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Abstract In this paper, we consider the single machine scheduling problem with

past-sequence-dependent setup times and a learning effect. The setup times are

proportional to the length of jobs that are already scheduled; i.e., past-sequence-

dependent (p-s-d) setup times. The learning effect reduces the actual processing

time of a job because the workers are involved in doing the same job or activity

repeatedly. Hence, the processing time of a job depends on its position in the

sequence. In this study, we consider the total absolute difference in completion times

(TADC) as the objective function. This problem is denoted as 1/LE, spsd/TADC

in [9]. There are two parameters a and b denoted constant learning index and

normalizing index, respectively. In this paper, we present a parametric analysis of b

on the 1/LE, spsd/TADC problem for a given value of a. A computational algorithm

is developed to obtain the number of optimal sequences and the range of b in which

each of the sequences is optimal, for a given value of a. We derive two bounds b∗

for the normalizing constant b and a∗ for the learning index a. We also show that

when a < a∗ or b > b∗, the optimal sequence is obtained by arranging the longest

job in the first position and the rest of the jobs in SPT order.

Keywords Scheduling, Setup times, learning effect
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1. INTRODUCTION

In a recent study, Koulamas and Kyparisis [8] introduced the concept of past-

sequence-dependent setup times in single machine scheduling problems. The pro-

cessing time of a job is a variable and depends on a function of its starting time in

many real-world scheduling problems [1]. In fact the study [8] is the first to consider

the past-sequence-dependent setup times; i.e., the setup time that is dependent on

the jobs that are already scheduled. In a production environment, the workers are

involved in doing the same type of job/activity on the same machine. Hence, it is

possible for the workers to learn and improve their performance. So the processing

time of a job reduces due to the learning. Biskup [3] is the first to address the

effect of learning in the context of single machine scheduling problems. It is shown

by Biskup [3] that this problem can be solved in polynomial time if the objectives

are minimization of deviation from a common due-date and the sum of flow times.

The learning effect on a single and parallel identical machines with the objective

of minimizing the flow-time are considered in [11, 12]. The learning effect in a two

machine flowshop scheduling with the objective of finding the sequence of jobs that

minimizes the total completion time is given by Lee and Wu [10]. In [10], a branch

and bound technique is presented. A heuristic algorithm is also presented in [10]

to improve the efficiency of the branch and bound technique. Cheng and Wang [5]

considers the learning effect on the processing time of jobs using a volume dependent

processing time function model. Wang [14] presents when deterioration and learning

effect to job processing times are involved, some single machine problems are remain

polynomially solvable. Cheng et al [6] presents a concise survey of scheduling with

time dependent processing times. In a recent study, Biskup [4] presents a complete

discussion on why and when the learning effects might occur and a concise review

of literature on scheduling with learning effects.
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In this paper, we consider the non-preemptive single machine scheduling problems

with past-sequence-dependent setup times along with learning effect. To the best of

our knowledge, Kuo and Yang [9] is the first to study the concept of past-sequence-

dependent setup times along with learning effect in single-machine scheduling prob-

lems. The objectives considered by Kuo and Yang [9] are minimizing the maximum

completion time (Cmax), total completion time (TC), total absolute difference in

completion times (TADC), and the unit earliness, tardiness and due date penalty

(ETCP ). These scheduling problems with past-sequence-dependent setup times

along with learning effect are denoted in [9] as:

Problem.(i): 1/LE, spsd/Cmax

Problem.(ii): 1/LE, spsd/TC

Problem.(iii): 1/LE, spsd/TADC

Problem.(iv): 1/LE, spsd/ETCP .

The scheduling problem is defined in the following manner. A set of n independent

jobs to be processed on a continuously available single machine. The machine can

process only one job at a time and job splitting and inserting idle times are not

permitted. All the jobs are available at time zero. Each job has a normal processing

time pr, (r = 1, 2, ..., n). The processing time of a job after learning and occupying

position r in the sequence is given by

pl
[r] = p[r]r

a, n = 1, 2, ..., n (1)

where a ≤ 0 is a constant learning index. Let s[r] be the setup time of a job occupying

position r in the sequence , and s[r] is defined as

s[1] = 0
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s[r] = b

r−1∑
j=1

pl
[j] r = 2, 3, ..., n (2)

where b ≥ 0 is a normalizing constant. In the above Eq. (2), the actual length of

the setup time depends on the value of b and learning index a. Let Cr denote the

completion time of job r in a sequence. It is shown in [9] that the well-known short-

est processing time (SPT) sequence is optimal for both the problems Problem.(i)

(1/LE, spsd/Cmax) and Problem.(ii) (1/LE, spsd/TC).

Contributions of this paper: We consider the problem (1/LE, spsd/TADC). For

this problem, the optimal sequence depends on the value of b and learning index a.

