
Evaluation of Advanced TCP Stacks in the iSCSI Environment using Simulation
Model

Girish Motwani
Indian Institute of Science, Bangalore

girish@csa.iisc.ernet.in

K. Gopinath
Indian Institute of Science, Bangalore

gopi@csa.iisc.ernet.in

Abstract

Enterprise storage demands have overwhelmed tradi-
tional storage mechanisms and have led to the development
of Storage Area Networks (SANs). This has resulted in the
design of SCSI transport protocols that encapsulate SCSI
commands and data for transfer over the network. Fiber
channel protocol was the first such protocol that used Gi-
gabit per second speed links to carry SCSI commands and
data over long distances. However, with the emergence
of Gigabit Ethernet and the iSCSI (Internet SCSI) proto-
col that maps the SCSI block oriented storage data over
TCP/IP and enables storage devices to be accessed over
standard Ethernet based TCP/IP networks, reduction in
costs and a unified network infrastructure can be achieved.

The iSCSI data flow is regulated by the TCP conges-
tion control algorithm. The standard TCP Reno conges-
tion control algorithm substantially under utilizes the net-
work bandwidth over high speed connections for most ap-
plications. To address this limitation of TCP, variants of
the TCP congestion control algorithm, designed for high
bandwidth networks, such as FAST TCP, BIC-TCP, H-TCP,
and Scalable TCP have been proposed. We use simulations
and experiments to compare the performance of these TCP
variants in an iSCSI environment. Our results indicate that
H-TCP outperforms the other TCP variants in an iSCSI en-
vironment. However H-TCP results in unfair sharing of
network bandwidth when simultaneous multiple flows ex-
ist. Performance obtained using BIC-TCP is only second
to that using H-TCP and it is relatively fairer as compared
to H-TCP.

1. Introduction

Enterprise storage demands have overwhelmed tradi-
tional storage mechanisms and has led to the development
of SANs. In a SAN, the storage devices are directly at-
tached to the network thereby enabling multiple host com-
puter systems to access the storage devices using standard

network protocols. With the advent of Gigabit per second
and higher speed networks, the effective transfer rates be-
tween the host and the storage have become comparable to
those achieved with direct attached storage. This has ac-
celerated the efforts directed towards the design of SCSI
transport protocols that encapsulate SCSI commands and
data for transfer over the network.

Fiber channel protocol was the first such protocol that
used Gigabit per second links to carry SCSI traffic over dis-
tance up-to 10 Kms. Although Fiber channel implementa-
tions offer better throughput guarantees, they are subject to
distance limitations and compatibility problems. To allevi-
ate these problems, the iSCSI protocol that maps the SCSI
block oriented storage data over TCP/IP and enables stor-
age devices to be accessed over standard Ethernet based
TCP/IP networks has been proposed. iSCSI establishes a
communication session between the SCSI Endpoints. This
session may comprise of one or more TCP connections.

The iSCSI protocol would typically be used in large
bandwidth network environments. It has been reported in
[8], that the standard TCP Reno congestion control algo-
rithm substantially under utilizes the network bandwidth
over high speed connections. In the congestion avoidance
phase, the TCP Window increases by 1 every round trip
time(RTT) and reduces by half at a loss event. This places
a serious constraint on the congestion window that can be
achieved by TCP in realistic environments. For example,
following a loss event, to achieve full utilization of 1Gbps
with 1500 bytes packets, the standard TCP variant (Reno)
requires approximately 8300 RTTs. With a 100ms RTT,
it takes approximately 14 minutes. Further, the average
packet drop rate of at most 2 ∗ 10−8 (obtained using the
relation windowsize = 1.2/

√
p, where p is the loss prob-

ability) needed for full link utilization in this environment
corresponds to a bit error rate of at most 2 ∗ 10−12,which
is an unrealistic requirement for high speed networks. To
address this fundamental limitation of TCP , variants of the
TCP congestion control algorithms such as FAST TCP, H-
TCP, BIC-TCP and Scalable TCP have been proposed. We
implemented the iSCSI simulation model using network

101

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05)
0-7695-2318-8/05 $ 20.00 IEEE

simulator ns-2[4] for simulating the network behavior and
DiskSim[7] for simulating the disk behavior to compare the
performance of these TCP variants in an iSCSI environ-
ment. To validate the simulation model, we conducted real
performance measurements and compared the results thus
obtained with those obtained using simulations. In addi-
tion, we study the effect of some iSCSI parameters on the
performance obtained.

