved benchmark). These re-
sults highlight the fact that delayed execution of instructions
reduces the number of wrong path instructions that enter the
pipeline thereby reducing energy wastage. This is achieved in
an indirect manner through a combination of IW stalls and slow
initiation of instructions into the pipeline. The relatively small
improvements in energy savings are due to (i) the usage of only
1 slow low power ALU FU and (ii) less than 25% of all in-
structions are subjected to delayed execution (this is the aver-

age number of ROD instructions in the benchmarks evaluated).

V. CONCLUSIONS

In this paper we have analyzed the delay and criticality char-
acteristics of instructions based on their readiness during dis-
patch. This evaluation of instructions as a collective set rather
than individual behavior obviously reduces accuracy but pro-
vides useful insights into the kind of instructions one has to
focus on for future designs. For example, our analysis indi-
cates that as microarchitectures become larger and branch pre-
diction accuracy improves, only a fraction of NROD instruc-
tions contribute to criticality. We have shown that instructions
that are normally ready-on-dispatch (ROD) suffer from delayed
selection in an oldest first issue policy and that close to 40%
ROD instructions spend more than 3 cycles in the IW. These
delay and criticality features of ROD instructions are exploited
to achieve power benefits by issuing them to slow low power
functional units. Results indicate that using slow FUs reduces
energy wastage incurred in executing wrong path instructions
by an average of 2%. The early issue of ROD instructions with
normal execution is the best scheme and results in 3.5% power
savings with less than 1% degradation in throughput. Other
schmes involving slow FUs incur about 5% average perfor-
mance degradation and yield as much as 12% (7% average)
power savings.
We would like to emphasize that the primary goal of this pa-
per was to bring out the properties of ROD/NROD instructions
(e.g. how they spend time in the instruction window). The tech-
niques suggested to obtain power savings are devised to exploit
these properties and are not necessarily the best schemes. Fu-
ture work will concentrate on developing better techniques that
exploit "delays" faced by instructions in the IW to enable better
power-performance trade-off.

REFERENCES
Tiwari. V et. al.: Power Analysis of Embedded Software: A First Step
Toward Software Power Minimization, IEEE Trans. on VLSI Systems,
vol. 2, no. 4, pp. 437-445, April 1994.
Brooks. D.M et. al.: Power-Aware Microarchitecture: Design and Model-
ing Challenges for Next-Generation Microprocessors, IEEE MICRO, vol.
20 No. 6, (2000).
Br0oks.D et. al: Wattch: A Framework for Architectural-Level Power
Analysis and Optimizations, In Proc. of ISCA-27, (2000).
Burger.D, AusthT, BennettS: Evaluating Future Microprocessors: The
SimpleScalar Tool Set, Technical report - CS-TR-1996-1308, (1996).
HughesCJ et, al: Variability in the Execution of Multimedia Applications
and Implications for Architecture In Proc. ISCA-28, (2001).
Suzuki.K et. al.: V830WAV Embedded Multimedia Superscalar RlSC
Processor, IEEE Micro, vol. 18. no. 2, pp. 36-47, March 1998.
Fritts. J: Architecture and Compiler Design Issues in Programmable Me-
dia Processors, Ph.D. Thesis. Dept. of Electrical Engineering, Princeton
University, 2000.
Guthaus.M.R et. al: MiBench: A Free, Commercially Representative Em-
bedded Benchmark Suite, Proc of 4th Workshop on Workload Character-
ization, (2001).
Wo1f.T et. al.: CommBench - A Telecommunications Benchmark for Net-
work Processors, Proc. Intn ' l Symp. on Perf. Analysis of Systems and
Software, (2000).
Fo1egnani.D. Gonzi1ez.A: Energy-Effective Issue Logic, In Proc. ISCA-
28, (2001).
Fie1ds.B et. al: Focusing Processor Policies via Critical-Path Prediction,

Proc. of ISCA-28. (2001).
Seng.J.S et. al: Reducing Power with Dynamic Critical Path Information,
Proc. of MICRO-34. (2001).
Weg1arz.E.F et. al.: Minimizing Energy Consumption for High-
Performance Processing, ASPDAC, (2002).
Min.R et. al.: Dynamic Voltage Scaling Techniques for Distributed Mi-

crosensor Networks. In Proc. IEEE Workshop on VLSI. (2000).

I1 -444