We present a parametric analysis of b on the 1/LE, spsd/TADC problem for a given

value of a. We present a computational algorithm to obtain the optimal sequence

and the range of b in which each of the sequences is optimal, for a given value of

a. We derive two bounds b∗ for the normalizing constant b and a∗ for the learning

index a. We also show that when a < a∗ or b > b∗, the optimal sequence is obtained

by arranging the longest job in first position and the rest of the jobs in SPT order.

In terms of the contribution for the industry, Koulamas and Kyparisis [8] in-

dicated that the consideration of past-sequence-dependent setup times stems from

high-tech manufacturing in which a batch of jobs consists of a group of electronic

components mounted together on an IC board. In addition, Uzsoy et al. [13] men-

tioned more general manufacturing environment in which either long setup times

are common. As a result, the problem is important and practical in industry.

2. Problem definition 1/LE, spsd/TADC:

In this section, we consider the single-machine scheduling problem with the

objective of minimizing the total absolute difference in completion times (TADC).
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The TADC of the 1/LE, spsd/TADC scheduling problem given in [9] is

TADC =
n∑

i=1

n∑
j=i

|Cj − Ci|

=
n∑

r=1

(r − 1)(n− r + 1) (s[r] + pl
[r])

=
n∑

r=1

{
(r − 1)(n− r + 1) + b

n∑
j=r+1

(j − 1)(n− j + 1)

}
rap[r] (3)

As mentioned in [9], the above Eq. (3) can be viewed as the scalar product of two

vectors. One vector is p[r] that is the vector of processing time of jobs. The other

vector is vr that is known as positional weights vector and it is given as

vr =

{
(r − 1)(n− r + 1) + b ∗

n∑
j=r+1

(j − 1)(n− j + 1)

}
ra, r = 2, 3, ..., n (4)

In the above positional weights vector Eq. (4), the value of v1 = 0 because s[1] is zero

(∵ s[r] = b
∑r−1

j=1 PA
[j] and v1 is an initial weight, see also [9]). It is well-known from [7]

that Eq. (3) is minimized by arranging the vectors vr and p[r] in opposite orders.

This is also given in [9] as Lemma.1. Hence, for a given value of b and a learning

index a, the optimal sequence for the 1/spsd/TADC problem can be obtained in

O(n log n) time. It can be seen that the optimal sequence depends on the values of

both b and a.

Parametric analysis of b: The optimal sequence for the 1/LE, spsd/TADC prob-

lem depends on the value of b for a given learning index a. Our interest in this study

is to find the range of b and the corresponding optimal sequence for a given learning

index a. The positional weight vector given by Eq. (4), plays an important role

in obtaining the optimal sequence. Hence, it is important to study the variation of

the positional weights with respect to b, to obtain the sequence. We first present a

motivating numerical example for understanding the contributions of this paper.

Motivating Numerical Example: Let us consider the 7 job example given
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in [2]. The processing time of the jobs are: p1 = 2, p2 = 3, p3 = 6, p4 = 9, p5 = 21,

p6 = 65 and p7 = 82. Let us consider the value of a = −0.152 proposed in [2]. For

this numerical example the positional weights are:

v1 = 0 ∗ 1a = 0.0000

v2 = (6 + 50 ∗ b) ∗ 2a = 5.4000 + 45.0000 ∗ b

v3 = (10 + 40 ∗ b) ∗ 3a = 8.4620 + 33.8484 ∗ b

v4 = (12 + 28 ∗ b) ∗ 4a = 9.7200 + 22.6801 ∗ b

v5 = (12 + 16 ∗ b) ∗ 5a = 9.3959 + 12.5278 ∗ b

v6 = (10 + 6 ∗ b) ∗ 6a = 7.6159 + 4.5695 ∗ b

v7 = 6 ∗ 7a = 4.4637 (5)

In order to study the effect of b on the optimal sequence, we plot the above values

of positional weights vr, (r = 1, 2, ..., n), with the value of b. The variations of

vr, (r = 1, 2, ..., n) for b values in the range of (0, 0.5) is shown in Figure.1. For a

given value of a, the variation of vr with b are linear and so we call them as lines

v1, v2, ..., v7. We see that lines v1 = 0 and v7 = 4.4637 are independent of b. We also

see that v1 and v7 are less than v2, v3, v4, v5 and v6 for b > 0.

