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Abstract

Given two independent Poisson point processes ®(1), &) in R? the AB Poisson Boolean model
is the graph with points of ®(1) as vertices and with edges between any pair of points for
which the intersection of balls of radius 2r centred at these points contains at least one point
of ®®@). This is a generalization of the AB percolation model on discrete lattices. We show the
existence of percolation for all d > 2 and derive bounds for a critical intensity. We also provide
a characterization for this critical intensity when d = 2. To study the connectivity problem, we
consider independent Poisson point processes of intensities n and cn in the unit cube. The AB
random geometric graph is defined as above but with balls of radius r. We derive a weak law result
for the largest nearest neighbour distance and almost sure asymptotic bounds for the connectivity

threshold.
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1 Introduction

A variant of the usual independent percolation model that has been of interest is the AB percolation
model ([5, 15]). Given a graph L, each vertex is given a mark A or B independent of other vertices.
Edges between vertices with similar marks (A or B) are removed. The resulting random sub-
graph is the AB graph model. Percolation is said to happen in this model if there exists, with
positive probability, an infinite path of vertices with marks alternating between A and B. This
model has been studied on lattices and some related graphs. The AB percolation model behaves
quite differently as compared to the usual percolation model. For example, it is known that AB
percolation does not occur in Z? ([1]), but occurs on the planar triangular lattice ([14]), some

periodic two-dimensional graphs ([12]) and the half close-packed graph of Z? ([15]).

The following generalization of the discrete AB percolation model has been studied on various
graphs by Kesten et. al. (see [2, 8, 9]). Mark each vertex or site of a graph L independently
as 0 or 1 with probability p and 1 — p respectively. Given any infinite sequence (referred to as
a word) w € {0,1}°°, the question is whether w occurs in the graph L or not. The sentences
(1,0,1,0...),(0,1,0,1..) correspond to AB percolation and the sequence (1,1,1...) corresponds to
usual percolation. More generally Kesten et. al. answer whether all (or almost all) infinite sequences

(words) are seen in L or not. The graphs for which the answer is known in affirmative are Z? for d

2

op» the close-packed graph of Z2. Our results provide partial answers

large, triangular lattice and Z

to these questions in the continuum.

Our aim is to study a generalization of the discrete AB percolation model to the continuum. We
study the problem of percolation and connectivity in such models. For the percolation problem the
vertex set of the graph will be a homogenous Poisson point process in R%. For the connectivity
problem we will consider a sequence of graphs whose vertex sets will be homogenous Poisson point
processes of intensity n in [0,1]%. We consider different models while studying percolation and
connectivity so as to be consistent with the literature. This allows for easy comparison with, as

well as the use of existing results from the literature.



Our motivation for the study of AB random geometric graphs comes from applications to wireless
communication. In models of ad-hoc wireless networks, the nodes are assumed to be communicat-
ing entities that are distributed randomly in space. Edges between any two nodes in the graph
represents the ability of the two nodes to communicate effectively with each other. A pair of nodes
share an edge if the distance between the nodes is less than a certain cutoff radius r > 0 that is
determined by the transmission power. Percolation and connectivity thresholds for such a model
have been used to derive, for example, the capacity of wireless networks ([4, 6]). Consider a trans-
mission scheme called the frequency division half duplex, where each node transmits at a frequency
f1 and receives at frequency fo or vice-versa ([13]). Thus nodes with transmission-reception fre-
quency pair (f1, f2) can communicate only with nodes that have transmission-reception frequency
pair (f2, f1) that are located within the cutoff distance r. Another example where such a model
would be applicable is in communication between communicating units deployed at two different
levels, for example surface (or underwater) and in air. Units in a level can communicate only with
those at the other level that are within a certain range. A third example is in secure communication
in wireless sensor networks with two types of nodes, tagged and normal. Upon deployment, each
tagged node broadcasts a key over a predetermined secure channel, which is received by all normal
nodes that are within transmission range. Two normal nodes can then communicate provided there
is a tagged node from which both these normal nodes have received a key, that is, the tagged node

is within transmission range of both the normal nodes.

The rest of the paper is organized as follows. Sections 2, 3 define and state our main theorems on
percolation and connectivity respectively. Sections 4, 5 contain the proofs of these results. We will
refer to our graphs, in the percolation context as the AB Poisson Boolean model, and as the AB
random geometric graph while investigating the connectivity problem. Poisson Boolean model and
random geometric graphs where the nodes are of the same type are the topics of the monographs

[10] and [11] respectively.



2 Percolation in the AB Poisson Boolean Model

2.1 Model Definition

We first describe the AB Poisson Boolean model. Let ®(1) = {X;};>; and ®® = {V;};>; be
independent Poisson point processes in R?, d > 2, with intensities A and u respectively. Let the

metric on R? be given by the usual Euclidean norm denoted by |- |.

The usual continuum percolation model is defined as follows.

Definition 2.1. Define the graph G(\,r) := (&N, E(\,r)) to be the graph with vertex set ) and
edge set
EOr) = {(X;, X)) Xi, Xj € oW | X; — X;| < 21}

The edges in all the graphs that we consider are undirected, that is, (X;, X;) = (X, X;). We will
use the notation X; ~ X; to denote existence of an edge between X;, X; when the underlying graph
is unambiguous. By percolation, we mean the existence of an infinite connected component in the

graph. For fixed r > 0, define
Ae(r) :=inf {/\ >0:P (é(/\,r) percolates ) > 0} : (2.1)

In this usual continuum percolation model ([10]), it is known that 0 < A.(r) < co.

A natural analog of this model to the AB set-up would be to consider a graph with vertex set ®(1)
where each vertex is independently marked A or B. We will consider a more general model from

which results for the above model will follow as a corollary.

