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Abstract. We study the coverage in sensor networks having two types of nodes, sensor

and backbone nodes. Each sensor is capable of transmitting information over relatively

small distances. The backbone nodes collect information from the sensors. This information

is processed and communicated over an ad-hoc network formed by the backbone nodes,

which are capable of transmitting over much larger distances. We consider two modes of

deployment of sensors, one a Poisson-Poisson cluster model and the other a dependently-

thinned Poisson point process. We deduce limit laws for functionals of vacancy in both

models using properties of association for random measures.
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1 Introduction

A sensor is a device that measures a physical quantity over a region and converts it into a

signal which can be read by an instrument or an observer. The union of all such sensing

regions in the sensor field is the coverage provided by the sensor network. Coverage of a sensor

network provides a measure of the quality of surveillance that the network can provide. Some

of the common applications of sensor network includes environmental monitoring, emergency

rescue, ambient control and surveillance networks. Sensor nodes being deployed randomly,

one typically models its location by a point process in an appropriate space. The sensing

region across each sensor is described by a sequence of independent and identically distributed

random sets. Hence sensor network coverage is generally analyzed by an equivalent “coverage

process”.

One of the main constraints in a sensor network is that the sensors have limited power and

hence can transmit information only over short distances. They send the information sensed

to some nearby base station or cluster head. The base stations form a backbone network

that relays the information received from the sensors over larger distances. We refer to these

special nodes as the backbone nodes. Another characteristic of sensor networks is the large

number of nodes that are several orders of magnitude larger than those in ad-hoc networks.

Thus it is natural to study limit laws for coverage in sensor networks.

We consider two deployments for the sensor and the backbone nodes. In the first model the

backbone nodes are distributed according to a homogenous Poisson point process. Sensors

are deployed independently around each backbone node according to another Poisson point

process, thus giving rise to a Poisson-Poisson cluster model. In the second model the sensors

and the backbones are deployed according to two independent Poisson processes. However,

only the sensors that are within a certain distance from some backbone node can communi-

cate the information sensed by them over the network. Such a scenario arises, for instance
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when the sensors have limited life and new sensors have to be deployed repeatedly.

For a detailed survey of the various issues relating to sensor networks, we refer the reader to

[1]. For applications of such models to coverage and target tracking we refer the readers to

[5], [6] and the references therein. Limit laws for coverage for Poisson point processes have

been derived in [9] where these results are derived via a series of elaborate computations. We

adopt the approach in [8] where these results are derived by first showing that the vacancy

measure is an associated random measure and then using the properties of such random

measures.

In order to describe our models precisely and state our results we need some notations.

1.1 Notations

Let Rd, d ≥ 1 be endowed with the usual Euclidean metric. Let M(Rd) be the space of Radon

measures on Rd (all non-negative measures that are finite on bounded subsets) topologised

by vague convergence, and let B(Rd) be the corresponding Borel sigma field. Mp(Rd) denote

the subspace of M(Rd) consisting of integer valued measures. For any measure µ ∈ M(Rd)

and f ∈ L1(µ), we denote
∫
Rd fdµ by µ(f). m(·) will denote the Lebesgue measure on Rd

and ‖ · ‖2 is the L2 norm with respect to m. For c > 0, let B(x, c) denote the d−dimensional

ball centered at x ∈ Rd of radius c.

Definition 1.1. A random measure is an M(Rd) valued random variable defined over some

underlying probability space (Ω,F , P ).

For an extensive treatment of the theory of random measures we refer the reader to [10].

