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Analysis of Cylindrical  Antennas-A  Spectral  Iteration  Technique 
S. A.  BOKHARI AND N.  BALAKRISHNAN 

Abstract-The  cylindrical  antenna  problem has been  tackled  using the 
spectral iteration  technique. An iterative  scheme is  employed  for  improving 
on an  initially  assumed  form of the cnrrent distribution. Use is  made of the 
fast Fourier  transform @ET) algorithm, and the  cumbersome  process of 
matrix inversion  is  circnmvented.  Conseqnently,  this  method  is  capable of 
handling  a larger number of unknown  coefficients in the expansion  of  the 
current distribution.  Furthermore, it provides  a  convenient  means of 
testing for the  Satisfaction of the boundary  conditions on the  surface of the 
antenna.  Convergence criteria for the iteration  process have been estab- 
lished  and  the use of  an acceleration procedure is  illustrated.  Different 
types of source  models have been investigated, and the convergence  of  both 
local  and nonlocal parameters is also discussed. 

T 
I. INTRODUCTION 

HE CYLINDRICAL antenna is perhaps  one  of  the  most 
extensively  investigated forms  of  antennas. Comprehensive 

accounts of the analysis techniques  employed have appeared in 
several books including [l] and  [2]. Most  of  these methods 
employ  either Pocklington’s integral equation  or Hallen’s integral 
equation  and solve for  the  unknown  current  distribution. These 
techniques, despite subtle variations between  them,  can  often 
be conveniently  explained  by  the unifying theory of the  method 
of  moments [3]. The  method of moments, as is well-known, 
reduces the integral equation  to a matrix  equation.  The  solution 
then requires the inversion of this matrix,  the  order of  which is 
dependent  upon  the  number of unknown  functions used  in 
representing the  current  distribution. Various  choices  of basis 
and  testing  functions have been  extensively  investigated (11, 
[4] .  However, it is also well-known that  the  demonstrated 
accuracy of the  solutions in the  calculation of some auantities 
like the  input  impedance,  radiation  pattern  etc., is no guarantee 
that  the overall solution  can be accepted as being physically 
realistic or  correct. As a matter of fact, various  aspects of  the 
calculated results may be obviously’invalid,  but  without a nega- 
tive impact on the overall usefulness  of the  result. An example  of 
t h i s  is illustrated by the  computed near  fields on the surface of 
a  cylindrical antenna  [4]. 

The near fields around  antennas are  of  significant interest 
while analyzing antennas near  obstacles, corona discharge assess- 
ment,  electromagnetic pulse (EMP) vulnerability  assessment, 
etc. King and Wu [ j ]  have considered  the  problem of com- 
puting  the near  fields  of  cylindrical driven antennas. However, 
since they  employ Hallen‘s integral equation,  computation 
of the near  fields is not so straightforward.  Their  method calls 
for  the evaluation  of  a complicated expression involving sine and 
cosine  integrals for  the near  fields parallel to  the  cylinder axis. 
Neff et al. [6] ~ by  employing a trigonometric series expansion 
for  the  current  distribution in the  solution of Hallen’s integral 
equation have utilized the  Helmholtz integral for  vector  and 
scalar potentials  and  the  equation of continuity in deriving a 

Manuscript  received  December 23, 1983;  revised June 14,  1984. 
The  authors  are  with  the  Department of Aerospace Engineering, Indian 

Institute of Science, Bangalore 560012, India. 

simpler  expression for  the  near fields of a thin centerfed cylindri- 
cal antenna.  Their results for a half-wave dipole compare well 
with  those of King and Wu [SI. Miller and Deadrick [4] have 
computed  the near  fields on  the surface  of perfectly  conducting 
cylindrical antennas  with several choices of subdomain  type basis 
and testing functions in  their moment  method  solutions.  They 
attribute the disparities  observed in the near  fields, with differ- 
ent basis functions  to  certain peculiarities  associated with  the 
basis functions  employed.  Commonly used basis functions  of  the 
subdomain type lead to  currents which may have discontinuities in 
amplitude, slope etc.  at  segment  junctions  each of  which can 
produce a  distinctive variation in the  near fields at  the  points of 
discontinuity. Since  Pocklington’s  integral equation involves 
a second derivative  of the  current  distribution,  Anders [7] 
has suggested the usage of basis functions  with  continuous sec- 
ond derivatives to  obtain a smooth field distribution along t he  
surface of the  antenna.  Mittra  and Klein [8] have also concluded 
that  the  choice of basis functions  cannot be arbitrary  and  that 
certain choices may yield erroneous results. Therefore, a method 
of solution which  checks for  the satisfaction of  boundary  condi- 
tions  preferably  without involving excessive computational 
effort is desirable. KO and  Mittra  [9] have  developed  a new 
iterative  scheme in the  Fourier  transform  domain which has a 
provision for  checking  the satisfaction  of boundary  conditions. 
Matrix  inversion is circumvented in this method,  and use is made 
of the  fast  Fourier  transform algorithm thereby resulting in a 
computationally  efficient  solution.  Although this technique 
has been successfully applied to  a  variety  of scattering  problems 
[IO] -[12] convergence  of the  iteration process has  not been 
discussed in  detail.  Moreover, application of this technique to  
cylindrical antenna  problems  has  not been reported so far.  Sarkar 
er al. [ 131 have  investigated  various numerical  methods  for  the 
solution  of large systems of  linear  equations arising electromagne- 
tic  field  problems.  Their  results tend  to favor  iterative methods 
as opposed  to  matrix inversion techniques,  and  they have particu- 
larly suggested usage of the  conjugate  gradient  method. How- 
ever: they have not  considered  the  spectral  iteration  technique  in 
their discussion. 