The rest of the paper is organized as follows. In Section
2, we provide details on the iSCSI protocol data transfer.
The various advanced TCP congestion control algorithms
that we compare in our study are described in Section 3.
Section 4, describes our implementation of the iSCSI pro-
tocol in ns-2. The Experimental setup is described in Sec-
tion 5. We present our results in Section 6. Related work is
discussed in Section 7 and Conclusions appear in Section
8.

2. iSCSI Protocol Data Transfer

The iSCSI protocol is a SCSI transport protocol that
maps the SCSI block oriented storage data over TCP/IP and
enables storage devices to be accessed over standard Eth-
ernet based TCP/IP networks. The iSCSI protocol stack is
as shown in figure 3. iSCSI establishes a communication
session between the initiator and target. The session may
consist of one or more TCP connections. SCSI Command
Descriptor Blocks (CDB) are passed from the SCSI layer
to the iSCSI transport layer. The iSCSI transport layer en-
capsulates the SCSI CDB in an iSCSI Protocol Data Unit
(PDU) and forwards it to TCP. On a receive, the iSCSI
transport layer extracts the CDB from the iSCSI PDU, re-
ceived from the TCP layer and forwards the CDB to the
SCSI layer.

SCSI

iSCSI

TCP

IP

Ethernet

Figure 1. The iSCSI Protocol Stack

To illustrate the working of the protocol, consider a
write request. A SCSI write request triggers the trans-
mission of iSCSI command PDU to the target. The target
on receiving the command, allocates buffers for the trans-
fer and responds with one or more (R2T) PDUs. Each
R2T PDU is a permission to the initiator to transfer a por-

tion of the data associated with the command. The initia-
tor responds to a R2T PDU by sending out a sequence of
Data-Out PDUs containing the data requested. The max-
imum amount of data that can be sent out in one PDU
is given by the target’s Maximum Receive Data Segment
Length(MaxRecvDataSegmentLength). Finally when all
the data for the command, has been transferred from the
initiator to the target, the target sends an iSCSI Response
PDU, indicating successful completion of the command.
The iSCSI layer at the initiator passes the command com-
pletion status information to the SCSI layer. The write
transfer is illustrated in figure 2

Initiator Interconnect Target

Command
Completion

Last Data Out

Response

Command

First Data Out

Prepare
Buffers

Prepare

Write I/O

R2T

R2T

R2T

. . .

Response

iSCSIiSCSI

Figure 2. iSCSI Write Transfer

2.1. iSCSI and TCP

Storage traffic requires reliable and in-order delivery of
data packets. Since TCP guarantees in-order delivery of
data and congestion control, the iSCSI protocol was de-
signed to work on top of TCP as shown in Figure 1. TCP
has a mechanism to acknowledge all TCP packets that are
received and to resend packets that are not acknowledged
within a given time-out period. Thus iSCSI packets sent
over TCP that may get lost during delivery are automati-
cally resent by TCP. The iSCSI data flow is regulated by
the congestion control mechanism of TCP.

As TCP is used as the transport for iSCSI, the iSCSI
initiators are connected to targets using TCP connections.
Due to the TCP window size restrictions and round trip
times over long distances, it might not be possible for a

102

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05)
0-7695-2318-8/05 $ 20.00 IEEE

single TCP connection to utilize the full bandwidth capac-
ity of the underlying link. Therefore, the iSCSI protocol
specifies that an iSCSI session can consist of multiple TCP
connections between the initiator and target.

3. TCP Variants

TCP has been adopted as a data transfer protocol for
the Internet. However, it has been reported that over high
speed networks, TCP under utilizes the network bandwidth.
A number of variants of the TCP congestion control algo-
rithm have been proposed to circumvent this problem. In
this section, we describe the standard TCP Reno algorithm
and the approach taken by the proposed TCP variants.

