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Abstract— For the case of quasi-static fading channel, high
rate Space-Time Trellis Codes have already been constructed
by concatenating Multiple Trellis Coded Modulation (MTCM)
and Space-Time Block Codes (STBC) called the STBC-MTCM
scheme. The focus in all these constructions, was to increase
the rate of transmission by using more than one orthogonal
design, while retaining the diversity advantage and little attention
was paid to increase the coding gain advantage. In this paper,
we present a systematic approach by which STTCs can be
constructed by STBC-MTCM scheme, which achieve high rate,
full diversity and increased coding gain advantage over the
existing codes under certain conditions.

Also we a present a systematic approach, to construct STTCs
by STBC-MTCM codes which can achieve any given diversity
for the case of block-fading channel. The codes constructed for
block-fading channels trade-off the rate of transmission and the
number of states of the trellis.

I. INTRODUCTION

Space-Time Trellis Codes (STTC) have been introduced in [1]
to provide improved error performance for wireless systems
using multiple transmit antennas. In [2], Alamouti introduced a
simple code to provide full diversity for two transmit antennas.
In [3], the scheme is generalized to an arbitrary number of
antennas and is named space-time block coding. Although
a Space-Time Block Code (STBC) provides full diversity
and a simple decoding scheme, it does not provide good
coding gain, whereas STTC provide full diversity as well as
coding gain but at the cost of higher decoding complexity.
To achieve additional coding gain, one should concatenate
an outer code such as Multiple-Trellis Coded Modulation
(MTCM) as defined in [4] with an inner STBC called the
STBC-MTCM scheme.

In [5], Alamouti matrix is combined with MTCM to provide
more coding gain along with full diversity. The limitation
of STBC-MTCM scheme is that the rate of transmission
(bits/sec/Hz) gets reduced because the inner block code is
at best, a rate-one code and the outer MTCM encoder must
have redundancy. In order to enable high data rate via a
concatenated STBC-MTCM scheme, the inner block code
must be expanded before being concatenated with an outer
MTCM encoder.

To increase the transmission rate, the technique adopted in
[6]–[9] is to apply some unitary transformations to the original

This work was partly supported by the IISc-DRDO program on Advanced
Research in Mathematical Engineering through a grant to B.S. Rajan.

STBC matrices, so that more number of code matrices are
available for transmission, but by using this technique, the
difference matrix over all possible pairs of matrices is not full
rank.

It is well known that the performance of the STBC-MTCM
codes is not directly given by the minimum distance between
any two codewords but governed by the distance spectrum (i.e.
path weights of the error events or the multiplicities of error
events). In this paper, we provide an alternative systematic
construction for high rate, full diversity achieving STBC-
MTCM code, in which the multiplicities of the error events
has been reduced leading to better performance under certain
conditions, for the case of quasi-static fading channel. We
also provide simulation results to show that under certain
conditions our codes outperform the best known codes in
literature in terms of coding gain.

In a block-fading channel model the codeword is composed
of multiple blocks, the fading coefficients are constant over
one fading block, but are independent over block to block. It
has been shown in [10] that for block-fading channel, if we
code across L quasi-static fading intervals (quasi-static fading
interval is the time for which the fading coefficients remain
constant), the maximum diversity which we can achieve is L
times the diversity which we can achieve in one quasi-static
fading interval.

For STBC-MTCM codes, if we have to exploit the block-
fading channel to get an arbitrary diversity gain, the necessary
condition is that, we have to expand the inner block code in
such a way, that the the difference matrix of any two distinct
STBC matrices is a full rank matrix. Therefore the technique
given in [6], cannot be used to, simultaneously increase the
rate of transmission as well achieve any given diversity for
STBC-MTCM codes in block-fading channel. In this paper
we provide a construction of STBC-MTCM codes which can
achieve high rate and any given diversity in the case of block-
fading channel. Simulation results are also provided.

