
System Resource Accounting in a Heterogeneous Distributed
Computing Environment

B K. Rana M.Jacob NBalakrishnan

SERCJISc @SA,IISc SERC,IISc
Bangalore ,India Bangalore ,India B angalore, India

Abstract
The accounting tool, S A T , is designed to perform

system resource accounting in a large, heterogeneous,
distributed computing environment. This paper He-
scribes the design,implementation and operation of
SAT. The tool as currently operational at Supercom-
puter Education And Research Centre (SERC) at In-
dian Institute Of Sceince. SERC is a large academic
computing centre catering to the computing needs of
the students and faculty ~ as well as to those of sev-
eral paying users. SAT is equipped with both com-
mand line and graphical user interfaces. The software
is developed using C-shell, Tcl, Expectk (Expect with
TK), demonstrating the usability of these development
languages. It is currently being used in a n environ-
ment of a few hundred computers comprising SGI Iris,
Indy, Indigo and Onyx machines, SUN Sparc20s, I B M
RS6000s, a D E C VAX 8810, etc. Besides, the work
brings out certain vagaries of connect t ime accounting
in UNIX systems and the quality results of the soft-
ware development process followed.

Introduction
Most operating systems provide accounting soft-

ware for standalone machines with provisions to ac-
count CPU time, connect time and disk blocks used
by a user. The systems are typically configured to
generate a month end fiscal report of users and their
system usages. These fiscal reports are of different
formats on different machines. In a large heteroge-
neous computing environment, the collection of these
fiscal reports from all machines and their combina-
tion into a single report for the chargeable users in
the system is both time consuming and tedious. We
have developed the SERC Accounting Tool or SAT
to automate this process of heterogeneous system re-
source accounting. The tool employs the client-server
computing paradigm. Specifically, it collects monthly
fiscal files from different machines, prepares monthly

bills for chargeable users and maintains information
about chargeable users.
In a related work done at the University of Rocester
[211 the emphasis was on writing scripts to generate
monthly fiscal files for UNIX machines whose account-
ing subsystems are incomplete. This is not a problem
with UNIX variants today. SAT is designed to oper-
ate with any operating system capable of performing
system resource accounting. Certain design aspects of
[2] are considered and the requirements are specified
in the following section.

Software Requirements

quirements.
The software is designed to meet the following re-

1. The package is intended to generate monthly bills
for chargeable users.

2 . The software should maintain the chargeable
users’ database, providing the system administra-
tor with an interface to create, delete and modify
information records about chargeable users.

3. The software should work with any number of
computers running any operating systems - UNIX
variants, VMS or any other operating system ca-
pable of accounting CPU time, disk usage, con-
nect time and of preparing monthly fiscal files.

4. The software should be able to operate in a large
environment in the presence of temporary and
short time computer failures.

5. The entire process of accounting should be auto-
mated, not requiring direct intervention of a sys-
tem administrator.

6. Easy operator interface, installation and configu-
ration procedure.

492
1094-7256/97 $10.00 0 1997 IEEE

7. Easy upgradability and configuration of tariff in-
formation for different machines’ computing re-
sources.

8. From the performance standpoint, the software
should not generate heavy network traffic, use
minimal disk space and 1/0 should be minimum.

9. Since operation is distributed across a large envi-
ronment, it should be strictly non-instrusive and
non-destructive.

