ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Evidence for a role of initiation factor 3 in recycling of ribosomal complexes stalled on mRNAs in Escherichia coli

Singh, NS and Das, G and Seshadri, A and Sangeetha, R and Varshney, U (2005) Evidence for a role of initiation factor 3 in recycling of ribosomal complexes stalled on mRNAs in Escherichia coli. In: Nucleic Acids Research, 33 (17). pp. 5591-5601.

[img] PDF
Restricted to Registered users only

Download (4MB) | Request a copy


Specific interactions between ribosome recycling factor (RRF) and elongation factor-G (EFG) mediate disassembly of post-termination ribosomal complexes for new rounds of initiation. The interactions between RRF and EFG are also important in peptidyl-tRNA release from stalled pre-termination complexes. Unlike the post-termination complexes (harboring deacylated tRNA), the pre-termination complexes (harboring peptidyl-tRNA) are not recycled by RRF and EFG in vitro, suggesting participation of additional factor(s) in the process. Using a combination of biochemical and genetic approaches, we show that, (i) Inclusion of IF3 with RRF and EFG results in recycling of the pre-termination complexes; (ii) IF3 over expression in Escherichia coli LJ14 rescues its temperature sensitive phenotype for RRF; (iii) Transduction of infC135 (which encodes a functionally compromised IF3) in E.coli LJ14 generates a 'synthetic severe' phenotype; (iv) The infC135 and frr1 (containing an insertion in the RRF gene promoter) alleles synergistically rescue a temperature sensitive mutation in peptidyl-tRNA hydrolase in E.coli; and (v) IF3 facilitates ribosome recycling by Thermus thermophilus RRF and E.coli EFG in vivo and in vitro. These lines of evidence clearly demonstrate the physiological importance of IF3 in the overall mechanism of ribosome recycling in E.coli.

Item Type: Journal Article
Publication: Nucleic Acids Research
Publisher: Oxford University Press
Additional Information: Copyright for this article belongs to Oxford University Press.
Department/Centre: Division of Biological Sciences > Microbiology & Cell Biology
Date Deposited: 26 Nov 2005
Last Modified: 19 Sep 2010 04:21
URI: http://eprints.iisc.ac.in/id/eprint/4192

Actions (login required)

View Item View Item