Although several different  types of basis and  testing  functions 
have been  investigated, one possibility that  appears  to have been 
overlooked  is that of employing  subdomain  type basis functions 
for  the  expansion  of  the  current  distribution  and  entire  domain 
type basis functions  for testing. The  method  employed  in  this 
paper,  in  some sense, fills this gap. 

In this  paper we employ a similar scheme [9]  for solving the 
cylindrical antenna  problem.  In  order  to bring out  the advantages 
of this technique over the  conventional  moment  method  solu- 
tions,  a new explanation is given in  light of the  method  of  mo- 
ments itself. The  mathematical significance of  a particular  trunca- 
tion  operator  [9]  and  the  choice of an acceleration  scheme 
[IO], [ l l ]  are  clearly brought  out.  Criterion  for  the conver- 
gence of this  method have  been  derived.  A number of examples 
with  different  types of  source fields have been worked  out  to 
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bring  out  the effectiveness  of this method. Convergence of both 
local  and  nonlocal  parameters  has also been discussed. 

11. METHOD OF SOLUTION 

Consider  a straight,  center-fed, cylindrical  wire  of  circular  cross 
sectional radius a and  length 2h symmetrically located  about 
the origin  of  a  rectangular coordinate system and  oriented along 
the z-axis. For simplicity we assume the usual thin wire approxi- 
mations. 

Pocklington's integral  equation [8]  is of  the  form 

[ f + f12] A,(-.) = - jw~E,~(z) ,  z E [-h, h ]  (1) 

where fl and E are the  propagation  constant  and  permittivity of 
the  medium,  EZi(z) is the  tangential  component  of  the  incident 
electric field and  the  vector  potentiald,(z) is given by 

h 

A,(z) =[ J(z')G(z - z') dz' 

where  J(z7  denotes  the  current  distribution (z-directed) and 
free space  Green's function G(z - z') is given by 

G(z - z') = 
exp  [-iPd(z - zOL + QL 1 

4?rd(z -- z')2 + .2 

Since (1) is valid on  the wire only,  to enable Fourier  transforma- 
tion, a truncation  operator 0 is defmed as in [9]. For  the one- 
dimensional case considered  here, O can be taken as a pulse of 
unit  amplitude  and  the  operation  it  performs as a  multiplica- 
tion, i.e., 

e@)=  1, - h < z < h  

= 0, otherwise. (4) 

Similarly  a complementary  operator 6 is defined as 

i ( z )  = 0,  -h < z < h 

= 1,  otherwise. 

Equation (1) can  now  be  written as 

C -1 + p2 [G(z)*J(z)] (4: ) 

2 E [-=, -1 (6) 

where  the asterisk denotes  the  convolution  operation, C = 
-jfl/Z, Z the  intrinsic  impedance  of  free space, and use is made 
of the  identity [9] 

e(z).qz) = J (~)  ( 7 )  

which is obvious since the  current  distribution vanishes outside 
the  antenna. However, in the iterative  process employed, in the 
solution, this identity is helpful in several ways as will be dis- 
cussed later. 

We shall employ  the following form  for  the  Fourier trans- 
form : 

m 

r? = @(f) = F[H(z)] = H(z) exp  (42nfz) dz (8) 

and  for  the inverse Fourier  transform 
ca 

H = H ( z )   = F - l [ k ( f ) ]  =/ E?(f) exp(j2nfz)df. (9) 

Fourier  transforming (6) on  both sides, an iterative form 
for  the  transform of the  current  distribution  can be written f 

--m 

[91 

where r 

KO denotes  the  modified Bessel function  of  second  kind  and 
zeroth  order  and  the  superscripts k indicate  the  iteration  num- * 
bers. 