3.1. Reno TCP

TCP’s congestion management comprises of the slow
start and congestion avoidance algorithms that allow
TCP to increase the data transmission rate without over-
whelming the network. TCP Reno’s congestion avoidance
mechanism is referred to as AIMD(Additive Increase,
Multiplicative Decrease). In the congestion avoidance
phase, TCP Reno increases its congestion window(cwnd)
by one packet per window of data acknowledged and
halves the congestion window for every window of data
containing a packet drop. This can be described by the
following equations.

Slow Start:

ACK : new cwnd = old cwnd + c

Congestion Avoidance:

ACK : new cwnd = old cwnd +a/old cwnd

Loss : new cwnd = old cwnd −b∗old cwnd

where a=1, b=0.5, c=1.

3.2. FAST TCP

FAST TCP[8] is a TCP congestion control algorithm de-
signed for high speed, long latency networks. It is based on
TCP Vegas instead of Reno TCP. The key difference is that
it uses an equation based window control approach rather
than the AIMD algorithm of TCP Reno. Also, unlike TCP
Reno, it uses both queuing delay and packet loss as the con-
gestion measures rather than just packet loss.

3.3. BIC-TCP

BIC-TCP[14] is another variant of the TCP congestion
control algorithm designed for high speed networks with

large delays. Like TCP Reno, BIC-TCP uses packet loss as
the congestion measure. However, it uses the binary search
technique to increase the congestion window in the conges-
tion avoidance phase.

3.4. Scalable TCP (STCP)

Scalable TCP involves a simple sender side change to
TCP Reno. [10] defines the legacy window size lwnd as
the maximum window size that can be achieved by TCP
Reno. Associated with this window size is the legacy loss
rate pl which is the maximum packet loss rate needed to
support window larger than lwnd. Scalable TCP uses the
Reno congestion window update algorithm given as

ACK : newcwnd = oldcwnd +1/oldcwnd

LOSS : newcwnd = oldcwnd − [0.5∗oldcwnd]

when cwndold ≤ lwnd.

When cwndold > lwnd the following Scalable TCP
window update algorithm is used.

ACK : newcwnd = oldcwnd +0.01

LOSS : newcwnd = oldcwnd − [0.125∗oldcwnd]

3.5. High Speed–TCP (HSTCP)

High Speed TCP (HS-TCP) [6] is designed to behave
like Reno for small values of the congestion window, but
above a chosen value of cwnd an aggressive response func-
tion is used. When cwnd is large (greater than 38 packets),
this modification uses a table to determine by how much the
congestion window should be increased when an ACK is

received, and it releases less network bandwidth than cwnd
2

on packet loss.

3.6. H-TCP

H-TCP has a similar approach to HSTCP since H-TCP
switches to the advanced mode after it has reached a thresh-
old. Instead of using a table like HS-TCP, H-TCP uses a
heterogeneous AIMD algorithm as described in [13]

4. iSCSI Simulation model in ns-2

We have implemented the iSCSI protocol in network
simulator ns-2 which provides substantial support for sim-
ulation of routing, multi cast protocols and transport pro-
tocols, such as UDP, TCP, over wired and wireless net-
works. To simulate the disk behavior, we have integrated
the DiskSim Simulator with ns-2 for our simulation setup.
DiskSim acts as the slave of the system simulator(ns-2).

103

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05)
0-7695-2318-8/05 $ 20.00 IEEE

Network

Session 1

Connection−1

Session 2

Session 1

Connection−1

Session 2

Disk Controller

Targetinitiator

FullTCP Agent

TcpApp TcpApp

FullTCP Agent

Trace file
Requests from

Read/Write

DiskSim

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

Figure 3. iSCSI System based on ns-2

4.1. Implementation

Our implementation of the iSCSI protocol in ns-2 sup-
ports the following features

• Single session between the initiator and target

• Multiple connections per session

• Arbitrary number of outstanding R2Ts

• All combinations of InitialR2T and ImmediateData
keys

• arbitrary values of MaxBurstLength, First-
BurstLength and MaxRecvDataSegmentLength

• optional periodic Nop-Ping to target

The iSCSI protocol implementation in ns-2 comprises
the following classes:

iSCSIData: This class is used to encapsulate the iSCSI
Protocol Data Units to be sent across to the other side using
the TCPApp class object associated with the connection.