Definition 2.2. The AB Poisson Boolean model G\, p,7) == (&N, E(X, i1, 7)) is the graph with

vertex set ®V) and edge set

E\, p,r) = {(X5, X;) : X3, X; € oW |X; — Y| < 2r, | X; = Y| < 2r, for someY € IO



Let O(\, p, ) = P(G(X, p, r) percolates) . It follows from the zero-one law that O(\, u,r) € {0, 1}.

We are interested in characterizing the region formed by (A, u,7) for which O(\, p,r) = 1.

Definition 2.3. For fized \,r > 0, define the critical intensities pc(\,r) by

e(h,7) = sup{u O\, . 7) = 0}

2.2 Main Results

We start with some simple lower bounds for the critical intensity pi.(A, 7).

Proposition 2.1. Fiz A\, > 0. Let \:(r), pe(\,r) be the critical intensities as in (2.1) and

Definition 2.3, respectively. Then

1o pe(N ) > Ae(r) = A, if Ae(2r) < A< A(r), and

2. pe(Ar) =00, if A< A(2r).

However, it is not clear that p.(A,r) < oo for A > A;(2r). We answer this in affirmative for d = 2.

Theorem 2.1. Let d =2 and r > 0 be fized. Then for any A > A\.(2r), we have p.(A, 1) < 0.

Thus the AB Boolean model exhibits a phase transition in the plane. However, the above theorem
does not tell us how to choose a u for a given A > A.(2r) for d = 2 such that AB percolation
happens, or if indeed there is a phase transition for d > 3. We obtain an upper bound for p.(\, )
as a special case of a more general result which is the continuum analog of word percolation on

discrete lattices described in Section 1. In order to state this result, we need some notation.

Definition 2.4. For each d > 2, define the critical probabilities p.(d), and the functions a(d,r) as

follows.

1. For d = 2, consider the triangular site percolation model (see Figure 1) with edge length

[14

r/2. Around each vertex place a “flower” formed by circular arcs (see Figure 1). These arcs



/I
/X

Figure 1: The triangular lattice and flower in R? with area a(2,7)

are formed by circumferences of circles of radius 5 drawn from the mid-points of the edges.
Let a(2,7) be the area of a flower. Let p.(2) be the critical probability for independent site

percolation on this lattice.

2. For d > 3, let p.(d) be the critical probability for independent site percolation on Z%, and

define a(d,r) = (r/\/3 + d)°.

It is known that p.(2) = 3, and pe(d) < 1, for d > 3 (see [5]).

Proposition 2.2. For any d > 2, let p.(d), a(d,r) be as in Definition 2.4. Fix k € N and
let (ri,...,r%) € Ri. Set ro = infi<; j<p{ri + rj}. For i = 1,...,k, let @) be independent
Poisson point processes of intensity A\; > 0. A word w = {w(i)}i>1 € {1,2,...,k}>* is said to
occur if there exists a sequence of distinct elements {X;}i>1 C R?, such that X; € @(w(i)), and
| X — Xita] < ru) + Tw@vr), fori > 1. If Hle(l — e Naldr0)y > g (d), then almost surely, every

word occurs.

The following corollary gives an upper bound for u.(A,r) for large A.

Corollary 2.1. Suppose that d > 2, r > 0, and A > 0 satisfies

~ log (1 —pe(d))

A> a(d,2r)

where p.(d), a(d,r) are as in Definition 2.4. Let u.(\, ) be the critical intensity as in Definition 2.3.
Then

e\ 1) < —a(d’12T)10g [1 - <%>} . (2.2)

5



Remark 2.1. A simple calculation (see [10], pg.88) gives a(2,2) ~ 0.8227, and
—(a(2,2)) log(1 — p(2)) ~ 0.843.

Using these we obtain from Corollary 2.1 that p.(0.85,1) < 6.2001.

Remark 2.2. It can be shown that the number of infinite components in the AB Boolean model is
atmost one, almost surely. The proof of this fact follows along the same lines as the proof in Poisson
Boolean model (see [10, Proposition 3.3, Proposition 3.6]), since it relies on the ergodic theorem

and the topology of infinite components, and not on the specific nature of the infinite components.

The above proposition can be used to show existence of AB percolation in the natural analog of
the discrete AB percolation model (refer to the two sentences above Definition 2.2). Recall that
®M) is a Poisson point process in R% of intensity A > 0. Let {m;};>1 be a sequence of i.i.d. marks
distributed as m € {A, B}, with P(m = A) = p = 1 — P(m = B). Define the point processes
P4 B as

= {X; e dM m;=A}, 8=\ o4

Definition 2.5. For any A\, > 0, and p € (0,1), let ®* and P be as defined above. Let

@()\,p, r) = (4, E()\,p, 1)) be the graph with vertex-set ®4 and edge-set
E\pr) = {< X5, X; > X;, Xj € 04 | X; — Y| <2, |X; — Y| < 2r, for some Y € &P}

Corollary 2.2. Let @\(A,p,r) = P(é(/\,p,r) percolates). Then for any A satisfying

210g (1= V/peld))
a(d, 2r) ’

A> —

there ezists a p(\) < 5, such that é\(A,p, r) =1, for all p € (p(A),1 —p(N)).



3 Connectivity in AB Random Geometric Graphs

3.1 Model Definition

The set up for the study of connectivity in AB random geometric graphs is as follows. For each
n>1, let 777(,,1) and 737(?) be independent homogenous Poisson point processes in U = [0, 1]d, d> 2,
of intensity n. We also nullify some of the technical complications arising out of boundary effects

by choosing to work with the toroidal metric on the unit cube, defined as
d(z,y) = inf{|x —y + 2| : z € Z%}, x,y € U. (3.1)

Definition 3.1. For any m,n > 1, the AB random geometric graph Gy(m,r) is the graph with

verter set Pr(bl) and edge set

E,(m,r) = {(X;, X;) : Xi, X; € Pr(Ll),d(Xi,Y) <nrd(X;,Y)<r, for someY € 7353)}.