Define the partial order (5) on M(Rd) by

µ 5 ν if µ(B) ≤ ν(B), for all B ∈ B(Rd). (1.1)
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We say a that map f : M(Rd) 7→ R is non-decreasing (respectively non-increasing) if

µ 5 ν ⇒ µ(f) ≤ ν(f) (respectively µ(f) ≥ ν(f)). (1.2)

Definition 1.2. An M(Rd) valued random measure X is said to be associated if for each pair

of bounded, Borel measurable, non-decreasing functions f, g : M(Rd) 7→ R we have,

Cov(X(f), X(g)) ≥ 0. (1.3)

Let O denote the space of all open subsets of Rd. For any compact subset K of Rd let OK

be the set of relatively open subsets of K. Let G be the sigma algebra on O (for details see

[8]).

Definition 1.3. Given T ∈ Rd, define the T -shift to be the map τT : M(Rd) 7→ M(Rd) given

by (τT µ)(A) = µ(T + A). A random measure X on Rd is stationary if τT X has the same law

as X, for all T ∈ Rd. If X is stationary, then the T -shift is ergodic for X, if for all B ∈ B(Rd)

such that τT B = B, we have P (X−1B) is either zero or one. X is ergodic if for all T 6= 0,

the T -shift is ergodic for X.

1.2 Model Definitions

We now define the two models precisely.

Model I.

Let P ≡ {ξi, i ≥ 1} be a homogenous Poisson point process in Rd with intensity λ1 > 0. The

points of P may be interpreted as the location of the backbone nodes. For each i ≥ 1, let Ni

be independent Poisson random variables with mean λ2 > 0, that are also independent of

P . Each backbone node ξi ∈ P acts as a cluster center around which a Poisson number Ni
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of sensors are deployed uniformly in the region ξi + D, where D is a bounded subset of Rd.

Let {ξij}i,j≥1, be a sequence of i.i.d. random variables distributed uniformly in D. Given ξi

and Ni, ξi + ξij, 1 ≤ j ≤ Ni, represents the location of the sensors that communicate with

ξi. Let {Dij}i,j≥1 be a collection of i.i.d. random open sets (for an extensive treatment of

random sets we refer [11]). ξi +ξij +Dij represents the region sensed by the sensor located at

ξi + ξij. We will assume that the collection {Dij}i,j≥1 is independent of the sensor locations

and is uniformly bounded, that is, Dij ⊆ B(0, c) almost surely, for some constant c > 0.

We define the d-dimensional volume of the region sensed by the sensors, called the coverage

of the sensor network as

Φ1 ≡
⋃
i≥1

(
Ni⋃
j=1

(ξi + ξij + Dij)

)

≡
⋃
i≥1

(ξi + Ci), (1.4)

where Ci =
⋃Ni

j=1 (ξij + Dij), i ≥ 1, is a sequence of random open sets distributed as C. Let

σ1 denote the law of C.

Model II.

As in the first model, let P ≡ {ξi, i ≥ 1} be a homogenous Poisson point process in Rd with

intensity λ1 > 0 representing the location of the backbone nodes. Let

Φ3 :=
⋃
i≥1

(ξi + Yi), (1.5)

where {Yi}i≥1 is a sequence of i.i.d. random open sets independent of P , such that Yi
d
=

Y . Let H ≡ {ηj, j ≥ 1} be another Poisson point process in Rd with intensity λ2 > 0,

independent of P and of the sequence {Yi}i≥1. H represents the location of the sensor nodes.

Let {Zj}j≥1 be a sequence i.i.d. random open sets independent of everything else such that
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Zj
d
= Z. Let σ2 denote the law of Z. We assume that the shapes Yi, Zj are uniformly

bounded, that is, Yi ⊆ B(0, c1), and Zj ⊆ B(0, c2), almost surely for some positive constants

c1, c2. The sensor located at ηj covers the region ηj + Zj and successfully transmits the

sensed information from this region to the backbone located at ξi provided ηj ∈ ξi + Yi.

