Matrix Characterization of Near-MDS Codes over Z_m and Abelian Groups

G. Viswanath and B. Sundar Rajan¹ Department of Electrical Communication Engineering Indian Institute of Science Bangalore, 560 012, India email: {gviswa@protocol., bsrajan@}ece.iisc.ernet.in

Abstract — In this paper we present a matrix characterization of AMDS codes and NMDS codes over Z_m and Abelian groups.

I. AMDS AND NMDS CODES OVER Z_m

A length-*n* linear code *C* over Z_m , the ring of integers modulo *m*, is a subset of Z_m^n closed under all Z_m -linear combinations. *C* is said to be information set supporting if $|C| = m^k$ for some integer k < n and there are *k* coordinate positions such that the restriction of |C| to these *k* positions is Z_m^k , in which case *C* is referred as an [n, k, d] code over Z_m where *d* stands for the minimum Hamming distance of *C*.

Definition 1 An [n, k, d] code C over Z_m is said to be an Almost-MDS (AMDS) code if the d = n - k. It is said to be Near-MDS (NMDS) if d = n - k and the minimum Hamming distance of the dual code of C is k.

Theorem 1 An [n, k, d] linear code over Z_m , where $m = p_1^{r_1} p_2^{r_2} p_3^{r_3} \dots p_s^{r_s}$ (where $p_i \ 1 \le i \le s$ are prime numbers) with systematic generator matrix $G = [I_k \ P_{k,n-k}]$ (after suitable column permutations) is an AMDS code if and only if every (g, g + 1) submatrix has (g, g) submatrices such that

- there exists at least one (g,g) submatrix whose determinant is a unit in Z_m or
- if the determinants of all the (g,g) submatrices are zero divisors then the greatest common divisor of these determinants is an unit in Z_m .

II. AMDS and NMDS Codes over Abelian Groups Groups

Definition 2 An [n,k] systematic group code C of length n and dimension k over an Abelian group G is a subgroup of G^n with order $|G|^k$ consisting of n-tuples, $(x_1, x_2, \dots, x_k, y_1, \dots, y_{n-k})$ with $y_i = \phi_i(x_1, x_2, \dots, x_k)$ where ϕ_i are (n-k) homomorphisms from G^k into G.

Definition 3 Consider a finite Abelian group G with cardinality m. An $[n, k = log_m(|C|), d]$ code C over G is an Almost-MDS AMDS code if d = n - k. An AMDS code C is said to be Near-MDS (NMDS) if its dual code [2] is also AMDS.

Theorem 2 A [k+s,k] group code over G, defined by the homomorphisms $\{\phi_1, \phi_2, \ldots, \phi_s\}$ is AMDS if and only if every (g, g + 1) submatrix of the associated matrix of the form

$$\Psi_{g,g+1} = \begin{bmatrix} \psi_{i_1j_1} & \psi_{i_1j_2} & \dots & \psi_{i_1j_{g+1}} \\ \psi_{i_2j_1} & \psi_{i_2j_2} & \dots & \psi_{i_2j_{g+1}} \\ \vdots & \vdots & \dots & \vdots \\ \psi_{i_gj_1} & \psi_{i_gj_2} & \dots & \psi_{i_gj_{g+1}} \end{bmatrix}$$
(1)

for $1 \le i_k \le g$, $1 \le j_k \le (g+1)$, $g = 1, 2, \dots, \min\{s, k\}$, has

- at least one (g,g) submatrix which represents an automorphism of G^g or
- if every (g,g) submatrix represents an endomorphism of G^g then the intersection of the kernels of the endomorphisms is only the identity element of G^g.

We specialize to the case where the group G is a cyclic group C_m , i.e., a cyclic group of order m.

Definition 4 An homomorphism $\phi : C_m^k \to C_m$ is called a distance non decreasing homomorphism (DNDH) if either $K_{\phi} = \{\vec{e}\}$ or $d_{min}(K_{\phi}) = 1$, where \vec{e} is the identity element of C_M^k , K_{ϕ} denotes the kernel of ϕ and d_{min} stands for minimum Hamming distance.

Lemma 3 A [k + 1, k] group code is AMDS if and only if the defining homomorphism is an DNDH.

Definition 5 Let $\{\phi\}_{i=1}^{i=s}$ denoted as Φ_s be a set of homomorphisms from $C_m^k \to C_m$ denoted as $\Phi_{(s)}$. Let $K_{\phi_1\phi_2...\phi_s}$ denote $K_{\phi_1} \cap K_{\phi_2} \cap \ldots K_{\phi_s}$ where K_{ϕ_i} is the kernel of ϕ_i . Φ_s is said to be a distance non decreasing set of homomorphisms, (DNDSH), if the following conditions are satisfied:

- the homomorphisms do not constitute a set of DISH
 [2]
- for all $1 \leq r \leq s \ d_{min}(K_{\phi_{i_1}\phi_{i_2}\dots\phi_{i_r}}) \geq r$ or
- $K_{\phi_{i_1}\phi_{i_2}...\phi_{i_r}} = \{\vec{e}\}.$

Theorem 4 A [k+s, k] group code is AMDS if and only if the defining homomorphisms Φ_s constitute a set of DNDSH.

Lemma 5 Over C_m , where $m = p_1^{d_1} p_2^{d_2} p_3^{d_3} \dots p_r^{d_r}$, where p_i 's are distinct primes, [k + s, s] AMDS group codes, for all $s, k \geq 2$, do not exist if $k \geq r + 2(p - 1)$, where $p = min\{p_1, p_2, \dots, p_r\}$.

Lemma 6 Over C_m , where $m = p_1^{d_1} p_2^{d_2} p_3^{d_3} \dots p_r^{d_r}$, with all primes p_i distinct, the dual of [k + s, s] AMDS group codes, for all $s, k \geq 2$ do not exist if $s \geq r + 2(p-1)$, where $p = min\{p_1, p_2, \dots, p_r\}$.

References

- S. M. Dodunekov and I. N. Landgev, 'On Near-MDS Codes', Technical Report, No:LiTH-ISY-R-1563, Department of Electrical Engineering, Linkoping University, February, 1994.
- [2] A. A. Zain and B. Sundar Rajan, 'Algebraic Characterization of MDS Group Codes over Cyclic Groups', *IEEE Trans. Information Theory*, Vol.41, No.6, Nov., 1997, pp.2052-2056.

 $^{^1{\}rm This}$ work was partly supported by the DRDO-IISc Program on Advanced Research in Mathematical Engineering through a grant to B.S.Rajan