Our goal in this section is to study the connectivity threshold in the sequence of graphs G, (cn,r)

as n — oo for ¢ > 0. The constant ¢ can be thought of as a measure of the relative denseness or

sparseness of 79,(3) with respect to Pc(z) (see Remark 3.1 below). It is easier to first consider the

critical radius required to eleminate isolated nodes.

Definition 3.2. For each n > 1, let W, (r) be the number of isolated nodes, that is, vertices with

degree zero in Gp(cn,r), and define the largest nearest neighbor radius as

My, :==sup{r > 0: Wy(r) > 0}.

3.2 Main Results

Let 04 := || Bo(1)|| be the volume of the d-dimensional unit closed ball, where ||.|| denotes the



Lebesgue measure on R?. For any 3 > 0, and n > 1, define the sequence of cut-off functions,

(e, B) = (bg(n/m)é : (3.2)

cenby

and let

rn(c) = rp(c, 1). (3.3)

Let ¢(a) = arccos(a). For d = 2, define

Ale) =n1 [2(;5 (2) —sin (2(;5 (i))] . (3.4)

Define the constant ¢g to be

o e sup{c: A(c)+1>1} ifd=2 (3.5)

1 if d > 3.
The function A(c) + 1 is decreasing and hence 1 < ¢y < 4 for d = 2. The first part of the following
Lemma shows that for ¢ < ¢p, the above choice of radius stabilizes the expected number of isolated
nodes in Gy (cn,r,(c,3)) as n — o0o. The second part shows that the assumption ¢ < ¢y is not
merely technical. The Lemma also suggests a phase transition at some ¢ € [1, 2d], in the sense that,
for ¢ < ¢ the expected number of isolated nodes in G, (cn,r,(c, 3)) converges to a finite limit and

diverges for ¢ > ¢.

Lemma 3.1. For any B,c > 0, let r,(c, B) be as defined in (3.2), and Wy (rn(c, 3)) be the number

of isolated nodes in Gy (cn,ry(c,3)). Let co be as defined in (3.5). Then as n — oo,

1. EWy(rn(e, B))) — B for ¢ < co, and

2. E(Wy(ru(c, B))) — oo for ¢ > 2.

For ¢ < ¢p, having found the radius that stabilizes the mean number of isolated nodes, the next

theorem shows that the number of isolated nodes and the largest nearest neighbour radius in



Gr(cen,ryp(c, B)) converge in distribution as n — oco. Let <, denote convergence in distribution and

Po(B) denote a Poisson random variable with mean g.

Theorem 3.1. Let ry,(c, 3) be as defined in (3.2) with >0 and 0 < ¢ < ¢g. Then as n — oo,

Walra(c, B)) % Po(B), (3.6)

P (M, <rn(c,[)) —eP. (3.7)

Remark 3.1. Let B,(r) denote the closed ball of radius v centred at x € R:. For any locally finite
point process X (for example 777(11) or 777(12)), we denote the number of points of X in A, A C R% by
X(A). Define

Wy(e,r) = Z [P (By, (r)) = 0],
Y,ePl)

(1)

that is, W2(c,r) is the number of Pc(i) nodes isolated from Pn’ nodes. From Palm calculus for

Poisson point processes (Theorem 1.6, [11]) and the fact that the metric is toroidal, we have
EW(e,rale 8)) = n [ P (PO(B(r) = 0) o = cmexpl-narae,5)).
U

Substituting from (3.2) we get

0 ifc<1
Jim EW)(c,rn(e.0))) =48 ife=1 (3.8)
o ife>1.

Thus there is a trade off between the relative density of the nodes and the radius required to stabilise

the expected number of isolated nodes.

The next theorem gives asymptotic bounds for strong connectivity threshold in the AB random
geometric graphs. Asymptotics of the strong connectivity threshold was one of the more difficult

problems in the theory of random geometric graphs. While the lower bound can be derived using



Theorem 3.1, for the upper bound, we couple the AB random geometric graph with the usual
random geometric graph and use the connectivity threshold for the usual random geometric graph
(see Theorem 5.1). As will become obvious, the bounds are very tight for small c¢. We will take
B =1 in (3.2) and work with the cut-off functions r,(c) as defined in (3.3). Define the function
E Ri — R by

(S
[NIE

20(3(2) ) —sin (20 (3(9)?))] ifa=2 59

n(a,c) = -
(1 1(2) ) ifd> 3,

where ¢(a) = arccos(a). Define the function o : R; — R by
a(c) = inf{a : an(a,c) > 1}. (3.10)

d
1
It is easily seen that a(c) < <1 + C;) for d > 2 with equality for d > 3.

Theorem 3.2. Let a(c) be as defined in (3.10), r,(c) be as defined in (3.3) and co be as in (3.5).

Define o (¢) := inf{a : Gy (cn, aérn(c)) is connected}. Then almost surely,

liminf o) (c) > 1, (3.11)
n—oo
for any ¢ < ¢y, and for any ¢ > 0,
limsup a, (¢) < a(c). (3.12)
n—oo

4 Proofs for Section 2

Proof of Proposition 2.1

(1). Recall from Definition 2.2 the graph G(\, u,7) with vertex set ®1) and edge set E(\, , 7).
Consider the graph G(\ + p,r) (see Definition 2.1), where the vertex set is taken to be ®1) U &)

and let the edge set of this graph be denoted E()\ + u, 7).

If < X;,X; > € E(\p,r), then there exists a Y € ®®2 such that < X;,Y >, < X;,Y >e

10



E(X+ p,7). Tt follows that G(\, i, ) has an infinite component only if G(\ 4 u,7) has an infinite
component. Consequently, for any p > p.(\, ) we have u+ A > A.(r), and hence u.(A,r) + A >

Ac(r). Thus for any A < A.(r), we obtain the (non-trivial) lower bound p.(A,7) > Ac(7) — A.