The remaining content of the paper is organized as follows:
We provide a systematic construction for high-rate, full-
diversity STBC-MTCM codes for quasi-static fading channel
in Section II. In Section III, a novel approach for construction
of high-rate and any specified diversity achieving STBC-
MTCM code for the block-fading channel is given.
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Fig. 1. System Block Diagram

II. QUASI-STATIC FADING CHANNEL

Space-Time Code Design Criteria: The diversity gain of a
space-time code is defined by the minimum rank of the matrix
B(s1, s2) = (s1 − s2)(s1 − s2)H over all possible distinct
codewords s1 and s2 and the coding gain is defined as the
minimum of the product of the eigen values of B(s1, s2) over
all possible pairs of distinct codewords s1 and s2 [1]. As in [6],
we define the coding gain distance (CGD) between codewords
s1 and s2 as d2(s1, s2) = det(B(s1, s2)), where det(B) is the
determinant of the matrix B.

Definition 1: A rate-k/p, nt × p design is a nt × p matrix
with entries as linear combination of k complex variables and
their conjugates. Restricting the k variables to take values from
a finite subset of C, we get a Space-Time Block Code (STBC).

System Model: The system model we consider is a space
time wireless communication system with nt transmit antennas
and nr receive antennas. The channel between a transmit and
receive antenna is modeled as a frequency non-selective quasi-
static Rayleigh fading process, such that channel coefficients
remain same in one frame but are independent from frame to
frame and from antenna to antenna.

Let the inner STBC be obtained from a rate-k/p, nt × p
design X. If the required rate of transmission is b bits/sec/Hz,
then the transmitter takes kb bits as input and each of the k
streams of b bits undergo Trellis Coded Modulation as shown
in Fig. 1. The output of the MTCM scheme is fed to the STBC
encoder. STBC encoder which contains the design matrix X,
takes these k symbols and forms a nt × p codeword matrix.

Each branch of the trellis represents one STBC matrix. This
matrix represents the low pass representations of the signal to
be transmitted by nt antennas for the next p symbol durations.
The system block diagram is shown in Fig. 1. At the receiver
end, the Space Time block decoder followed by a Viterbi
decoder can be used to decode the received signals as given
in [5].

Code Design Requirements: For designing a rate b
bits/sec/Hz STBC-MTCM code, 2pb transitions should come
out of each branch of the trellis, but to avoid a catastrophic
code, the number of different STBC matrices required for
mapping the transitions in the trellis are at least 2pb+1 (The
catastrophy which we are concerned here, is the catastrophy
which can be generated by faulty mapping of the trellis
branches and not the catastrophy of the MTCM encoder, as

given in [6]).
For simplicity, we take nt = 2, nr = 1 and our STBC

to be the Alamouti matrix

[
x0 x1

−x∗
1 x∗

0

]
, (k = 2, p = 2).

The number of possible Alamouti matrices over a signal
constellation of size 2b is 22b, therefore 22b more Alamouti
matrices are required to design a rate b bits/sec/Hz STBC-
MCTM non catastrophic code. If we double the size of signal
constellation, the number of all possible Alamouti matrices is
22b+2, out of which only half are required to construct a rate
b bits/sec/Hz non catastrophic STBC-MTCM code.

Code Construction: In our construction, we will double
the signal constellation size to get the required number of
Alamouti matrices. To maximize the coding gain, we do set
partitioning in terms of CGD, to choose the required number
of matrices from the expanded set of STBC matrices, which
are optimal in the sense of CGD.

S0 1 S

S00 01  S S10   S11  

S000 S001 S011 S
101 

S010 S
100 S110 

S111

minimum
CGD

4

16

64

16

00,22 02,20 11,33 13,31 03,21 10,32 12,3001,23

Fig. 2. Set partitioning for QPSK; the numbers at the leaves represent the
indexes of the symbols in the space-time block code.
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Fig. 3. Set partitioning for 8-PSK; the numbers at the leaves represent the
indexes of the symbols in the space-time block code.

In general, this technique of signal set expansion, set parti-
tioning over a M -PSK (M = 2b) constellation and choosing
the restricted set of STBC matrices required for transmission,
can be explained as follows:
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First Step: Take all possible Alamouti matrices over M -PSK
constellation and call this set of matrices A1 and then do the
set partitioning of the matrices in the set A1, in terms of CGD
to form sets A11, A12, . . . , A1r, with each A1i having 22b/r
number of elements ∀ i, i = 1, 2, . . . , r, where r is chosen
according to the design requirement of the code.