iSCSIApp: This is the base class for the iSCSI Ini-
tiator and Target. The iSCSI parameters are: ncon-
nections, MaxConnections, InitialR2T, ImmediateData,
MaxBurstLength, FirstBurstLength, MaxOutstandingR2T,
DataPDUInOrder.

iSCSIConnection: This class performs tasks specific to
the iSCSIConnection. Each iSCSIConnection has its own
TcpApp object which is used for the transmission and re-
ception of data. FullTCPAgents are used for iSCSIConnec-
tion.

iSCSISession: This class performs functions specific to
the iSCSISession operation. The iSCSIConnection class
object is an element of this class.

iSCSIInitiator: This class is derived from the iSCSI-
App class and includes the functions specific to the initiator
operation. This includes the iSCSISession Class object as
an element.

Nist Net Router

2.8 Ghz, Pentium 4

Gigabit Ethernet
Connection

Initiator Target

1GHz, Pentium III 1GHz, Pentium III

��

Figure 4. Experimental Setup

iSCSITarget: This class is derived from the iSCSIApp
class and includes the functions specific to the iSCSI Target
operation. It also includes the iSCSISession Class object as
an element.

Figure 3 shows a typical setting of the iSCSI system
implementation in ns-2. The system comprises of four
parts: the initiator, which generates the read/write re-
quests, the network, configured based on the ns-2 compo-
nents, the iSCSI target and the disk devices simulated us-
ing DiskSim. The initiator is fed with traces provided by
Hewlett-Packard Labs.

5. Experiments

We conducted our experiments using both the Linux im-
plementation of the iSCSI initiator and target[11] and sim-
ulation setup using ns-2 and DiskSim. In this section, we
describe the setup used.

5.1. Testbed

The WAN emulation testbed is as shown in Figure 4.
Three machines were used in our experimental setup. The
machines that host the initiator and target have 1 GHz Pen-
tium III with 1GB of main memory. The machine desig-
nated as the router has 2.8GHz Pentium 4 with 1GB of
main memory. All machines are connected to a switched
Gigabit Ethernet using DLink DGE-550T Gigabit Ether-
net cards. We set up a 40ms delay path between the ini-
tiator and target using Nist Net[2]. The bottleneck band-
width is set to 100 Mbps using NistNet. We use file system
benchmark Postmark to generate storage traffic for our ex-
periments. The general ns-2 simulation setup we use is as
shown in Figure 5. For our experiments, the buffer space
at the bottleneck router N1 is set to 50 packets and the bot-
tleneck link has a bandwidth of 100 Mbps. The round trip
time(RTT) between the endpoints is set to 40ms. The ini-
tiator is fed with traces provided by HP Labs. These traces
are representative of the workload typically found in file
servers. The I/O traces contain information about when
the request starts, whether it is a read or a write operation,
the request data size, the selected disk, and the sector ad-
dress. The disk behavior we simulate is that of the Seagate

104

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05)
0-7695-2318-8/05 $ 20.00 IEEE

N1 N2

Initiator Target

x ms

x1 ms x2 ms

Source

.

.

.

.

.
.
.
.
.

.

Sink

Bottleneck Link

Forward

Reverse

Figure 5. ns-2 Simulation Setup

ST39102LW Cheetah9LP disks. The specifications for this
disk can be found at [1].

6. Results

The parameters used to compare the Advanced TCP
Stacks are throughput achieved and TCP fairness behavior.

6.1. Effect of the Number of Connections per
iSCSI Session

In the first set of experiments, we compare the perfor-
mance of the various TCP stacks considered with differ-
ent number of TCP connections comprising the iSCSI Ses-
sion. The results obtained using the emulation testbed are

Figure 6. Comparison of TCP Variants for
iSCSI data flows

shown in Figure 6. Here we compare TCP Reno with FAST
TCP, BIC-TCP and H-TCP. We observe that for less num-
ber of connections(less than 3), FAST TCP gives best per-
formance among the variants considered, and BIC TCP and
H-TCP perform poorly. As the number of connections in-
crease, both BIC TCP and H-TCP show an improvement in
throughput achieved, however rate of improvement in the
throughput achieved using FAST TCP diminishes.