(2). Again < X;, X; > € E(\, p,7) implies that | X; — X;| < 4r. Hence, G(A, p,r) has an infinite

component only if G(),2r) has an infinite component. Thus pi.(A,7) = oo if A < \(2r). O
Proof of Theorem 2.1

Fix A > Ac(2r). The proof adapts the idea used in [3] of coupling the continuum percolation
model to a discrete percolation model. For [ > 0, let > be the graph with vertex set IZ2, the
expanded two-dimensional integer lattice, and endowed with the usual graph structure, that is,
x,y € 1Z? share an edge if |z — y| = I. Denote the edge-set by IE2. For any edge e € IE? denote
the mid-point of e by (z¢,y.). For every horizontal edge e, define three rectangles R¢;,i = 1,2,3
as follows : R; is the rectangle [z — 31/4, 2. — /4] X [ye — 1/4,ye + 1/4]; Reo is the rectangle
[e—1/4, xe+1/4] X [ye —1/4, ye+1/4] and R.3 is the rectangle [z, +1/4, xc+31/4] X [ye —1/4, ye —1/4].
Let R, = U;Re;. The corresponding rectangles for vertical edges are defined similarly. The reader

can refer to Figure 2.

Figure 2: An horizontal edge e that satisfies the condition for B, = 1. The balls are of radius 2r,
centered at points of @) and the adjacent centers are of at most distance r1. The dots are the
points of @),

Due to continuity of A\.(2r) (see [10, Theorem 3.7]), there exists r; < r such that A > A.(2r1). We

shall now define some random variables associated with horizontal edges and the corresponding

11



definitions for vertical edges are similar. Let A, be the indicator random variable for the event that
there exists a left-right crossing of R, by a component of G (A, 2r1) and top-down crossings of Re;
and Re3 by a component of G (A, 2r1). Suppose that A, = 1. Draw balls of radius 2r; around each
vertex of any left-right crossing of R. and every top-down and left-right crossing of R.; and R.s.
Let C¢ be the indicator random variable of the event that, for each pair of balls drawn above that
have non-empty intersection, when expanded to balls of radius 2r contain atleast one point of ®2).

Let B, be the indicator random variable for the event that {4, = 1} N {C. = 1}.

Declare an edge e € [E? to be open if B, = 1. We first show that for A\ > \.(2r) there exists a
u, [ such that IIL? percolates (Step 1). The next step is to show that this implies percolation in the

continuum model G(A, p, 7). (Step 2).

STEP 1: The random variables { B }.c;g2 are 1-dependent, that is, B.’s indexed by two non-adjacent
edges are independent. Hence, given edges e1, ..., e, € [E?, there exists {kitj, < {1,...,n} with

m > n/4 such that {Be, }i<j<m are ii.d. Bernoulli random variables. Hence,
;IS5

P(B, =0,1<i<n)< P(B ,:o,1§j§m> <P (B, = 0)"*. (4.1)

J

We need to show that for a given € > 0 there exists I, u, for which P (B, = 0) < ¢ for any e € IE2.

Fix an edge e. Observe that

P(Be:()) = P(Ae:0)+P(Be:0|Ae:1)P(Ae:1)

IN

P(A.=0)+P (B, = 0|4, = 1). (4.2)

Since A > Aq(2r1), G(A,2r1) percolates. Hence by [10, Corollary 4.1], we can and do choose a [
large enough so that

(4.3)

Now consider the second term on the right in (4.2). Given A, = 1, there exist crossings as specified
in the definition of A, in G/(\,2r1). Draw balls of radius 2r(> 2r1) around each vertex. Any two

vertices that share an edge in G(\,2r;) are centered at a distance of at most 47;. The width

12



of the lens of intersection of two balls of radius 2r whose centers are at most 4ri(< 4r) apart
is bounded below by a constant, say b(r,r1) > 0. Hence if we cover R, with disjoint squares of
diagonal-length b(r,71)/3, then every lens of intersection will contain at least one such square. Let

Sj,j=1,...,N(b), be the disjoint squares of diagonal-length b(r,r1)/3 that cover R.. Note that

U
&
[
=
=

@
I
=
v

P <<I>(2> NS #0,1<j< N(b))

(4.4)

From (4.2) - (4.4), we get P (B. = 0) < e. Hence given any € > 0, it follows from (4.1) that there
exists [, u large enough so that P (B;,1 <i<n) < €"/4. That [IL2 percolates now follows from a

standard Peierl’s argument as in [5, pp. 17, 18].

STEP 2: By Step 1, choose [, s« so that IIL? percolates. Consider any infinite component in /2. Let
e, f be any two adjacent edges in the infinite component. In particular B, = By = 1. This has two
implications, the first one being that there exists crossings I. and Iy of R. and Ry respectively in
@()\, 2r1). Since e, f are adjacent, R.; = Ry; for some 4, j € {1,3}. Hence there exists a crossing .J
of R.; in @()\, 2r1) that intersects both I, and I;. Draw balls of radius 2r around each vertex of
the crossings J, I, Iy. The second implication is that every pairwise intersection of these balls will

contain atleast one point of ®®. This implies that I, and I + belong to the same AB component

in G(\, i, 7). Therefore G(\, u, ) percolates when L% does. .