Second Step: Rotate the M -PSK constellation by angle
π/M and then take all possible Alamouti matrices over this
rotated constellation and call this set of matrices A2. Similarly
do the set partitioning of the matrices of the set A2 in terms
of CGD, to form sets A21, A22, . . . , A2r as above.

By using both the sets A1 and A2, we choose 22b+1

Alamouti matrices which are optimal in the sense of CGD,
required for the construction of rate b bits/sec/Hz STBC-
MTCM code, which are full rank.

Code Design Rules: In our scheme, we assign a constituent
space-time block code to all transitions from a state. The
adjacent states are typically assigned to one of the other
constituent space-time block codes from the set A1 or A2. The
parallel transition branches are assigned STBC matrix from
one of the Aij where i = 1, 2 and j = 1, 2, . . . , r. Similarly,
we can assign the same space-time block code to branches
that are merging into a state from either A1 or A2. It is thus
assured that any path that diverges from (or merges to) the
correct path differs by rank 2. In other words, every pair of
codewords diverging from (or merging to) a state achieves full
diversity because the pair is from the same orthogonal code.

Design Examples: Now we present several design exam-
ples of our new proposed code with rate 1 bit/s/Hz and
2 bits/sec/Hz using QPSK and 8-PSK constellations. The
proposed simple design rule is used to construct the STBC-
MTCM codes that achieve full diversity. MTCM with multi-
plicity of 2 is used as an outer encoder, and thus 4 and 16
outgoing transitions are needed to achieve the desired code
rate of 1 bit/sec/Hz and 2 bits/sec/Hz respectively.

Figs. 4 and 5, show the new 2-state and 4-state 1 bit/sec/Hz
and 2 bits/sec/Hz space-time codes respectively. For the rate 1
bit/sec/Hz and 2 bits/sec/Hz codes we use Alamouti matrices
over QPSK and 8-PSK constellation respectively for mapping
the branches of the trellis from Figs. 2 and 3.

010 S S 011

S 
001

S 000

Fig. 4. A two state code; rate 1 bit/sec/Hz using QPSK or 2 bits/sec/Hz
using 8-PSK.
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S011
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S000
S001

S000

S010

S011

Fig. 5. A four state code; rate 1 bit/sec/Hz using QPSK or 2 bits/sec/Hz
using 8-PSK.

Coding Gain Analysis: We calculate distance spectrum for
all our codes and compare that with the best known codes
in literature i.e. Super Orthogonal Space-Time Trellis Codes
(SOSTTC) [6]. We tabulate, the CGD of all our codes in Table
I to Table VI and compare them with the appropriate codes
as in [6].

Definition 2: In a trellis, two code sequences constitute an
error event of length l, if they start from the same state and
rejoin at some other state for the first time after l intervals.
If the number of input bits is equal to b and the memory of
the MTCM encoder is m (number of states of trellis equal to
2m), then the minimum value of l is �m/b�. We denote this
smallest value of l by P . Effective length of a MTCM code,
ν, is the minimum number of distinct symbols between any
two codewords and the maximum achievable effective length
is given by ν = �m/b� + 1 as in [11].

In Table I, we tabulate the CGD on parallel paths and
minimum possible CGD on any other path. For parallel
transitions (P=1), one can get the CGD from Figs. 2 or 3.
For paths other than the parallel transitions, we consider two
codewords diverging from state zero and re-merging after P
transitions to state zero. For these paths, the CGD is calculated
as the determinant of the difference matrix, as already defined.

For 2-state codes, P is equal to 2 and the number of paths
coming back after P=2, for rate 1 bit/sec/Hz and 2 bits/sec/Hz
codes are equal to 4 and 64 respectively. In Table III and IV,
we tabulate the CGD of these paths and compare them with
the appropriate code of [6], for 2-state rate 1 bit/sec/Hz and 2
bits/sec/Hz code respectively. For 4-state codes, P=3 and the
number of paths coming back after P =3, for rate 1 bit/sec/Hz
and 2 bits/sec/Hz codes are 8 and 512 respectively. In Tables V
and VI, we tabulate the CGD of these paths and compare them
with the equivalent code of [6], for 4-state, rate 1 bit/sec/Hz
and 2 bits/sec/Hz code respectively.

Table III to Table VI, give the distance spectrum, of all
our codes. It is enough to calculate the CGD’s upto minimum
possible value of l i.e P , as our codes are non-catastrophic.

