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An extension of Mangler transformation to a 3-D problem

J DEY1,∗ and A VASUDEVA MURTHY2

1Department of Aerospace Engineering, Indian Institute of Science,
Bangalore 560012, India
2Tata Institute of Fundamental Research, Chikkabommasandra, GKVK Post,
Bangalore 560065, India
e-mail: jd@aero.iisc.ernet.in

MS received 29 October 2010; accepted 19 August 2011

Abstract. Considering the linearized boundary layer equations for three-
dimensional disturbances, a Mangler type transformation is used to reduce this case
to an equivalent two-dimensional one.

Keywords. Boundary layer; three-dimensional; Mangler transformation.

1. Introduction

The Mangler transformation reduces an axisymmetric laminar boundary layer on a body of revo-
lution to an equivalent planar boundary layer flow (Schlichting 1968). This transformation is also
useful in turbulent boundary layer flow over a body of revolution (Cebeci & Bradshaw 1968).
Another application of this transformation is in the reduction of a laterally strained boundary
layer to the Blasius flow (Ramesh et al 1997). In this case the span-wise velocity is zero along
a streamline but its non-zero span-wise gradient appears as a source/sink term in the contunuity
equation (Schlichting 1968). In this paper, we show that a Mangler type transformation can
reduce a specific three-dimensional flow considered here to an equivalent two-dimensional case.

2. Analysis

Let u∗, v∗ and w∗ denote the non-dimensional velocity components in the non-dimensional
x, y and z directions, respectively. u0 and v0 will denote the Blasius velocity components. The
governing equations considered here are the linearized boundary layer equations for two- and
three-diemnsional disturbances of Libby & Fox (1964) and Luchini (1996). These authors per-
turbed the Blasius boundary layer as: u∗ = u0(x, y) + u1(x, y)exp(iαz), v∗ = v0(x, y) +
v1(x, y)exp(iαz), w∗ = w1(x, y)exp(iαz); for 2-D flow (z = 0, w = 0), u1 = u, v1 = v. We
first consider the two-dimensional case.
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2.1 2-D Case

In this case, the governing boundary layer equations are (Libby & Fox 1964),
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The boundary conditions are: u(x, 0) = v(x, 0) = u(x, ∞) = (x, ∞) = 0. The Blasius
boundary layer equations are,
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along with the boundary conditions, u0(y = 0) = v0(y = 0) = 0, u0(y → ∞) → 1.

Adding and subtracting the quantity u/x in the continuity eq. (1), we have
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= 0. (5)

Consider the Mangler transformation,

X = x3
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The usual Mangler variables are X, Y, U and V . The variables Uo and Vo are additional here.
The boundary layer equations for an axi-symmetric body of radius r differ from those for two-
dimensional flows by the term (u/r)(dr/dx) in the continuity equation, ∂(ur)

∂x + ∂(vr)
∂y = 0;

for r = x , the term (u/r)(dr/dx) becomes u/x , which acts as a source term in the continuity
equation.

In terms of the variables in (6), the governing equations (1)–(4) become,
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respectively.



An extension of Mangler transformation to a 3-D problem 973

The mean flow continuity eq. (9) now has an artificial sink term Uo/3X . However, the simi-
larity variables η = Y/

√
3X , Uo = f ′(η) reduce the mean flow to the Blasius one; here, a prime

denotes the derivative with respect to η. (This may be an interesting application of the Mangler
transformation to the Blasius flow.)

In terms of the variables,

U = 3XU1(X, Y ), V = 3X V1(X, Y ), (11)

equations (7) and (8) become
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respectively.

2.2 3-D Case

The governing boundary layer equations in this case are the linearized disturbance equations of
Luchini (1996; his equations 7a–c),
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(iα in Luchini’s eq. (7a) is eliminated by taking u1 = iαu, v1 = iαv, w = w1). The boudary
conditions are: u(x, 0) = v(x, 0) = w(x, 0) = u(x, ∞) = w(x, ∞) = 0. The third equation is
the span-wise disturbance equation.

As in eq. (5), adding and subtracting the quantity u/x in the continuity equation (14), we have
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We consider the Mangler type transformation (6), along with an additional variable W , below

X = x3
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, Y = yx, u(x, y) → U (X, Y ), V (X, Y ) = 1

x
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This additional variable W is to relate the span-wise velocity component, w, to the stream-wise
velocity component, u, as discussed below. In terms of these variables, the disturbance equations
(14), (15) and (16) are,

∂U

∂ X
+ ∂V

∂Y
+ W = 0, (19)



974 J Dey and A Vasudeva Murthy
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respectively.
Following Squire (1933), we add (20) and (21) to obtain
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In terms of the variables in (11), the continuity equation (19) and the momentum equation
(22) become,
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respectively.
By letting W = aU1 the disturbance equations (23) and (24) become,
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respectively. Comparing these with the two-dimensional equations (12) and (13), we find them
similar. We may note that the span-wise velocity component, w, is w=(1+a)u/x. For a = −1,
w=0, equations (25) and (26) are exactly the same as (12) and (13), as it should be. Also, u/x
(∼ w) acts as a source term in the continuity eq. (14). Thus enabling the use of the Mangler type
transformation.

By letting U1 = X N g′(η), and satisfying the continuity equation (25), the similarity form of
(26) is readily obtained as,

g′′′ + f g′′

2
+ g f ′′

2
+ g f ′′

[
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2(2 + a)
+ 3N

(2 + a)

]
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[
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]
= 0. (27)

In terms of the similarity variables, the perturbed velocity components are: u =
3−N x3(N+1)g′, w = (1 + a)u/x .
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For both (i) a = −1, N = −4/3 and (ii) a = −8/3, N = −1/2, eq. (27) reduces to the
two-dimensional equation of Libby & Fox (1964)

g′′′ + f g′′

2
+ g f ′′

2
+ f ′g′ − g f ′′ = 0. (28)

The solution (Libby & Fox 1964) of this equation is g = f − η f ′. The first case of w = 0
(a = −1) is obvious. In the second case, the perturbed velocities are: u = 3−1/2x3/2g′, and
w = −(5/3)(x/3)1/2g′. That is, the proposed Mangler type transformation (18) could reduce
the three-dimensional problem considered here to a two-dimensional equivalent one.

3. Conclusion

A three-dimensional boundary layer flow is considered here. A Mangler type of transformation
is proposed to reduce this flow to an equivalent two-dimensional one. This reduction has been
possible by relating the span-wise velocity component to the stream-wise velocity component
leading to an equivalent source term in the continuity equation.
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