10. On-line user help should be provided.

Software Architecture
With these requirements in mind, the software has

been designed as shown in Figure 1. Figure 2 illus-
trates its hierachical design. Note that the package
is structured as a client-server application. Each ma-
chine doing stand-alone accounting is a client. The
server runs the centralized portion of the software, re-
sponsible for the merging of fiscal reports, bill prepa-
ration, user information maintainance and configura-
tion. The communication between accounting clients
and server could be provided through ftp, sockets,
email, or other mechanisms. Instead, we employ a
common file system, accessible throughout the envi-
ronment in all machines, already in use for other sys-
tem administration activities. Another major issue in
the design is the database, since there is significant
information management involved. Instead of using
facilities like dbm, gdbm in UNIX we manage with
simple text processing utilities like grep,awk,sed and
hypertext file. Currently the later is used. Desiging in
a database paradigm is an upgradability of the pack-
age. Implementaion issues are discussed later. Figure
-1 depicts five accounting program modules, i.e. APP-
AP5, and eight files related to the software, i.e FISCF,
SFISCF, hosts.config, UIF, CUF, CLOGF, CF and
BF. These are next described briefly.
Modules of‘ software

1. APl This is the accounting subsystem of the com-
puter’s operating system. Today, most UNIX
systems provide programs to generate daily and
monthly system resource accounting, which nor-
mally run as cron jobs. Detailed information is
available in the machine specific manuals. As far
as SAT is concerned, the monthly fiscal file of the
machine, FISCF, is of interest.

2. AP2 This is the client module of SAT. In the first
step it checks whether fiscal report exists; if not
it invokes AP1 to generate fiscal report. In the
next step, it prepares the short fiscal file reading

common user file CUF and FISCF. Then SFISCF
is copied to the directory based on the machine
category(DPMC in ITiigure-1). Thus, the actual
disk space required by the software is minimized.
This module runs in machine’s cron job from the
second day to fifth day of each month during off
hours. If a machine is down for a short period
(less than these four days), it does the job because
of it’s repeated run. Administrator may execute
this using rsh in UNIX machines.

3. AP3 Generates common username file, CUF, out
of the user information file, UIF. This should be
run after a new chargeable user is created, an user
is given a new user name or a chargeable user is
deleted.

4. AP4 Combines all short fiscal files per machine
category. If the machine category is not UNIX it
converts the short fiscal file t o unix format and
then does the combination.

5. AP5 This is the billing module of the software.
It reads all combined fiscal files and user infor-
mation file and charge file, generates the bill for
the month. After bill generation it updates the
user information file. This module also contains a
program to generate the summary of the bill and
accounting status for the month (like how many
machines have reported, machines suffering from
malfunction and errors etc.).

Files of Software
Files and the formats of the files used are discussed

here. More detailed informationuser may ftp the pack-
age.

User Information File or UIF

This file contains all information for chargeable users
in hypertext format. Each user information record is
set of simple text lines containing start of the record,
office reference , year of creation and tariff type , name
of the user, address , copy to , disk quota, list of user
names in the lab , advance paid , cummulative charge
, mode of payment.

Common User File or CUF

The file contains list of user names. The names are
extracted from UIF. A sample file is given below.

493

FIGURE - 1 ANY MACHINE Common log file or CLOGF

Machine specific accounting events (report prepared
successfully, error occured etc.) are logged into this
file. These files are read, while preparing accounting
status, as described in AP5. Administrator may read
this file to know the status. One such file is presented
below. The first line shows an error. Following three
types errors are recorded.

1. Fiscal report not found.

2. Wrong configuration of software.

3. Installtion not OK.

Bill file or BFIEE

This is the final output of the software, containing
bills for users. We are not strict about the format of
the this file. Charges may be formatted anyway with
extra office related informations to produce this. Code
provides modifiability at this point.

Status file or STATUSF

This file contains a list of the machines that submitted
SFISCF correctly and a list of the machines that were
not able to submit SFISCF. During the first week of a
month the administrator may generate and look into
the file and if all machines submit SFISCF, go ahead
to merge SFISCFs and generate bills.

Bill summary file or SUMF

This file contains the summary of bills generated for
a month.

Hosts configuration file or hostsxonfig

This file contains the machine specific configuration
details. It has got two sections. First section contains
the information for each machine category as given
below.