From Table I, except for our 2-state rate 2 bits/sec/Hz code,
the minimum CGD of our codes is greater than or equal to
the minimum CGD of the comparable SOSTTC. Clearly from
Tables III-VI, the distance spectrum our codes is better than the
distance spectrum for the SOSTTC. The resulting performance
improvement is discussed in the following subsection.

TABLE I

CGD VALUES FOR DIFFERENT CODES

Rate in bits/sec/Hz min det(A) parallel CGD
1 (Fig.5) 64 64
1 (Fig.6) 144 64
2 (Fig.5) 10.05 16
2 (Fig.6) 27.04 16

TABLE II

COMPARISON OF CGD VALUES

Figure No. of Rate minimum minimum CGD
States (bits/sec/Hz) CGD in SOSTTC

5 2 1 64 48
5 2 2 10.05 16
6 4 1 64 64
6 4 2 16 16

TABLE III

CGD VALUES FOR ALL PATHS WITH P=2 FOR RATE 1 BIT/SEC/HZ, 2 STATE

CODE

Coding Gain No. of paths No. of paths
Distance in our code in SOSTTC

64 4 -
48 - 4

Simulation Results: In this subsection, we provide simula-
tion results for our new code design using two transmit and one
receive antenna.We compare our results with the SOSTTC for
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TABLE IV

CGD VALUES FOR ALL PATHS WITH P=2 FOR RATE 2 BITS/SEC/HZ, 2

STATE CODE

Coding Gain No. of paths No. of paths
Distance in our code in SOSTTC

10.05 16 -
24 - 64
36 32 -
78 16 -

TABLE V

CGD VALUES FOR ALL PATHS WITH P=3 FOR RATE 1 BIT/SEC/HZ, 4 STATE

CODE

Coding Gain No. of paths No. of paths
Distance in our code in SOSTTC

144 8 -
128 - 8

same number of transmit and receive antennas and for same
rate of transmission. In all simulations, a frame consists of
130 transmissions out of each transmit antenna. Figs. 6 and 7,
shows the frame error probability results versus signal-to-noise
ratio (SNR) for the code given in Figs. 4 and 5 respectively.

Our proposed code for rate 1 bit/sec/Hz for 2 or 4-states,
outperforms similar SOSTTC by nearly 0.5 dB, also our
proposed 2 bit/sec/Hz, 4-state code, gives a better performance
of nearly 0.25 dB than the similar code in [6], but rate 2
bit/sec/Hz, 2-state code in [6] performs better than our code.
If we see the simulation results for the 2 bits/sec/Hz, 2 state
code, we find out that the performance is not as degraded
as indicated by the decrease in minimum CGD, because our
performance in terms of multiplicities of error events is better.
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Fig. 6. Performance of rate 1 bit/sec/Hz STBC-MTCM codes in quasi-static
fading channel for 2 Transmit and 1 Receive antenna
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Fig. 7. Performance of rate 2 bit/sec/Hz STBC-MTCM codes in quasi-static
fading channel for 2 Transmit and 1 Receive antenna

III. BLOCK-FADING CHANNEL

System Model: The system model we consider remains the

TABLE VI

CGD VALUES FOR ALL PATHS WITH P=3 FOR RATE 2 BITS/SEC/HZ, 4

STATE CODE

Coding Gain No. of paths No. of paths
Distance in our code in SOSTTC

27.04 128 -
48 - 384
64 256 128

120 128 -

same as already shown in Fig.1, except that the channel we
consider is a block-fading channel. In block-fading channel
the channel coefficients remain same in one block of quasi-
static fading interval, but are independent from block to block
and from antenna to antenna.