Let I := {j ≥ 1 : ηj ∈ Φ3}, be the index set of the sensors that can successfully transmit

information to some backbone node. Thus the total area covered in this model will be given

by

Φ2 :=
⋃
j∈I

(ηj + Zj) . (1.6)

2 Main Results

We now define the vacancy measure for the two models defined in Section 1.2. We first study

some basic properties of this measure and use these to prove an almost sure convergence

result and a central limit theorem for a sequence of scaled vacancy measures. All the results

will hold under the assumptions made while defining these models without further explicit

mention.

For i = 1, 2, 3, and any x ∈ Rd define the indicator random functions

χi(x) =





1 if x /∈ Φi,

0 otherwise.

For any Borel measurable set R ⊆ Rd, define V (i)(R) to be the vacancy in the region R,

arising out of the coverage process Φi, i = 1, 2, 3, respectively as

V (i)(R) :=

∫

R

χi(x) dx, i = 1, 2, 3. (2.1)

6



V (i)(R), i = 1, 2, is the d-dimensional volume of the region within R that is not sensed in

the respective models. Thus the notion of vacancy and coverage are complementary to each

other. Note that the random measure V (i), i = 1, 2, satisfies V (i) ≤ m, and hence for any

f ∈ L1(µ), we can define

V (i)(f) :=

∫
f(x) dV (i)(x). (2.2)

Proposition 2.1. The expectation and variance of the vacancy measure V (i) in the region

R ⊆ Rd, arising out of the coverage process Φi, i = 1, 2 are given by

E[V (1)(R)] = m(R)e−λ1E[m(C)], (2.3)

E[V (2)(R)] = m(R)e−λ2E[m(Z)](1−e−λ1E[m(Y )]), (2.4)

V ar[V (1)(R)] = e−2λ1E[m(C)]

∫

R

∫

R

[
eλ1E[m((x1−x2+C)∩C)] − 1

]
dx1 dx2, (2.5)

V ar[V (2)(R)] = e−2λ2E[m(Z)](1−e−λ1E[m(Y )])

×
∫

R

∫

R

[
eλ2E(m[(x1−x2+Z)∩Z])(1−e−λ1E[m(Y )]) − 1

]
dx1 dx2. (2.6)

The following Theorem is the key result that will allow us to conclude the limiting results

for the scaled vacancy measure.

Theorem 2.2. The vacancy measure V (i), i = 1, 2, is an associated, ergodic random mea-

sure.

We now define the scaled vacancy measures whose limiting behaviour is the main result of

this paper. For T > 0, and f ∈ L1(m) ∩ L∞(m), define for i = 1, 2, the scaled vacancy

measure as

V
(i)
T (f) := V (i)(f(·/T )), (2.7)
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Theorem 2.3. For all f ∈ L1(m), almost surely

(i)

lim
T→∞

T−dV
(1)
T (f) = e−λ1E[m(C)] m(f), (2.8)

and

(ii)

lim
T→∞

T−dV
(2)
T (f) = e−λ2E[m(Z)](1−e−λ1E[m(Y )]) m(f), (2.9)

Our next result is a Central Limit Theorem for the centered and scaled vacancy measure

Z
(i)
T , i = 1, 2, defined as

Z
(i)
T := V

(i)
T − E

[
V

(i)
T (f)

]
. (2.10)

Theorem 2.4. For all f ∈ L1(m) ∩ L∞(m) as T →∞,

T−d/2Z
(i)
T (f)

d−→ N(0, Γi‖f‖2
2), i = 1, 2, (2.11)

where

Γ1 = e−2λ1E[m(C)]

∫

Rd

(
eλ1E[m((x+C)∩C)] − 1

)
dx < ∞,

and

Γ2 = e−2λ2E[m(Z)](1−e−λ1E[m(Y )])
∫

Rd

(
eλ2(1−e−λ1E[m(Y )])E[m((y+Z)∩Z))] − 1

)
dy < ∞.

We deduce a “functional” corollary of Theorem 2.4. Let S(Rd) be the Schwartz space of

rapidly decreasing functions on Rd and let S ′(Rd) denote the corresponding dual space of

tempered distributions.