This behavior of FAST TCP can be attributed to the
presence of reverse traffic. The SCSI data transfers involve

both reads and writes. Hence at any given point in time
data transfers are taking place in both directions across the
network. Thus, for the write transfers directed from the
initiator to the target, the read transfers act as the reverse
traffic and vice versa. Reverse traffic causes queuing on the
reverse path. This in turn can result in the ACKs being lost
or coming back in bursts(compressed ACKs). This modifi-
cation of the ACK behavior results in the sender observing
increased RTTs due to increase in the reverse path delays.
FAST TCP is based on TCP Vegas and uses the queuing
delay in addition to packet loss as the congestion measure.
For FAST TCP, an increase in the queuing delay causes the
FAST TCP congestion window to change (increase in this
case) at a slower rate and the equilibrium point is shifted
downwards. Thus the network bandwidth is under utilized.
As the number of connections sharing the link increase, the
reverse traffic increases resulting in degradation of the per-
formance obtained.

Using simulations, we perform the same experiment.
However, since the ns-2 release for FAST TCP is currently
not available, we do not consider it in our simulation stud-
ies. We compare TCP Reno with BIC–TCP, HSTCP, Scal-
able TCP and H-TCP. We ran the simulation for 1000 sec-
onds. The results for the simulation are as shown in Figure

Figure 7. Comparison of TCP Variants using
ns-2 simulations

7. We observe that for fewer number of connections, per-
formance obtained using the newer variants is poor com-
pared to that obtained with TCP Reno. Also, H-TCP gives
the best performance for most of the observed cases, ex-
cept for the case of one TCP connection, where TCP Reno
outperforms the other TCP variants. For higher number of
connections (five or more), identical performance achieved
with BIC–TCP and Scalable TCP.

To determine the reasons for the poor performance of
the advanced TCP stacks for lesser number of connections,
we determine the number of packet drops for BIC TCP, H–
TCP and Reno TCP, for the different number of TCP con-

105

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05)
0-7695-2318-8/05 $ 20.00 IEEE

nections considered. Both HSTCP and Scalable TCP result
in far more packet losses as compared to Reno, BIC–TCP
and H–TCP. Hence, we do not plot the losses for HSTCP
and Scalable TCP. This is shown in Figure 8. It can be

Figure 8. Packet Drops for TCP Variants

observed that the use of BIC TCP and H-TCP algorithms
results in far more packet losses as compared to TCP Reno.
This can be attributed to the more aggressive window in-
crement strategy used by these algorithms in the conges-
tion avoidance phase. Also, H-TCP is more aggressive as
compared to BIC TCP. These losses result in the poor per-
formance observed for lesser number of connections.

6.2. Effect of the iSCSI parameter
MaxBurstLength

In the second set of experiments, we studied the per-
formance of the different TCP variants with variation in
the iSCSI parameter Maximum Burst Length. The results
obtained using the emulation testbed are shown in Fig-
ure 9. We use the testbed described in Section 5. The
number of connections that comprise the iSCSI session
were chosen to be 5, for these experiments. Both FAST

Figure 9. Effect of MaxBurstLength on per-
formance obtained with TCP Variants

TCP and BIC TCP give better performance as compared

to TCP Reno across all values of the MaxBurstLength. H-
TCP gives higher throughput values for almost all values of
the MaxBurstLength considered. The poor performance of
TCP Reno is due to its AIMD congestion avoidance behav-
ior. Figure 10 shows the results obtained using ns-2 simu-

Figure 10. Effect of MaxBurstLength on per-
formance obtained with TCP Variants using
ns-2 Simulations

lation. Here, the number of connections is chosen to be 5
as in the experiments conducted using the testbed setup.

The graph indicates that over links with large bandwidth
delay products, H-TCP outperforms the other TCP variants
considered. Further, the performance achieved using the
Reno and HSTCP congestion control algorithms is nearly
the same. BIC TCP performs relatively better as com-
pared to Scalable TCP. Also, for MaxBurstLength values
greater than 256KB, approximately the same performance
is observed across the TCP variants. For lower values of
MaxBurstLength, the burst data is not sufficient to utilize
the TCP congestion window, and hence we observe lower
throughput numbers.