Proof of Proposition 2.2. Recall Definition 2.4. For d = 2, let T be the triangular site percolation

model with edge length ro/2, and let @, be the flower centred at z € T as shown in Figure 1. For

d > 3, let 2*¢ = J%Zd’ and @, be the cube of side-length \/gi-id centred at z € Z*¢. Note

that the flowers or cubes are disjoint. We declare z open, if Q, N ®® £ @, 1 < i < k. This

is clearly an independent site percolation model on T (d = 2) or Z*¢ (d > 3) with probability

13



Hle(l — e~Maldm0)) of » being open. By hypothesis, Hle(l — e~Maldro)) > 4y (d), the critical
probability for site percolation on T (d = 2) or Z*¢ (d > 3) and hence the corresponding graphs
percolate. Let < z1,2s,... > denote the infinite percolating path in T (d = 2) or Z*¢ (d > 3).
Since it is a percolating path, almost surely, for all ¢ > 1, and every j = 1,2,...,k, <I>(")(in) > 0,
that is, each (flower or cube) @, contains a point of ®(). Hence almost surely, for every word
{w(i)}i>1 we can find a sequence {X;};>1 such that for all i > 1, X; € Pw() n Q.. Further,

| Xi — Xit1] <70 < 7ry(i) + Twis1)- Thus, almost surely, every word occurs. O

Proof of Corollary 2.1. Apply Proposition 2.2 with k =2, Ay = A\, Ay = u, r1 = r9 = r, and so
ro = 2r. It follows that almost surely, every word occurs provided (1 — e=A(d21))(1 — g=ra(d2r)y
pe(d). In particular, under the above condition, almost surely, the word (1,2, 1,2,...) occurs. This
implies that there is a sequence {X;};>1 such that Xo;_; € o), Xyj € d3@ and | Xoj—Xoj—1] < 2r,
for all 7 > 1. But this is equivalent to percolation in G(\, p, 7). This proves the corollary once we
note that there exists a yu < oo satisfying the condition above only if (1 — e=*27)) > p (d), or

equivalently a(d,2r)\ > log( ) and the least such p is given in the RHS of (2.2). O

1
1-pc(d)
Proof of Corollary 2.2. By the given condition (1 — e=**@7)/2) > | /p.(d), and continuity, there
exists an e > 0 such that for all p € (1/2 —¢,1/2 + ¢), we have (1 — e *P4&7)) > | /p.(d). Thus for
all p € (1/2 —¢,1/2+¢), we get that (1 — e a(dn))(1 — e=A1=P)aldr)) > p (d). Hence by invoking

Proposition 2.2 as in the proof of Corollary 2.1 with A\; = Ap, Ao = A(1 — p), 71 = 12 = 7, we get

~

that (A, p,r) = 1. O

5 Proofs for Section 3
For any locally finite point process X C U, the coverage process is defined as
C(Xv ’I") = UXZEXBX@- (T)a (55)

and we abbreviate C( fll),r) by C(n,r). Recall that for any A C R? we write X(A) to be the

number of points of X’ that lie in the set A. We will need the following vacancy estimate similar to

14



[7, Theorem 3.11] for the proof of Lemma 3.1. || - || denotes the Lebesgue measure on R

Lemma 5.1. Ford =2 and 0 < r < 3, define V(r) :=1— %W, the normalised vacancy

in the r-ball. Then

P(V(r) > 0) < (1+nmr? + 3(nmr?)?) exp(—nmr?).

Proof of Lemma 5.1. Write P (V(r) > 0) = p1 + p2 + p3, where

p = P (P,sl)(BO(r)) = O) = exp(—nmr?),
p = P (7779)(30(7’)) = 1) = nar? exp(—nar?),

ps = P(P,gl>(BO(r))>1,V(r)>o).

We shall now upper bound ps to complete the proof. A crossing is defined as a point of intersection

of two r-balls centred at points of 77,(11). A crossing is said to be covered if it lies in the interior of

(1)

another r-ball centred at a point of Py, ’, else it is said to be uncovered. If there is more than one

point of P in Bo(r), then there exists atleast one crossing in Bo(r). If V() > 0 and there exists

more than one r-ball centred at a point of PY(LI) in Bo(r), then there exists atleast one such r-ball
with two uncovered crossings on its boundary. Denoting the number of uncovered crossings by M,
we have that

E(M)

Py <P(M22) <=

Given a disk, the number of crossings is twice the number of r-balls centred at a distance within
2r. This number is 2[02T 2nm(r + x)dx = 6nmwr?, where 2nw(r + x)dx is the expected number of

r-balls whose centers lie between r + x and r 4 = + dx of the center of the given r-ball. Thus,
E(M) = E(PT(LI)(BO(T))) 6n7r2P (a crossing is uncovered) = 6(nnr?)? exp(—nnr?). O

Lemma 5.2. For anyr > 0 and x € R? with0 < R = ||z|| < 2r, define L(r, R) := ||Bo(r)N By (r)]|.

15



Then
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where ¢(a) = arccos(a).

Proof of Lemma 5.2.

Figure 3: |z| = R, ¢ = ¢(r, R) and L(r, R) is the area of the lens of intersection, the shaded region.

Let d = 2. From Figure 3, it is clear that L(r, R) is cut into two equal halves by the line PQ
and the area of each of those halves is the area enlosed between the chord PQ in the circle Bo(r)
and its circumference. The area of the segment OPQ (with PQ considered as the arc along the

circumference of the circle) is ¢ (%) r2. The area of the triangle OPQ is

(o) (o () = o (8)

Hence L(r,R) = (2¢ (%) — sin (2gz5 (%))) r2. Consider the case d > 3. The width of the lens of
intersection of the balls Bo(r) and By (r) is 2r — R. Thus the lens of intersection contains a ball of

diameter 2r — R. Hence the volume of such a ball, 4(r — g)d, is a lower bound for L(r, R). O
Proof of Lemma 3.1. We first prove the second part of the Lemma which is easier.