Corollary 2.5. Under the conditions of Theorem 2.4, the map f 7−→
[
V

(i)
T (f)− E[V

(i)
T (f)]

]
,

i = 1, 2, f ∈ S(Rd), defines an S ′(Rd) valued random variable. For i = 1, 2, as T →
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∞, T−d/2Z
(i)
T converges in distribution to a Gaussian S ′(Rd) valued random variable W with

mean 0 and variance given by E[W (f)]2 = Γi ‖f‖2
2, f ∈ S(Rd), where Γi, are as in Theorem

2.4.

In Model II, a sensor that gathers information may not be able to transmit the same to a

backbone. We call such sensor as “inactive sensor”. Similarly the backbone node located at

ξi which does not have any sensor within the region ξi +Yi will be termed an ‘idle backbone”.

The next result gives the expected proportion of “idle backbones” and “inactive sensors” in

a fixed region R.

Proposition 2.6. Let N be the number of “idle backbones” and M be the number of “inactive

sensors” in region R in Model II. Then

E[N ]

m(R)
= λ1e

−λ2E[m(Y )]. (2.12)

E[M ]

m(R)
= λ2e

−λ1E[m(Y )]. (2.13)

Using the above proposition we derive the minimum value of E[m(Y )] which will ensure that

there will be no “idle backbones” and “inactive sensors” with a specified large probability.

Theorem 2.7. Fix α ∈ (0, 1) and let θ be the volume of the unit ball in Rd. Then Pr[N =

0] ≥ α and Pr[M = 0] ≥ α, provided

E[m(Y )] ≥ max





−

ln
(

− ln α
λ1m(R)

)

λ2θ




1/d

,


−

ln
(

− ln α
λ2m(R)

)

λ1θ




1/d

 . (2.14)
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3 Proof of Main Results

Proof of Proposition 2.1. The simple computations for the mean and vacancy are similar to

those on pp. 128, 129 [9], to which we refer the readers for details. Recall the definition of

V (1)(R) from (2.1). By Fubini’s theorem, homogeneity, symmetry of the Poisson process we

have,

E[V (1)(R)] =

∫

R

P [ x /∈ ξi + Ci, for all i ≥ 1] dx

= m(R)P [ ξi /∈ −Ci, for all i ≥ 1]

= m(R)e−λ1E[m(C)].

E[χ(x1)χ(x2)] = P [x1 /∈ ξi + Ci and x2 /∈ ξi + Ci, for all i ≥ 1]

= P [ξi /∈ x1 − x2 + Ci and ξi /∈ Ci, for all i ≥ 1]

= P [ξi /∈ (x1 − x2 + Ci) ∪ Ci, for all i ≥ 1]

= e−λ1E[m((x1−x2+C)∪C)]

= e−2λ1E[m(C)]+λ1E[m((x1−x2+C)∩C)].

Hence,

Cov[χ(x1), χ(x2)] = e−2λ1E[m(C)] × (
eλ1E[m((x1−x2+C)∩C)] − 1

)
,

and

V ar[V (1)(R)] =

∫

R

∫

R

Cov[χ(x1), χ(x2)] dx1 dx2

= e−2λ1E[m(C)] ×
∫

R

∫

R

(
eλ1E[m((x1−x2+C)∩C)] − 1

)
dx1 dx2.
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We now compute the mean and variance of the vacancy for Model II. Let {ηj, j ≥ 1} and

{ξi, i ≥ 1} be the location of the sensors and the backbones respectively. A point x ∈ Rd is

sensed or covered if we can find i, j ≥ 1, satisfying the following two conditions,

x ∈ ηj + Zj, ηj ∈ ξi + Yi.

Define the sets

Aj(x) =
⋃
i≥1

[
(ξi + Yi)

⋂
(x− Zj)

]
,

A(x) =
⋃
i≥1

[
(ξi + Yi)

⋂
(x− Z)

]
.