6.3. Fairness

From the results presented in sections 6.1 and 6.2, we
observe that H-TCP performs better than the other TCP
variants overall. However, as seen in Figure 8, H-TCP re-
sults in more packet drops. Also, BIC-TCP results in rela-
tively lesser losses as compared to H-TCP but more losses
as compared to Reno TCP. This suggests that H-TCP is
more aggressive as compared to the other variants consid-
ered. We do not consider HSTCP and Scalable TCP here,
as results in [14] indicate that these variants are unfair to
other flows. To determine the fairness properties of H-TCP
and BIC-TCP, we use our simulation setup. We establish
2 TCP flows sharing the bottleneck link. The two flows

106

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05)
0-7695-2318-8/05 $ 20.00 IEEE

 0

 50

 100

 150

 200

 250
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
(p

ac
ke

ts
)

Time (Seconds)

Fairness Properties of Reno-TCP

"ftp1-reno"
"iscsi-reno"

Figure 11. Fairness Properties of TCP Reno
using ns-2 simulations

comprise one iSCSI flow starting at 0 seconds and a FTP
flow F1 starting 60 seconds. Flow F1 ends at 400 seconds
while the iSCSI flow finishes at 600 seconds. Both the
flows use the same TCP congestion control algorithm. The

 0

 100

 200

 300

 400

 500

 600

 700

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
(p

ac
ke

ts
)

Time (Seconds)

Fairness Properties of H-TCP

"ftp1-wnd-htcp"
"iscsi-wnd-htcp"

Figure 12. Fairness Properties of H-TCP us-
ing ns-2 simulations

performance obtained with the Standard TCP Reno conges-
tion control algorithm is as shown in Figure 11. When the
FTP flow arrives, initially the iSCSI flow dominates and
consumes a greater portion of the bandwidth. However,
beyond 200 seconds, the FTP flow uses up a greater por-
tion of bandwidth as compared to the iSCSI flow. This is
the pattern of sharing till the FTP flow ceases to exist at
400 seconds. After 400 seconds, the iSCSI flow increases
its window size to use up the newly available share of the
bandwidth.

In an identical environment, the results for H-TCP are
as shown in Figure 12. It can be observed that the iSCSI

flow consumes most of the bandwidth available resulting in
an unequal sharing of the bandwidth when the FTP flow F1
arrives. The FTP flow window averages around 60 pack-
ets(packet size 1500 bytes) whereas the iSCSI flow con-
sumes an average window of size 120 packets. Thus, H-
TCP results in an unfair sharing of the bottleneck band-
width. The plot obtained with BIC-TCP congestion control

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
(p

ac
ke

ts
)

Time (Seconds)

Fairness Properties of BIC-TCP

"ftp1-wnd-bic"
"iscsi-wnd-bic"

Figure 13. Fairness Properties of BIC-TCP us-
ing ns-2 simulations

algorithm is as shown in the Figure 13. With the arrival
of the FTP flow F1 at 60 seconds, the two flows have a
nearly equal sharing of the available bandwidth with the
two flows having alternate periods of large and small win-
dow sizes. However, in the period between 275 to 400 sec-
onds, the FTP flow utilizes most of the available bandwidth,
with the iSCSI flow window dropping to an average value
of 30 packets. A similar drop in the packet sizes for one
of the flows occurs when TCP Reno is used to control the
flows as shown in Figure 11. When the FTP flow ends,
the iSCSI flow takes up the newly available network band-
width. Thus BIC-TCP is relatively fair as compared to H-
TCP, from these results. This can be attributed to the fast
convergence mechanism used by BIC-TCP.

7. Related Work

The work in [3], evaluates iSCSI as a competitor to Fibre
channel for use in SANs. The work compares performance
achieved with four configurations : two using a commercial
grade SAN employing Fibre channel as a back end storage
medium and iSCSI target hardware, and the other two using
iSCSI implementation in software[11]. The experiments to
study iSCSI performance using specialized hardware were
for a data center environment. These experiments studied
the effect of different data block sizes in four configura-
tions. The second set of experiments studied iSCSI perfor-

107

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05)
0-7695-2318-8/05 $ 20.00 IEEE

mance in a WAN configuration using software based ini-
tiator and target implementation with varying network path
delays (obtained using a WAN simulation tool) and block
sizes. They do not consider variants of TCP algorithm in
their work. Our work uses a testbed similar to the one used
in the second set of experiments and simulations, software
based initiator and target implementations to study the per-
formance of the iSCSI protocol with different TCP stacks,
varying number of connections per session and different
values of the iSCSI protocol parameter MaxBurstLength.