(2). Let /Wn(r) be the number of P\") nodes for which there are no other P{"” node within a

16



distance r. Note that Wn(Qr) < Wy (r). By this inequality and the Palm calculus, we get

EWalra(e, ) = E(Wa2rule, 9)))
- n / P (P (By(2ra(c. ) = 0) da
U

od
= nexp(—2%bgri(c, B)) = n exp (—Clogn) — 00,

as n — oo since ¢ > 29,

(1). We prove the cases d = 2 and d > 3 separately. Let d > 3 and fix ¢ < 1. Define Wn(c,r) to

be the number of Pr(ll) nodes for which there are no Péi) nodes within a distance r and Wn(c, r) be

the number of 770(7%) nodes with only one 7(11) node within a distance r. Note that

Whi(e,r) < Wi(r) < Wi(e,r) + Wa(e,r). (5.7)
By Palm calculus for Poisson point processes, we have

E(Walerule.®) = n [ P(PRB(rale.5) =0) da

= nexp(—cnbgri(c,B)) = 3, (5.8)
EWh(c,rn(c,B)) = cn/U P (,P,,(ll)(Bx(Tn(Ca B))) = 1) dx
= cnexp(—nbgri(c, ) nbgri(c,B) — 0, (5.9)

since ¢ < 1. It follows from (5.7), (5.8) and (5.9) that E(W,(rn(c,5))) — B, as n — oo, if d > 3

and ¢ < 1.

Now let d = 2, fix ¢ < ¢y, where ¢ is as defined in (3.5) and choose n large enough such that
rn(c, B) < % For any X € P,(LI), using (5.5), the degree of X in the graph G,,(cn,r) can be written
as

degn(cn, X) == Y 1{< X;,X >€ Ey(en,r)} = PAV(C(PY N Bx(r)),r) \ {X}).
x,;eP
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Since
{PICPE 0 Bx(r),r) \ {X}) =0} = (P (Bx(r) nC(PO\ {X}) =0}, (5.10)
we have

Wa(r) = Y degn(en, X;) =0} = > 1{PP(Bx,(r)nC(PM\{X},r) =0} (5.11)
X;epy! X;ePy!

By Palm calculus for Poisson point processes (and the metric being toroidal) we have,
E(W,(r)) = n/ E(1{degn(cn, z) = 0}) dx = nP (73(233(30(7«) NCn,r)) = o) , (5.12)
U

where C(n,r) = C( fll),r). For any bounded random closed set F, conditioning on F and then

taking expectation, we have
P (PR(F) = 0) = E(exp(—en| FIl)). (5.13)
Thus from (5.12), (5.13) we get
E(W,.(r)) =n E(exp(—cn||Bo(r) NC(n,r)||)) =n E(exp(—cmrr2(1 — V(r)))) , (5.14)

where V(r) is as defined in Lemma 5.1. Let A(c) be as defined in (3.4) and e; = (1,0). Since

1
;:n((lé,ﬂfi)) = <2, by Lemma 5.2, we have

| Bo(rn(c, ﬁ)ir:nl(?;«jg),g)el(rn(ca )l -1 <2¢ (M) —sin <2¢ <m>>>

= Ale).

Given ¢ < ¢, by continuity, we can choose an € € (0,1), such that

A(c,e) = IBo(ru(e £)) :TBEZ(%);’[BM(%(C’ DI satisfies  A(c,€) + % > 1. (5.15)
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From Lemma 5.1, we obtain the bound,
P (V(rn(c, ) > 0) < D(1 + logn + 3(logn)?)n"z, (5.16)
for some constant D. Let N, = Pr(Ll)(Bo(rn(l —¢,0))). On the event {N,, > 0}, we have
1 —=V(rn(c,B)) > Alc,e). (5.17)
From (5.14), we get

E(Walra(e, 8)) = nE(emmhEa0V OOV (1, (¢, 3)) = 0})
+ (e OV (1 (e, B)) > 0, N, = 0})

+ n E<e*0””721(Cﬁ)u*v(“(“ﬁ)))1{V(rn(c, B)) > 0,N, > 0}) . (5.18)
Consider the first term in (5.18).

nE (e AUV DNV (ry(c, B)) = 0}) = nexp(—enmra(e, 8P (V(ra(e, 8)) = 0))

= BP(V(ra(e, ) =0) = B, (5.19)
as n — oo, since P (V(r,(c,3)) =0) — 1 by (5.16). The second term in (5.18) is bounded by
nP (N, =0) = nexp(—nnr,(1 — ¢, [§)?) = nl_iﬂi — 0, (5.20)
as n — oo. Using (5.17) first and then (5.16), the third term in (5.18) can be bounded by

ne= (@A AP (V(r, (¢, B)) > 0,N, > 0) < nl-Ae)gACIP (V(r, (c, B)) > 0)
< Dl eI (14 logn + 3(log n)?)34()

— 0, (5.21)

as n — oo by (5.15).
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It follows from (5.18) - (5.21) that
E(W,(rn(c, 5))) — B, asn —oo. [

The total variation distance between two integer valued random variables 1, ¢ is given as follows:
dry (¥,¢) = /s{gw(w €A)-P(Ce Al (5.22)

The following estimate in the spirit of Theorem 6.7([11]) will be our main tool in proving Poisson

convergence of W, (r,(c, 3)). We denote the Palm version 737(L1) U{z} of 737(11) by Pfll’x).

Lemma 5.3. Let 0 < r < 1 and let C(., .) be the coverage process defined by (5.5). Define the

integrals Lin(r), i =1,2, andn >1 by

)

r) = n? x (1) (2) m.r)) = (1) (2) ) =
Iin(r) /U da | o P (PR N Bolr).1) = 0) P (PP N By (),1) =0).
r) = n? x (1,2) (2) »).7r)) =0 = Py (2) o))

(1) e [ P (PR 0B ).r) = 0= PIDERE 1 Butr),r)
(5.23
Then,
dry (Wa(r), Po(E(Wa(r)))) < min (3, E(Wln(r))> (I (F) + Ton(r). (5.24)

Proof of Lemma 5.3. The proof follows along the same lines as the proof of Theorem 6.7 ([11]).
For every m € N, partition U into disjoint cubes of side-length m™! and corners at m~1Z?. Let

the cubes and their centres be denoted by Hy, 1, Hyp 2, ... and a1, G 2... respectively. Let

Smii 1= LpD (H ) =130 (PO (P By (1)), =0}

&m,i = 1 provided there is exactly one point of Pr(Ll) in the cube H,,; which is not connected to any

other point of P that falls outside Hppi in the graph Gp(cn,r). Let W™ = 3 . &y . Then
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almost surely,
Wy(r) = lim W™, (5.25)
m—00
Let pm; = E(&m.i) and pmij = E(§m,i€m,j). The remaining part of the proof is based on the notion
of dependency graphs and the Stein-Chen method.