A point x ∈ Rd is not covered if for all j ≥ 1, ηj /∈ Aj(x). Hence,

E[V (2)(R)] =

∫

R

P [ηj /∈ Aj(x), for all j ≥ 1] dx. (3.1)

Again by calculations similar to those on pp. 128 [9], we have

P [ ηj /∈ Aj(x), for all j ≥ 1 ] = e−λ2E[m(A(x))]. (3.2)

E[m(A(x))] = E

[
m

(⋃
i≥1

[
(ξi + Yi)

⋂
(x− Z)

])]

= E [m (x− Z)]− E[V (3)(x− Z)]

= E
[
m (x− Z)−m (x− Z) e−λ1E[m(Y )]

]

= E [m (Z)]
(
1− e−λ1E[m(Y )]

)
. (3.3)

From (3.1), (3.2) and (3.3) we have,

E[V (2)(R)] = m(R)e−λ2E[m(Z)](1−e−λ1E[m(Y )]). (3.4)
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E[χ(x1) χ(x2)] = P [ηj /∈ Aj(x1), for all j ≥ 1 and ηj /∈ Aj(x2), for all j ≥ 1]

= P [ηj /∈ Aj(x1) ∪ Aj(x2), for all j ≥ 1]

= e−λ2E[m(A(x1)∪A(x2))]

= e−2λ2E[m(Z)](1−e−λ1E[m(Y )])eλ2E[m(A(x1)∩A(x2))]. (3.5)

Now by calculations similar to those in (3.3),

E [m (A(x1) ∩ A(x2))] = E [m ((x1 − x2 + Z) ∩ Z)] (1− e−λ1E[m(Y )]).

Hence,

V ar[V (2)(R)] =

∫

R

∫

R

(E[χ(x1) χ(x2)]− E[χ(x1)]E[χ(x2)]) dx1 dx2

= e−2λ2E[m(Z)](1−e−λ1E[m(Y )])

∫

R

∫

R

[
eλ2E[m((x1−x2+Z)∩Z)](1−e−λ1E[m(Y )]) − 1

]
dx1 dx2.

Proof of Theorem 2.2. (i) We first show that V (1) is associated. Let I = [−1
2
,−1

2
)d, d ≥ 1,

and for N ∈ N, define

πNI(ξ + C) := (ξ + C) ∩NI.

Let P1 be the Poisson point process on Rd ×O with intensity λ1(m× σ1), where λ1 > 0,m

is the Lebesgue measure and σ1 is the distribution of C. The coverage process Φ1 is the

random open set

Φ1 ≡
⋃

(ξ,C)∈P1

(ξ + C),

with vacancy corresponding to Φ1 given by the random measure

V (dx) = 1Rd\Φ1
(x) dx. (3.6)
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Consider the Poisson process

R(1)
N = {πNI(ξ + C) : (ξ, C) ∈ P1, ξ ∈ NI}.

Let R
(1)
N ∈Mp(ONI) be the measure defined as

R
(1)
N (.) =

∑

xi∈R(1)
N

δxi
(.).

Since the underlying process P1 is an independently marked Poisson point process, R
(1)
N is

an infinitely divisible Mp(ONI) valued random variable. By Theorem 1.1 [7], R
(1)
N is an

associated random measure. For any γ ∈Mp(ONI), let

W (γ) :=
⋃

S∈Supp(γ)

S,

where Supp(γ) is the support of the measure γ. Define the map HN : Mp(ONI) 7→ M(Rd)

by,

(HN(γ)) (dx) := 1Rd\W (γ)(x) m(dx). (3.7)

Let γ1, γ2 ∈Mp(ONI), and let 5p denote the partial ordering inMp(ONI) (Note that the par-

tial ordering in Mp(ONI) can be defined similar to that in (1.1) with obvious modifications).