In Figure 1, we see that there is a range of b in which the lines v2, v3, v4, v5 and v6

will not intersect each other. This implies that the sequence will be the same in this

range. For example when b = 0.2, the values of v1 = 0, v2 = 14.4, v3 = 18.1117,

v4 = 14.2560, v5 = 11.9015, v6 = 8.5298 and v7 = 4.4637. The optimal sequence

obtained using [7] is {7, 2, 1, 3, 4, 5, 6}. When b = 0.25, the values of v1 = 0, v2 =

16.65, v3 = 16.9241, v4 = 15.3900, v5 = 12.5278, v6 = 8.7583 and v7 = 4.4637. The

optimal sequence obtained using [7] is the same. This implies that in this range of b

(0.2 to 0.25) the optimal sequence is unique. Also, note that in this range of b (0.2

to 0.25) all the values of vr for r = 2, 3, ..., 6 are increasing with b.
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Figure 1: Variation of vr as a function of b

Let any two lines of vr (v2, v3, v4, v5 and v6) intersect at some values of b = b̂. We

can see that the optimal sequence obtained when b < b̂ is different from the optimal

sequence obtained when b > b̂. When b = b̂, we have two optimal sequences. Hence,

in order to obtain the range of b in which a sequence is optimal, we have to obtain

the intersection points of all lines vr (v2, v3, v4, v5 and v6) for b > 0.

We can obtain the intersection points by equating the positional weights vr, (r =

1, 2, ..., n) given by Eq. (5). For example (a = −0.152), the point of intersection of

lines v2 and v3 is obtained as: v2 = v3, which implies 5.4000+45.0000∗b = 8.4620+

33.8484∗ b. From this we get 11.152∗ b = 3.062 and hence b = 0.2746. There are six

points of intersection for this example (n = 7) and are denoted as m1 to m6 in Figure

1. These intersection points are: Lines v2 and v3 will intersect at point m1 = 0.2746.

Lines v2 and v4 will intersect at point m2 = 0.1935. Lines v2 and v5 will intersect

at point m3 = 0.1231. Lines v2 and v6 will intersect at point m4 = 0.0548. Lines v3
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and v4 will intersect at point m5 = 0.1126. Lines v3 and v5 will intersect at point

m6 = 0.0438.

We arrange these 6 intersection points m1 to m6 in the increasing order given as

{m6 m4 m5 m3 m2 m1}. We choose a value b in between any two consecutive values

of m (say between m4 and m5) and obtain the optimal sequence using [7]. This

sequence is optimal in the range of b given by m4 and m5. In this manner, we obtain

7 optimal sequences. The optimal sequences and the range of b are shown in Table.1.

Note that, we have to use one value of b in the range 0 < b < m6 and another value

of b in the range b > m1 and obtain their corresponding optimal sequences.

Table 1: Range of b and the optimal sequence for 1/LE, spsd/TADC problem (a =
−0.152)

Range of Optimal
b Sequence

0 < b < m6 {7, 5, 3, 1, 2, 4, 6}
m6 < b < m4 {7, 5, 2, 1, 3, 4, 6}
m4 < b < m5 {7, 4, 2, 1, 3, 5, 6}
m5 < b < m3 {7, 4, 1, 2, 3, 5, 6}
m3 < b < m2 {7, 3, 1, 2, 4, 5, 6}
m2 < b < m1 {7, 2, 1, 3, 4, 5, 6}

b > m1 {7, 1, 2, 3, 4, 5, 6}

From the above numerical example, we observe the following: The longest job (job

number 7) will always occupy the first position in the optimal sequence (because

v1 = 0). The second longest job will always occupy the last position in the optimal

sequence (because v6 < v2, v3, v4, v5 for b > 0). The number of intersection points

is 6. The number of optimal sequences is equal to the number of intersections plus

one i.e., 7. This because we have to include the value of b for 0 < b < m6 and

b > m1. At any point of intersection there are two sequences that are optimal. For
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example, when b = 0.2746 both the sequences {7, 2, 1, 3, 4, 5, 6} and {7, 1, 2, 3, 4, 5, 6}

are optimal, which implies that the value of TADC is same for both the sequences.

For the value of b > 0.2746, there are no intersections of the lines. This implies

that when b > 0.2746, the optimal sequence is unique and is {7, 1, 2, 3, 4, 5, 6}.

3. A computational algorithm for n jobs

In this section, we present a computational algorithm to obtain the optimal

sequence and the range of b in which each of the sequences is optimal, for a given

value of learning index a. For a general n jobs, we need to obtain the intersection

points of the positional weights vr, (r = 1, 2, ..., n) for b > 0. The intersection points

give the range of b. Once the intersection points are obtained, the optimal sequence

is obtained using [7]. The computational algorithm is given below.

STEP 1. GIVEN: n the number of jobs, a the value of learning index, and m the

index counter from zero.

STEP 2.