Design Criteria for Block-Fading Channel: Let C be a code
for the channel with nt transmit and nr receive antennas.
We assume that the code C has codewords spread over K
quasi-static fading blocks, the length of each quasi-static block
being p. Thus, the codeword c = [c[1] c[2] . . . c[K]], where
c[i] is the part of codeword corresponding to i-th fading
block, is a nt × pK matrix. The generalized diversity and
product distance criteria for space-time codes over MIMO
block-fading channels are as follows. Maximize the transmit
diversity advantage

d =
K∑

i=1

di =
K∑

i=1

rank(c[i] − e[i]) (1)

and maximize the coding advantage

µ =
K∏

i=1

(λ1[i]λ2[i] · · ·λdi
[i])1/di (2)

over all pairs of distinct codewords c, e [10].
Code Construction: If the effective length of a trellis is

ν, then any two codewords in the trellis, differ in at least ν
positions. Since we are transmitting a STBC matrix on each
branch of the trellis, by sum of ranks criteria given in (1),
we get diversity νD (where D = min(nt, p) is the diversity
achieved by an STBC), if the difference of any two distinct
STBC matrices is a full rank matrix. Therefore, to maximize
the diversity gain possible for STB-MCTM codes, we should
maximize the effective length of the trellis ν. To design a
STBC-MTCM code that achieves diversity gain of νD, the
effective length of the trellis should be atleast ν.

Code Design: For simplicity, we take nt = 2, nr = 1 and
our STBC to be the Alamouti matrix. To get diversity νD and
rate b bits/sec/Hz, for STBC-MTCM scheme in block-fading
channel, we will use a MTCM with effective length ν and
the same construction for increasing the rate of transmission
for the STBC-MTCM code for quasi-static fading channel,
of doubling the signal set and set partitioning the set of
all possible Alamouti matrices in terms of the CGD. This
guarantees that the difference matrix of any two such Alamouti
matrices is a full-rank matrix.

Code Design Rules: In our scheme, we assign a constituent
STBC to all transitions from a state. The adjacent states are
typically assigned to one of the other constituent STBC from
the set A1 or A2. We avoid parallel transitions in the trellis to
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get extra diversity gain. By our construction, the difference of
any two distinct Alamouti matrices is a full rank matrix, then
from the sum of rank criteria, we are guaranteed of at least, a
diversity gain equal to 2ν, if the effective length of the trellis
is ν as diversity gain given by Alamouti matrix is 2.

Design Examples: We present design examples of our
proposed code. Figs. 8 and 9, give the design of diversity 4
STBC-MTCM codes, for rate 1 bit/sec/Hz and 2 bits/sec/Hz,
respectively. In both the examples, parallel transitions have
been avoided to get extra diversity.

For designing rate 1 bit/s/Hz and 2 bits/sec/Hz diversity 4
STBC-MTCM codes, we use Alamouti matrices over QPSK
and 8-PSK constellations respectively for mappings branches
of the trellis from Figs. 2 and 3. For the design examples,
MTCM with multiplicity of 2 is used as an outer encoder, and
thus 4 and 16 outgoing transitions are needed to achieve the
desired code rate of 1 bit/sec/Hz and 2 bits/sec/Hz respectively.

20   02   22   00

31   13   33   11

11   33   13   31

00   22   02   20

Fig. 8. A four state code; rate 1 bit/sec/Hz using QPSK set partitioning as
shown in Fig. 2

26   62 02   46 24   60 20   64 00   44 00   44 04   40 22   66

04   40 22   66 00   44 00   44 24   60 20   64 02   46 06   42

24   60 20   64 02   46 06   42 04   40 22   66 00   44 00   44

00   44 00   44 22   66 04   40 06   42 26   62 20   64 24   60

13   57   17   53 31   75 35   71 11   55 15   51 33   77 37   73

31   7533   77 37   73 11   55 15   51 35   71 13   57   17   53

15   5133   77 37   73 11   5531   75 35   71 13   57   17   53

15   51 11   55 37   73 33   77 17   53 13   57   35   71 31   75

17   53 13   57   31   75 15   51 11   55 37   7335   71 33   77

20   64 24   60 06   42 02   46 22   66 04   40 00   44 00   44

33   7737   73 35   71 31   75 17   5311   5515   51 13   57   

31   75 13   57   37   73 33   77 15   5135   71 17   53 11   55

00   44   04   40   22   66   26   62   02   46   06   42   24   60   20   64

06   42 02   46 20   64 24   60 00   44 00   44 22   66 04   40

00   44 06   42 02   4604   40 00   44 20   64 24   6022   66

11   55   15   51   33   77   37   73   13   57   17   53   31   75   35   71

Fig. 9. A sixteen state code; rate 2 bits/sec/Hz using 8-PSK set partitioning
as shown in Fig. 3

Note : The codes which we present, trades-off the rate of
transmission and the number of states of the trellis (decoding
complexity). e.g. to achieve diversity 4, for rate 2 bits/sec/Hz,
we have to increase the number of states to 16 as shown in
Fig. 9. Therefore, fixing the diversity gain, increase in rate is
possible only at the cost of increased decoding complexity.