FIGURE -2

Layer - 3
Graphical User Interface Of SAT

Laxer -2 Command line interface for fiscal report mergi 9
,monthly bill preparation , bill summary preparation ,
user, machine and tariff maintainance and online help. 2. Name (with path) of the accounting script

provided by operating system t o generate the
monthly fiscal report. System specific accounting , monthly fiscal Layer

file generation,fiscal file forchargeable user’s
creation, fiscal file format conversion and error
reportina.

1. Location of the monthly fiscal file.

3. Name of the tariff category (see charge configura-
tion file) for the machine.

Second section contains machine name , alias ,ip
address and the tariff category for all machines in the
environment in a tabular manner.

494

Fiscal file or FISCF written in tcl and Layer3 in expectk. Since the only

This is the monthly accounting report prepared by
a machine’s accounting subsystem. In an UNIX ma-
chine, on the first day of every month ”monacct” pro-
gram is run in cron job to create this file for the pre-
vious month. One can see the file format in any unix
machine.

Short fiscal file or SFISCF

Short fiscal file contains accounting information for
a machine in the same format as fiscal report, but
it contains only for the chargeable user names listed
in common username file or CUF. This is prepared
by the accounting program module AP2, as discussed
previously.

Charge file or CF

This file contains the charging information. It con-
tains a table in hypertext format having cpu time ?

connect time and disk charges for machines.

User interface
As shown in Figure-2, the software is designed in

three layers. It provides both command line and
graphical user interfaces. A synopsis of command line
interface calls are presented below. Figure-3 shows the
main window view of the graphical user interface. The
package has a graphical user interface based on tk4.0.

Implementation

the following issues for implementation.
Based on the requirements listed earlier, we found

1. What language or script to use for implementing
individual modules?

2. In interfacing an interactive command line inter-
face with a graphical user interface, does any par-
ticular language seems more beneficial than oth-
ers help?

3. Fast and modifiable programming.

non-UNIX machine is-a VAX 88n0, we decided to copy
the fiscal file manually and generate the short fiscal file
using a tcl script. For any othe non UNIX machine this
part of the software should be written. Since the client
part of the software (AP2) runs as a cron job in the
UNIX machines, C Shell is used here. The Layer -1, as
shown in Figure -2, is written in C Shell. While writ-
ting AP2 in C-shell for varieties of UNIX machine the
problem of non standard1 interface to UNIX utilities
is faced. For example, for some machines, grep pro-
vides ”-w” option to grep word, some machines restrict
the size of hostname to eight, some machines provide
”hostname ” call to get hostname, whereas in others,
one has to get it by ” uname” call. It is found that since
client side execution is done as a cron Job and it is time
based e.g monthly accounting program should run on
the first day, 5am in the morning, fiscf2sfiscf (AP2)
should run on the second day through the fifth day
of the month, 6 am in the morning and also the daily
accounting program should run early in the morning.
This requires synchronization of time in the environ-
ment

Loophole in UNIX Accounting Design
The existing accounting concept in UNIX operat-

ing system is process based. As discussed [5], the ac-
counting record for the process is created when the
terminal for the process is opened. This poses a prob-
lem in charging users for connection time in present
days machine having windowing systems. Accounting
based on connection time is useful for graphics ma-
chines. Presently, connect time for a user is the sum
of connect time for all windows opened in the terminal.
The measurement of connect time can be made accu-
rate by accounting the maximum of all connect times,
in stead of summing up connect time for processes of
an user.

Monthly billing procedure
1. Monthly accounting €or each machine is done by

a system cron job on the first day of every month.
SFISCFs are created by the fifth day of every
month. After the fifth day, the administrator
should prepare the status file. If all machines

4. How to interface non UNIX machines?

5. What are the environmental constraints for the

submit SFISCFs successfully then SFISCFs are
combined and bill prepared. Otherwise SFISCFs
for the failed machines are obtained using GetS-
fiscf. For non UNIX machines this should be done software?
manually.