Observe that

γ2 5p γ1 ⇒ W (γ2) ⊆ W (γ1) ⇒ HN(γ1) 5 HN(γ2), (3.8)

where 5 is as in (1.1). Hence the map HN is non-increasing. Since R
(1)
N is associated by

Theorem 3.2 [2],

V
(1)
N = HN(R

(1)
N )

is an associated random measure on Rd. Since V
(1)
N → V (1), almost surely, as N → ∞, it
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follows by Lemma 2.2 (ii) [7] that the random measure V (1) is associated.

(ii) To prove the result for V (2), we consider the Poisson point process P2 on Rd ×O, with

intensity λ2(m× σ2), where λ2, σ2 are as in the definition of Model II. The coverage process

Φ2 is the random open set

Φ2 ≡
⋃

(η,Z)∈P2

(η + Z),

with vacancy defined in a similar way as in the previous case. Consider the process

R(2)
N := {πNI(η + Z) : (η, Z) ∈ P2, η ∈ NI}.

Let

SN := {πNI(η + Z), η ∈ NI,Z ∈ O, Z ⊆ B(0, c2)}.

For ω = E × SN , E ⊆ O(ω ∈ O × SN), we define the function FN : O × SN 7→ SN , as

FN(ω) := {πNI(η + Z), η ∈ NI ∩ E, Z ∈ O, Z ⊆ B(0, c2)}.

Let

TN = FN(Φ3 ×R(2)
N )

= {πNI(η + Z), η ∈ NI ∩ Φ3, Z ∈ O, Z ⊆ B(0, c2)}.

Let R
(2)
N ∈Mp(ONI), be the measure defined as

R
(2)
N (.) =

∑
xi∈TN

δxi
(.).

Since FN is a non-decreasing function on O × SN , R
(2)
N is an associated random measure.
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The rest of the proof is similar to the first case with appropriate modifications.

(iii) We now show that the vacancy measure V (i) is ergodic for i = 1, 2. The stationarity

of V (i), i = 1, 2, follows since the underlying point process is a homogeneous Poisson point

process in both cases. By Theorem 3.3 [7], it suffices to show that for any compact set

K ∈ Rd and any unit vector u ∈ Rd,

lim
T→∞

Cov[V (i)(K), V (i)(Tu + K)] = 0, i = 1, 2. (3.9)

E[V (i)(K) V (i)(Tu + K)] = E

[(∫

K

χi(x1) dx1

)(∫

Tu+K

χi(x) dx

)]

= E

[(∫

K

χi(x1) dx1

)(∫

K

χi(x2 + Tu) dx2

)]

= E

[∫

K

∫

K

χi(x1) χi(x2 + Tu) dx1 dx2

]

=

∫

K

∫

K

E [χi(x1) χi(x2 + Tu)] dx1 dx2. (3.10)

By calculations leading to (2.5) and (2.6) we have respectively,

Cov[V (1)(K), V (1)(Tu + K)] = e−2λ1E[m(C)]

∫

K

∫

K

[
eλ1E[m((x1−x2−Tu+C)∩C)] − 1

]
dx1 dx2,

(3.11)

Cov[V (2)(K), V (2)(Tu + K)] = e−λ2E[m(Z)](1−e−λ1E[m(Y )])

×
∫

K

∫

K

(
eλ2E[m((x1−x2−Tu+Z)∩Z)]m(1−e−λ1E[m(Y )]) − 1

)
dx1 dx2.

(3.12)
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Since ex − 1 ≤ xex, for all x ≥ 0, we obtain respectively from (3.11) and (3.12),

Cov[V (1)(K), V (1)(Tu + K)]

≤ λ1

∫

K

∫

K

E [m ((x1 − x2 − Tu + C) ∩ C)] dx1 dx2

≤ λ1 (m(K))2 m(B(0, c)), (3.13)

and

Cov[V (2)(K), V (2)(Tu + K)]

≤ λ2(1− e−λ1E[m(Y )])

∫

K

∫

K

E [m ((x1 − x2 − Tu + Z) ∩ Z)] dx1 dx2

≤ λ2(1− e−λ1E[m(Y )]) (m(K))2 m(B(0, c2)). (3.14)

Since the shapes C, Z are uniformly bounded, the integrands in (3.11) and (3.12) tends to

zero, as T →∞. Hence by Bounded Convergence Theorem we have (3.9), thereby completing

the proof.