Coding Gain Analysis: For our codes ν = 2, therefore the
number of quasi-static fading blocks across which we are able
to do coding is 2. The diversity gain of codes given in Figs. 8
and 9 is 4. For any state in our trellis, the diverging branches
are mapped from set S00 or S01 and converging branches are
mapped from set S0, therefore from (2), the coding gain is

given by the product of the intraset minimum CGD of matrices
S00 and S0 or the product of the intraset minimum CGD S01

and S0, raised to power of 1/4, where S00, S01 and S0 as
given in Figs. 2 and 3 for QPSK and 8-PSK case respectively.

The coding gain for rate 1 bit/sec/Hz, diversity 4, STBC-
MTCM code as given in Fig. 8, is (16 × 16)1/4 which is 2
and for rate 2 bit/sec/Hz, diversity 4 STBC-MTCM code as
given in Fig. 9, the coding gain is (4 × 1.37)1/4 which is
1.53. Fig. 10, shows the frame error probability results versus
signal-to-noise ratio (SNR) for the codes given in Figs. 8 and
9. Clearly, it can be seen from the simulation results that, our
codes achieve diversity 4.
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Fig. 10. Performance of rate 1 bit/sec/Hz and 2 bits/sec/Hz. 2 transmit, 1
receive antenna, block fading system

REFERENCES

[1] Vahid Tarokh,N.Seshadri and A. R. Calderbank, “Space-Time block
codes for high data rate wireless communication:Performance criterion
and code construction,” IEEE Trans. Inform. Theory, vol.44, pp.744-765,
Mar 1998.

[2] S. M. Alamouti, “A simple transmit diversity technique for wireless
communication,” IEEE J. on Select. Areas in Commun., vol.16, no.8,
pp.1451-1458, Oct. 1998.

[3] Vahid Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-Time block
codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol.45,
pp.1456-1467, July 1999. Also “Correction to “Space-time block codes
from orthogonal designs”,”IEEE Trans. Inform. Theory, vol. 46, no.1,
p.314, Jan. 2000.

[4] D. Divsalar and M. K. Simon, “ Multiple Trellis Coded Modula-
tion,”IEEE Trans. on Comm., vol. 36, no. 4, pp 410-419, April 1988.

[5] S. Alamouti, V. Tarokh, and P. Poon, “Trellis-coded modulation and
transmit diversity: Design criteria and performance evaluation,” in Proc.
IEEE Int. Conf. Universal Personal Communications (ICUPC-98), vol.
2, 1998, pp. 917-920.

[6] Hamid Jafarkhani,and Nambi Seshadri, “Super-Orthogonal Space Time
Trellis Codes,” in IEEE Trans.Inform.Theory, vol. 49, no. 4, APRIL
2003.

[7] S. Siwamogsatham and M. P. Fitz, ”Improved high rate space-time codes
via orthogonality and set partitioning,” in Proc. IEEE Wireless Commu-
nications and Networking Conf. (WCNC), Mar. 2002.

[8] — ”Improved high rate space-time codes via concatenation of expanded
orthogonal block code and M-TCM,” in IEEE International Conference
on Communications (ICC), vol. 1, Apr. 2002, pp. 636-640.

[9] — ”Improved high-rate space-time codes via expanded STBC- MTCM
constructions,” in Proc. IEEE Int. Symp. Information Theory (ISIT),
Lausanne, Switzerland, June/July 2002, p. 106.

[10] Hesham El Gamal and A.Roger.Hammons, “On the Design of Algebraic
Space-Time codes for MIMO Block Fading Channels.” in IEEE Trans.
Inform. Theory, vol. 49, no.1, p.314, Jan. 2003.

[11] S.H.Jamali and Tho Le-Ngoc,“Coded Modulation Techniques For Fad-
ing Channels,” Kluwer Academic Publishers 1994

Globecom 2004 539 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       