Define I,,, := {i € N : Hy,; C [0,1]%} and By, := {< 4.5 >:4,5 € I;m, 0 < ||am,i — am || < 5r}. The
graph Gy, = (I, Ey,) forms a dependency graph (see [11, Chapter 2]) for the random variables
{&m,i}ier,,- The dependency neighbourhood of a vertex i is Ny,; = iU {j :< i,j >€ E,,}. By

Theorem 2.1 [11], we have

dry (W™, Po(E(W™))) < min(3, E(wl/m))(bl(m) + by(m)), (5.26)

where by (m) = Zz‘elm ZjeNm,i Pm,iPm,; and ba(m) = Zz‘elm ZjeNm,i/{z’} Pm,ij- The result follows
if we show that the expressions on the left and right in (5.26) converge to the left and right hand

expressions respectively in (5.24).

Let wy,(z) = mdpmJ for x € H,, ;. Then Zz’elm Dmi = fU W (x) dz. Clearly,

lim_w,(2) = 0P (PL(C((PR 0 By(r){a}, 1) = 0) = nP (PV(C(PR) 1 Bu(r),1) =0) .

m—0o0

Since wy, (z) < m?P (PT(LI)(Hm,i) = 1) <n,

lim E(W™) = n /U P (POCPR A By(r).r) = 0) de = EW,(r),

m—00

where the first equality is due to the dominated convergence theorem and the second follows from
(5.10) - (5.12). Similarly by letting u,, (z,y) = mzdpm,ipm,jl[jeNm’i] and vy, (z,y) = m2dpm7¢,j1[jeN7n7i/{i}]

for x € Hy, 5, y € Hyp j, one can show that

bi(m) = /Uum(x,y) dr dy — Iin(7),

b2(m) = /U’Um(xay) dr dy — IQn(r)' 0
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Proof of Theorem 3.1. (3.7) follows easily from (3.6) by noting that
P(M, <r)=P(Wy,(r)=0).

Hence, the proof is complete if we show (3.6) for which we will use Lemma 5.3. Let I;,(ry(c, 5)),
i = 1,2, be the integrals defined in (5.23) with r taken to be r,(c, §) satisfying (3.2). From Lemma
3.1, EW,(rn(c,8))) — B as n — oo. Using (5.12) and Lemma 3.1, we get for some finite positive

constant C' that

Lip(rn(c, B)) = / da:/ dy (E(Wp(rn(c, ﬁ))))2 < C(5rp(c, ﬁ))d — 0, as n — oo.
U 2 (57rn (¢,8))NU

We now compute the integrand in the inner integral in I, (r). Let I'(z, ) = ||Bo(r) N By(r)]|. For

x,y € U, using (5.13) we get

P ({PL(C(P N By(r),1) = 0} N {PL(C(PE) N Bu(r),7)) = 0})
= P (PR(B,(r) N (C(n,r) U Bo(r))) = 0, P2 (By(r) N (Cln,7) U By(r)) = 0)
< P (PR (B,(r)NC1n,1) = 0,PL(B.(r) N C(n,7)) = 0)
= P (PR(B,(1)\ Ba(r) N Cln,)) = 0, PR (Ba(r) NC(n,1) = 0)

= E(exp(=cn[[(By(r) \ Bz(r)) N C(n,7)||) exp(=cn|| Bz (r) N C(n,7)[)) . (5.27)

We can and do choose an 1 > 0 so that for any » > 0 and ||y — z|| < 5r (see [11, Eqn 8.21]), we

have

1Bo(r)\ By(r)| = 5177 |ly —z|.
Hence if ||y — z|| < 5r, the left hand expression in (5.27) will be bounded above by

[(By(r) \ Bx(r)) NC
1By (r) \ Bu(r)

e (exp (—ennr -y P exp (-enl2 () ) ).
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Using the above bound, we get

2
bnCale @) < [ [ (e (enlBota(e, ) 00w e A1)

ooy 1By (e A0\ Bolrale, 80) D€ rale DI ) .
p (et a1 I e 1 >>dd”

Making the change of variable w = nr,(c, 3)4~(y — =) and using (5.14), we get
dyl—d
Loy (e, / d:z:/m - d)mU(nrn(c ,3)%) E<nexp( en||Bo(rn(c, B)) NC(n, (e, 8))]])
o W Baueaytn 2 rale, )\ Bolra(e, 50) €l 0D
p( el [Butor, iy (rales BN\ Bora(e, B ))d

< (nrn(c, ﬂ)d)lidE(Wn(Tn(Ca /8))) — 0,

as n — 00, since by Lemma 3.1, E(W,,(r,(¢, 3))) — 8 and r,(¢c, 3) — 0 as n — oo. We have shown

that for i = 1,2, I;;,(rn(c, 8)) — 0, and hence by Lemma 3.1,

dry (Wa(rn(c, 5)), Po(E(Wa(ra(c, 8))))) — 0

as n — oo. Again, since E(W,(ry(c, 5))) — 5, we have Po(E(Wy(rn(c,3)))) <, Po(). Con-
sequently, dpy (W, (rn(c,3)), Po(8) — 0 as n — oo. As convergence in total variation distance

implies convergence in distribution, we get (3.6). O

We now prove Theorem 3.2. In the second part of this proof, we will couple our sequence of AB
RGGs with a sequence of usual RGGs. By usual RGG we mean the sequence of graphs G,,(r)
with vertex set P." and edge set {(X;, X;) : X;, X € Y, d(X;, X;) <r}, where d is the toroidal
metric defined in (3.1). We will use the following well known result regarding strong connectivity

in the graphs G,, (7).