Proof of Theorem 2.3. For n ∈ N and k = (k1, ..., kd) ∈ Nd, set I(n;k) =
∏d

i=1[0, ki2
−n).

Note that for N ∈ N,

V
(i)
N (I(d;k)) =

N−1∑
r1=0

...

N−1∑
rd=0

V
(
(r1k1, ..., rdkd)2

−n + I(n;k)
)
, i = 1, 2. (3.15)

As V (i)(x + I(n;k)) ≤ m(I(n; k̄)), for any x ∈ Rd, and i = 1, 2. By Theorem 2.2, V (i)’s are

ergodic for i = 1, 2. Hence by Theorem 9, p.679 [4]

N−dV
(i)
N (I(n;k)) → E

[
V (i)(I(n;k)

]
, (3.16)
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almost surely, as N →∞ in N, i = 1, 2. We further have

T−dV
(1)
T (I(n;k)) → E

[
V (i)(I(n;k)

]
, (3.17)

almost surely, as T →∞, in R. For k = (k1, ..., kd) ∈ Zd, define

J(n;k) :=
d∏

i=1

[ki2
−n, (ki + 1)2−n).

Elementary inclusion exclusion principle shows that

T−dV
(1)
T (J(n;k)) → E

[
V (i)(J(n;k)

]
, (3.18)

almost surely, as T →∞, when k1, .., kd ≥ 0. By (2.3) and (2.4) we have respectively,

T−dV
(1)
T (J(n;k)) → m(J(n;k))e−λ1E[m(C)], (3.19)

and

T−dV
(2)
T (J(n;k)) → m(J(n;k))e−λ2E[m(Z)]

(
1− e−λ1E[m(Y )]

)
, (3.20)

almost surely, as T → ∞, when k1, .., kd ≥ 0. We observe that (3.19) and (3.20) holds

similarly for other orthants, for all k). Let C denote the countable class of functions of the

form
∑L

l=1 cl1J(n;k(l)) for some L, n ∈ N, c1, ..., cL ∈ Q and k(l) = (kl
1, ..., k

l
d) ∈ Zd. By linearity

it follows that, for all f ∈ C we have respectively,

T−dV
(1)
T (f) → e−λ1E[m(S)] m(f), (3.21)

and

T−dV
(2)
T → e−λ2E[m(Z)]

(
1− e−λ1E[m(Y )]

)
m(f), (3.22)
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almost surely, as T →∞. C is dense in L1(m), and T−dV
(1)
T ≤ m, for all T > 0, and i = 1, 2.

Hence (2.8) and (2.9) follows.

Proof of Theorem 2.4. Let I = [−1
2
,−1

2
)d. The result follows from Theoerm 4.4 [7], and

Theorem 2.2, once we show that

sup
T>0

Cov[V (i)(I), V (i)(TI)] = Γi < ∞, (3.23)

where Γi, i = 1, 2 are as defined in Theorem 2.4. By calculations leading to (3.11) and (3.12)

we have respectively,

Cov[V (1)(I), V (1)(TI)] = e−2λ1E[m(C)]

∫

I

∫

TI

[
eλ1E[m((x1−x2+C)∩C)] − 1

]
dx1 dx2, (3.24)

Cov[V (2)(I), V (2)(TI)] = e−λ2E[m(Z)](1−e−λ1E[m(Y )])

×
∫

I

∫

TI

(
eλ2E[m((x1−x2+Z)∩Z)]m(1−e−λ1E[m(Y )]) − 1

)
dx1 dx2. (3.25)

The quantity on the right hand side of (3.24) and (3.25) increases to Γ1 and Γ2 respectively,

as T →∞. The random shapes C, Y, Z being uniformly bounded, we have Γi < ∞, i = 1, 2,

thereby completing the proof.