B(n)← 0

for r = 2 to n− 1 do

A(r) = (r − 1)(n− r + 1) ∗ ra

B(r) = {
∑n

j=r+1 (j − 1)(n− j + 1)} ∗ ra

end for

STEP 3.

for I = 2 to n− 1 do

for J = I + 1 to n− 1 do

x = A(J)−A(I)
B(I)−B(J)

if x = 0 then
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Do nothing

else

Y (m) = x and m = m + 1

end if

end for

end for

STEP 4. Arrange the intersection points given by Y (m) in increasing order. Let

Y Y (m) be the vector that is obtained by arranging the intersection points (Y (m))

in increasing order. Let bmin be the minimum value of Y Y (m) and bmax be the

maximum value of Y Y (m).

STEP 5. Choose a value of b in between any consecutive values in Y Y (m). With

this b value, first compute the weights vr. The optimal sequence can be obtained

by arranging the elements of vr and p[r] vectors in opposite order [7]. Choose one

value of b in the range 0 < b < bmin and obtain the optimal sequence using [7]. Also

choose one value of b in the range b > bmax and obtain the optimal sequence in same

manner using [7].

This above algorithm will give all the optimal sequences and the range of b in which

each sequence is optimal, for a given value of a.

Derivation of Bounds: We also see from the values of vr that the maximum value

of b denoted as bmax is given by the intersection of lines v2 and v3. This bmax value

is obtained as follows: We know that

v2 =

{
(n− 1) + b ∗

n∑
j=r+1

(j − 1)(n− j + 1)

}
∗ 2a

v3 =

{
2 ∗ (n− 2) + b ∗

n∑
j=r+1

(j − 1)(n− j + 1)

}
∗ 3a (6)
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The intersection point of lines v2 and v3 is{
(n− 1) + b ∗

n∑
j=r+1

(j − 1)(n− j + 1)

}
∗ 2a

=

{
2 ∗ (n− 2) + b ∗

n∑
j=r+1

(j − 1)(n− j + 1)

}
∗ 3a

This reduces to

b ∗

{
2a ∗

n∑
j=r+1

(j − 1)(n− j + 1) − 3a ∗
n∑

j=r+1

(j − 1)(n− j + 1)

}
= {2 ∗ (n− 2) ∗ 3a − (n− 1) ∗ 2a} (7)

From the above expression, we obtain bmax as

bmax =
{2 ∗ (n− 2) ∗ 3a − (n− 1) ∗ 2a}{

2a ∗
∑n

j=r+1(j − 1)(n− j + 1) − 3a ∗
∑n

j=r+1(j − 1)(n− j + 1)
} (8)

This above bmax is the bound b∗. We can easily see that if b > b∗ then the optimal

sequence is obtained by arranging the longest job in first position and the rest of

the jobs in SPT order.

From the bmax expression, we can also find the bound on learning index a. We know

that b ≥ 0. We find the value of a for which bmax = 0 and this value of a is the

bound on learning index a∗. This is obtained as

2 ∗ (n− 2) ∗ 3a = (n− 1) ∗ 2a (9)

From which we obtain

2a

3a
=

2 ∗ (n− 2)

(n− 1)

a {log(2)− log(3)} = {log(2 ∗ (n− 2)) − log(n− 1)} (10)

Hence, we obtain

a∗ =
{log(2 ∗ (n− 2)) − log(n− 1)}

{log(2)− log(3)}
(11)
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Here also, we can see that if a < a∗ then the optimal sequence is obtained by

arranging the longest job in first position and the rest of the jobs in SPT order.

Effect of learning index a: The number of optimal sequences and the range

depends on the value of a in addition to the value of b. For the numerical example

n = 7, if the value of a = −0.8, we obtain only three sequences that are optimal.

Our computational algorithm will find the optimal sequences and the range of b in

which each of these sequences are optimal. The results are shown in Table.2. The

reason for this is that some of the lines vr will intersect for values of b < 0, which is

not a feasible solution.

Table 2: Range of b and the optimal sequence for 1/LE, spsd/TADC problem (a =
−0.80)

Range of Optimal
b Sequence

0 < b < 0.0263376 {7, 3, 1, 2, 4, 5, 6}
0.0263376 < b < 0.053298 {7, 2, 1, 3, 4, 5, 6}

b > 0.0583298 {7, 1, 2, 3, 4, 5, 6}

4. Conclusions

We considered the single machine scheduling problems with past-sequence-dependent

setup times and a learning effect. The setup times are proportional to the length of

jobs that are already scheduled; i.e., past-sequence-dependent (p-s-d) setup times.

The actual processing time of a job depends on its position in the sequence because

of the learning effect. In this paper, we presented a parametric analysis of b on the

1/LE, spsd/TADC problem for a given value of a. A computational algorithm is

presented to obtain the number of optimal sequences and the range of b in which

each of the sequences is optimal, for a given value of a. Two bounds b∗ for the
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normalizing constant b and a∗ for the learning index a are derived. It is shown that

when a < a∗ or b > b∗, the optimal sequence is obtained by arranging the longest

job in first position and the rest of the jobs in SPT order.
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