In [12], the effect of the iSCSI parameter
MaxBurstLength on throughput achieved in the pres-
ence of congestion is evaluated, which is similar to our
work. However, their iSCSI implementation in ns-2 is a
basic one, supporting only one connection and does not
consider disk behavior. Also they do not consider the
different TCP stacks for the performance comparison.

[5] evaluates the performance of the advanced TCP
stacks such as FAST TCP[8], BIC-TCP[14], HTCP, Scal-
able TCP and the standard Reno TCP over high speed pro-
duction networks using iperf with 3 different path delay
configurations. However, their work does not study the per-
formance with storage based protocols such as iSCSI.

8. Conclusions

We have compared the performance of the advanced
TCP stacks in an iSCSI environment. We have also stud-
ied the effect of the number of TCP connections compris-
ing an iSCSI session and the iSCSI protocol parameter
MaxBurstLength on the performance.

Our results indicate that H-TCP outperforms the other
TCP variants in throughput performance. However, it re-
sults in unfair sharing of the network bandwidth when si-
multaneous multiple flows exist. FAST TCP is constrained
due to the presence of reverse data flows. Throughput Per-
formance obtained using BIC-TCP is second to that ob-
tained using H-TCP and it is relatively fairer to the other
flows.

Also, increasing the number of connections for the
iSCSI session results in improved performance. The iSCSI
parameter, MaxBurstLength does not affect the perfor-
mance achieved. However the MaxBurstLength should be
greater than some minimum threshold, to utilize the TCP
Congestion Window.

References

[1] Seagate SCSI Disk Manuals,
http://www.seagate.com/support/disc/manuals/.

[2] Nist internetworking technology group.
nist net network emulation package,
http://www.antd.nist.gov/itg/nistnet/, June 2000.

[3] S. Aiken, D. Grunwald et al. A performance analy-
sis of the iscsi protocol. In 20 th IEEE/11 th NASA
Goddard Conference on Mass Storage Systems and
Technologies, 2003.

[4] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin
Fall. Improving simulation for network research.
Technical Report 99-702, 1999.

[5] H. Bullot, R. Cottrell, and R. Hughes-Jones. Evalua-
tion of advanced tcp stacks on fast long-distance pro-
duction networks. In Proceedings of PFLDnet, 2004.

[6] Sally Floyd. High Speed TCP for Large Congestion
Windows, IETF Internet Draft, draft-floydhighspeed-
02.txt, February 2003.

[7] G. Ganger, B. Worthington, and Y. Patt. The Disksim
Simulation Environment Version 3.0 Reference Man-
ual. Technical Report CMU-CS-03-102, Carnegie
Mellon University, January 2003.

[8] C. Jin, D. Wei, and S. H. Low. FAST TCP: Mo-
tivation, Architecture, Algorithms and Performance.
In Proceedings of the IEEE INFOCOM 2004, March
2004.

[9] J. Katcher. Postmark: A new file system benchmark.
Technical Report TR3022, Network Appliance Inc.,
october 1997.

[10] T. Kelly. Scalable tcp: Improving Performance in
HighSpeed Wide Area Networks, 2003.

[11] Ashish Palekar, Narendran Ganapathy et al. Design
And Implementation Of a Linux SCSI Target For
Storage Area Networks. In Proceedings of the 5th An-
nual Linux Showcase & Conference, November 2001.

[12] George Porter, Randy Katz et al. The OASIS Group
at U.C. Berkeley: Research Summary and Future Di-
rections. Technical report, UCB, May 2003.

[13] R. Shorten and D. Leith. H-TCP: TCP for High-
speed and Long-distance Networks. In Proceedings
of PFLDnet, 2004.

[14] L. Xu, K.Harfoush, and I. Rhee. Binary Increase Con-
gestion Control(BIC) for Fast, Long-Distance Net-
works. In Proceedings of the IEEE INFOCOM 2004,
March 2004.

108

Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05)
0-7695-2318-8/05 $ 20.00 IEEE