Proof of Corollary 2.5. For both the models the result follows from Theorem 3.1 [3] and

Theorem 5.3 (i) [3] .
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Proof of Lemma 2.6. Let N be the number of “idle backbones” in region R, and let

Q :=
⋃
i≥1

(
(ηi + Yi))

⋂
R

)
.

Let Am denote the event that there are m backbones in R.

P [N = k] =
∞∑

m=0

P [N = k|Am]× P [Am]

=
∞∑

m=k

P [N = k|Am]× P [Am]

=
∞∑

m=k

(
e−λ1m(R) × (λ1m(R))m

m!

)
× P [k out of m backbones /∈ Q]

=
∞∑

m=k

(
m

k

)(
E[m(Q)]

m(R)

)m−k (
1− E[m(Q)]

m(R)

)k

×
(

e−λ1m(R) × (λ1m(R))m

m!

)

=

[
e−λ1m(R) × (λ1m(R))k

k!

(
1− E[m(Q)]

m(R)

)k
]
×

∞∑

m=k

(λ1m(R))m−k

(m− k)!

(
E[m(Q)]

m(R)

)m−k

= e−λ1m(R)(1−E[m(Q)]
m(R) ) ×

[
λ1m(R)

(
1− E[m(Q)]

m(R)

)]k

k!
, k = 0, 1, 2, ... (3.26)

Hence by Proposition 2.1, we have

E[N ] = λ1m(R)
(
1− E[m(Q)]

m(R)

)

= λ1m(R)eλ2m(Y ).

This gives us (2.12).

Similarly if we define M to be the number of “inactive sensors” in region R, and T :=
⋃

i≥1 ((ξi + Yi)
⋂

R) by exactly similar calculations one can show

P [M = k] = e−λ2m(R)(1−E[m(T )]
m(R) ) ×

[
λ2m(R)

(
1− E[m(T )]

m(R)

)]k

k!
, k = 0, 1, 2, ... (3.27)
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Hence we have,

E[M ] = λ2m(R)eλ1E[m(Y )], (3.28)

thereby proving (2.13).

Proof of Theorem 2.7. For α ∈ (0, 1) we calculate the minimum value E[m(Y )]α for which

P [N = 0] ≥ α, and P [M = 0] ≥ α. Let E(b)[m(Y )]α and E(s)[m(Y )]α be the minimum

value for which P [N = 0] ≥ α, and P [M = 0] ≥ α respectively. Then E[m(Y )]α =

max{E(b)[m(Y )]α, E(s)[m(Y )]α}. From (3.26), we obtain

P [N = 0] ≥ α ⇒ (
E(b)[m(Y )]α

)d ≥

−

ln
(

− ln α
λ1m(R)

)

λ2θ


 . (3.29)

On simplification we have,

E(b)[m(Y )]α =





[
− ln

“
− ln α

λ1m(R)

”

λ2θ

]1/d

if α ∈ (e−λ1m(R), 1)

0 if α ∈ (0, e−λ1m(R)],

E(b)[m(Y )]α being the least value required to ensure P [N = 0] ≥ α, for any α ∈ (0, 1). A

similar calculation for “inactive sensors” shows that ,

E(s)[m(Y )]α =





[
− ln

“
− ln α

λ2m(R)

”

λ1θ

]1/d

if α ∈ (e−λ2m(R), 1)

0 if α ∈ (0, e−λ2m(R)].

Hence (2.14) follows by choosing the maximum of E(b)[m(Y )]α and E(s)[m(Y )]α.
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