ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Asymptotically-Optimal, Fast-Decodable, Full-Diversity STBCs

Natarajan, Lakshmi Prasad and Rajan, Sundar B (2011) Asymptotically-Optimal, Fast-Decodable, Full-Diversity STBCs. In: 2011 IEEE International Conference on Communications (ICC), 5-9 June 2011, Kyoto.

[img] PDF
Asymptotically.pdf - Published Version
Restricted to Registered users only

Download (186kB) | Request a copy
Official URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumb...

Abstract

For a family/sequence of Space-Time Block Codes (STBCs) C1, C2,⋯, with increasing number of transmit antennas Ni, with rates Ri complex symbols per channel use (cspcu), i = 1,2,⋯, the asymptotic normalized rate is defined as limi→∞ Ri/Ni. A family of STBCs is said to be asymptotically-good if the asymptotic normalized rate is non-zero, i.e., when the rate scales as a non-zero fraction of the number of transmit antennas, and the family of STBCs is said to be asymptotically-optimal if the asymptotic normalized rate is 1, which is the maximum possible value. In this paper, we construct a new class of full-diversity STBCs that have the least maximum-likelihood (ML) decoding complexity among all known codes for any number of transmit antennas N>;1 and rates R>;1 cspcu. For a large set of (R,N) pairs, the new codes have lower ML decoding complexity than the codes already available in the literature. Among the new codes, the class of full-rate codes (R=N) are asymptotically-optimal and fast-decodable, and for N>;5 have lower ML decoding complexity than all other families of asymptotically-optimal, fast-decodable, full-diversity STBCs available in the literature. The construction of the new STBCs is facilitated by the following further contributions of this paper: (i) Construction of a new class of asymptotically-good, full-diversity multigroup ML decodable codes, that not only includes STBCs for a larger set of antennas, but also either matches in rate or contains as a proper subset all other high-rate or asymptotically-good, delay-optimal, multigroup ML decodable codes available in the literature. (ii) Construction of a new class of fast-group-decodable codes (codes that combine the low ML decoding complexity properties of multigroup ML decodable codes and fast-decodable codes) for all even number of transmit antennas and rates 1 <; R ≤ 5/4.- - (iii) Given a design with full-rank linear dispersion matrices, we show that a full-diversity STBC can be constructed from this design by encoding the real symbols independently using only regular PAM constellations.

Item Type: Conference Paper
Publisher: IEEE
Additional Information: Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Department/Centre: Division of Electrical Sciences > Electrical Communication Engineering
Date Deposited: 29 Dec 2011 08:21
Last Modified: 29 Dec 2011 08:21
URI: http://eprints.iisc.ac.in/id/eprint/42940

Actions (login required)

View Item View Item