1/d
Theorem 5.1 (Theorem 13.2, [11]). For R,(Ap) = (M) , almost surely, the sequence of

néy

graphs G, (Rn(Ao)) is connected eventually if and only if Ag > 1.

Proof of Thm 3.2. Let r, = aérn(c), where 7,(c) = (¢, 1) is as defined in (3.3). It is enough
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to show the following :

For all ¢ < ¢p and a < 1, lim P (Gy(cn,ry,) is not connected ) = 1. (5.28)
n—oo
For all ¢ > 0 and a > a(c), P (Gn(en,ry) is not connected i.0.) = 0, (5.29)

where i.0. stands for infinitely often. To show (5.28) note that

g log(—1%7) _ log(%)
n - )
cnm cnm

r

for any B > 0 and sufficiently large n. From Theorem 3.1, if ¢ < ¢g and a < 1, then the largest
nearest neighbour radius is asymptotically greater than r, with probability tending to one. This

gives (5.28) and thus we have proved the lower limit.

Let R, (Ap) be as in Theorem 5.1. We will show (using a subsequence argument) that if a > a(c),
then we can find Ay > 1, such that the probability of the event that every point of PY(LI) is connected
to all points of PS" that fall within a distance R,(Ap) in Gp(cn,ry), is summable. (5.29) then

follows from Theorem 5.1 and the Borel-Cantelli Lemma.

Since a > «a(c), by definition an(a,c) > 1. By continuity, we can choose Ay > 1 such that

an(a, Agc) > 1. Choose € € (0,1) so that
(1 —€)%an(a, Agc) > 1. (5.30)
For each X; € 737(11), define the event
Ai(n,m,r, R) := {X; connects to all points of PN Bx,(R) in Gp(m,r)},

and let

B(n,m,r,R) =U Ai(n,m,r, R).

x;ePiM

Observe that B(n,m,r,R) C B(ni,mi,r1,R1), provided n < nj,m > my,r > r,R < Rj.

Let n; = j° for some integer b > 0 that will be chosen later. Since B(ng,cny,7n,, Rn,) C
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B(nj+1,cnj,7“nj+1,an), for J < k< Jj+1,
Ufg: B(ng, cng, Ty, Bn,) C B(nj+1,cnj,rnj+1,an). (5.31)

Let p; = P (Ai(njy1,cnj,mn,, ., Rn,)¢). Let Ny, = fll)([O, 1]?). From (5.31) and the union bound

we get

P (Uii;B(nkacnk’arnkaRnk)) < P (B(nj+17cnj’rnj+1’an))
Np.
< P (Ui:f+1Ai(nj+1v C”jﬂ“nvana')c)
3
nj+1+n;-{+1 3
< Z P (Ai(njﬂaC”jvrnHani)c) +P <|Nnj+1 ~ il > n;+l>
i=1
3
< 2nj41pj+P <‘Nnj+1 —njp1| > ”;+1> : (5:32)

We now estimate p;. Let e; = (1,0,...,0) € R?. Conditioning on the number of points of P,,

j 0
Bo(Ry;) and then using the Boole’s inequality, we get
d \k,~n+10aR5
b < i (nj410aR5 )"e ™ ik / o=l Bo(rny, )NBa(rn )l g,
i = d
k’:O k' eanj Bo(RnJ)
) d \E_—nj+104R% .
< i (nj+19anj) e N / efcnj||Bo(rnj+1)mBz(rnjH)Hdw
— d
— k! 0aR%; JBo Ru))
—n;1104R%
) i (nj+10dRZj)k€ M0y, / e*C”J'HBO(T”jH)mBanel(T”jH)”dm
= d )
— k! 0aRy, Bo(Rn;)
— nj_|_19ngLjeicnjL(r"jH’R"j)7
where L(r, R) is as defined in Lemma 5.2. Since
1 1
an <A() log n; an+19d ) d <A00> d
= —_— - s
Tnji Oanj alogmn;iq a
by Lemma 5.2, we have
d
L(rnj+17 an) > (1 - 6) "7((17 AOC) Hdrnj+1v (5'33)
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for all sufficiently large j, where 7 is as defined in (3.9). For all j sufficiently large, we have

(jjﬁ)b > (1 —¢). Using (5.33) and simplifying by substituting for R, and 7, ,, for all sufficiently

large j, we have

jb

(1) Aoblogj — ;a5 (1= n(aAve) ab log(s+1)
jb
Aob1ogj _(1-c2n(a,A0c) ab log(i+1)

= o

pj <

Apb logj
(1 - E)(] + 1)(176)2 n(a,Aoc)ab’

Hence
Apb log 5
L—e)(j+ 1)((1_5)2 n(a,Aoc)a—1)b"

Using (5.30), we can choose b large enough so that ((1 — ¢)27n(a, Agc)a — 1)b > 1. It then follows
from (5.34) that the first term on the right in (5.32) is summable in j. From [11, Lemma 1.4], the

second term on the right in (5.32) is also summable.

Hence by the Borel-Cantelli Lemma, almost surely, only finitely many of the events
j+1
U‘IjgijB(nk7 CNEy Tny, s Rnk)

occur, and hence only finitely many of the events B(n,cn,ry, R,) occur. This implies that almost
surely, every vertex in G (cn, ry,) is connected to every other vertex that is within a distance Ry, (Ao)
from it, for all large n. Since Ay > 1, it follows from Theorem 5.1 that almost surely, G, (cn,ry,) is

connected eventually. This proves (5.29). O
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