We found that tcl, tk, expectk are most suitable con-
sidering the points l i s te i above. Expectk eliminates
the problem of interfacing command line code and
graphical user interface. Layer-2 of the software is

2. SFISCFs are combined and bill prepared. After-
words, if bill file is edited manually, UIF should
be updated accordingly.

495

Table - 1 : Command line interfaces

MergeRpt
GetSfiscf

Interface Call I Description
MakeBill I Generates the bill for the previous month if combined fiscal files for the machines

exist*
Combines the short fiscal file per machine category.
Prepares the short fiscal file for a remote machine. This is used if the machine failed
to generate short fiscal file bv cron iob. -

Preparestat us
UIFBCUF
Preparesum Prepares bill summary.
CleanOldFiles [-all] [-month]

Prepares status of accounting.
Generates common user file out of user information files.

Cleans accounting related files for the specified month and files older than this
month. If -all specified it cleans bill files.

' Help [-topic] Provides accounting related help. L

Table - 2 : Quality Matrix

No I Quality Element I Use Of tcl/tk
Maintainability 1

3 Testability 0
4 Correctness 1

5 Reusability 0

Efficiency
Usability

9 Portability 2
10 Cycle time reduction 2

Degree Of contributions from different sources
2 : Highest, 1: Average, 0 : No effect, -1 : Average reverse effect, -2: Extreme reverse effect.

496

3.

4.

5.

Creation of a chargeable account in SAT (updat-
ing UIF and generating CUF) should be done af-
ter the bill is prepared. For example, if a new
account is created on October 2nd, BF is created
on October loth, after 10th October the new ac-
count information may be added in UIF and CUF
generated .

Similarly, deletion of a chargeable account should
be done after bill is generated. For example, sup-
pose that a user requests to delete his account on
October 25th, the bill for October is prepared on
November 10th. The account information is UIF
may be deleted after November 10th.

Old accounting related files should be deleted.
Bill file may be kept until accepted by customer.

Software quality
Development of the package using tcl, tk, expectk

urned out to be an excellent exercise in quality soft-
ware development process. A breif quality mat rh is
presented in Table -2. We observe that

1. The development process confirms to the class of
Rapid Application Development.

2. The code is extremely maintainable.

3. The code is not large.

4. Portability has been achieved.

Upgradat ion
As discussed in the architecture and implementa-

tion section, the software is upgradable in following
respects

1 New machine category can be added by config-
uring hosts.config, charge file (CF) and creating
a machine category directory under DPMC. AP2
module needs to be coded. For example, to in-
clude HP 7xx machine, one has to create HP700
directory under DPMC, hosts.config and charge
file need to be configured as per given instructions
in the file. If the provided fiscf2sfiscf (AP2) is not
suitable for the machine, it must to be written for
this category.

Conclusion
Currently, the first error free version of the soft-

ware is operational in Supercomputer Education and
Research Center, Indian Institute of Science. The soft-
ware conforms to all desired requirements. Due to
the use of tcl, tk and expectk, the developement cycle
is drastically reduced (hardly six staff months). The
package demonstrates the usability of tcl, tk and ex-
pectk in many directions. The package is available for
download at http://www.serc.iisc.ernet.in.

References
[l] Brent Welch, Practical Programming in TCL and

TK, Draft, January 1 3 , 1995.

[2] John Simonson, System &source Accounting on
UNIX Systems, University of Rochester Comput-
ing Center,LISA V - Sep. 30-0ct. 3, 1991 - San
Diego, @A.

[3] Don Libes, X Wrappers for Non-Graphic Interac-
tive Programs, Proceedings of Xhibition 94, San
Jose, June 80-844, 1994.

[4] Don Libes, Exploring Expect,O’ Reilly & Asso-

[5] Samuel J. Letter, Marshall Kirk McKusick,
Michael J. Karels, John S. Quarterman, The De-
sign and Implementation of the 4.3 BSD UNIX
operating system, 1986.

ciates, Inc.

2. Efficient database management can be done using
some standard database package.

497