The  solution  then be,@s with an  initial  estimate  for  the  cur- 
rent  distribution p ,  evaluation of  F(Op).  and, Using (10) an 
improved  approximation  for J1 is obtained.  For  the  next  itera- 
tion J1' is obtained  from F-'(p) and  the  process  can  be  con- 
tinued.  The  iteration process is explained in detail in [ 9 ] .  After 
completion of each  iteration, a boundary  condition  check  can be 
made by comparing FE = OF [EcF(OJk)], with the  incident 
electric field Ezi. Note  that  the  satisfaction of the  boundary 
condition itself can be used as a stopping  criterion  for  the  itera- 
tion process. Alternatively,  we  can  compare ?(k(k+i) and F(OJk) 
after  each  iteration  and  stop  the  iteration  process  after  the dif- 
ference [?k+i) - F(OJk)] is less than a predetermined  quantity. 

). 

111. SOURCE MODELING 'I! 
In  performing  antenna calculations, it  is vitally important to 

introduce  the  proper  exciting field. Here we employ  three dif- 
ferent  types of source  models,  the  Fourier  transforms  of which 
can be expressed in a  closed form. 

A. Delta Gap Feed 

For a  voltage generator  of V volts  located  at z = 0, 

E, j(Z) = V6(z) 

and 

F(BE, j) = E, j = v 
where 6(z) denotes  the  delta  function. 

B. Pulse Feed 

In t h i s  case, the electric  field  of the source is assumed to  be c 
uniformly  distributed over a  small  region about  the  feed  point. 

Ez j ( z )=   V /2z l ,   - z l   <z<z l   andz ,  <h 
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C. Magnetic  Frill Excitation lo Po ( 2 ) 

For a  magnetic  frill voltage generator  of V volts  located  at 
z = 0 the source field is of  the  form [4], 

Ezi(z) = V[exp ( - i K ) l R u  

- eW (-i@ b)/R b 1 /2Ln(b/a) (16) -; e------+ 
Np -I 0 1 Np 
2 

. e---- 
N 

where 
2 -- _ -  - 

2 2 '  

+ Z l +  
R, = d x w  
a ffiU inner radius 
b friU outer radius. 

Fig. 1. Piecewise  constant  representation of the  current  distribution. 

where  the  mnth  elements of the  corresponding  matrices are 
As long as the wire length 2h and  the  ratio (b/a) are not  too small, 
Ezi(z)  can be regarded as essentially support  limited to  the range [ E p I  c - f i p ( n z 4 f )  

( 4 ,  h )  and [Hpl c - Hp(m4z) 

F(eEzi) s EZi [ W ]  - exp (-j2n mn/N) 

[tu] - exp ( i2n  mn/N) z V [ K ,  [a4(2nf)2 - 0 2 1  

- KO [ b d ( 2 ~ f ) ~  - P 2 ) 1  I /Wb/a ) .  (17) and 

IV. CONVERGENCE CRITERIA 4 z [ W ] A f [ @ ]  = [ U ]  
Wk now  examine  the  conditions  under  which  the  iteration 

process given by (10) is  convergent. We shall employ  matrix 
notations since convergence criteria  for iterative solutions are 
w d l  established for  matrix  methods. Since the  fast  Fourier 
transform (FFT) algorithm is employed,  certain  points regarding 
the discrete Fourier  transform (DFT) need to be  made. 

We fust  choose an appropriate sampling  interval a Z ,  suffi- 
ciently small so as t o  keep  the aliasing of  the  current distribu- 
tion to a  mininluni. Let N p  = 2 h / A z  and ATp + 1 denote a set of 
equally  spaced points defined on the  antenna as shown in Fig. 1. 
We next  choose ah appropriate integer Ar, such  that N > N P  + 1. 
For  the sake of the  FFT, N should be highly composite, prefera- 
bly a p o l e r  of two. We set Ar = 2', i an  integer. 

Eqautions (8) and (9) can be expressed  in  a  discrete form as 
~ 4 1  

N I 2  - 1 

f i p ( m A f )  = Az Hp(nAz) exp (-j2mnn/N) (18) 
n = - L Y / ~  

N I 2 - 1  

HP(wAz).= 4 f  'x E p ( n A f )  exp ( j2nmnlN) 
n = - N / 2  

- 1\72 < rn < 1V/2 ( 1  9) 

where z p ( m A f )  and Hp(nzAz), denote periodic representation 
of f i ( f )  and H ( z )  and 

Equations (18) and (19) can also be expressed  in  a matrix  form. 
Let m denote  the rows and n the  columns of  a matrix.  For 
uniformity in notations we let m and n take values from -N/2 
t o  (Ar/2) - 1. A subscript c will be used to indicate a column 
matrix.  Therefore, 

where [Ul denotes  the  identity  matrix. 
The basic equation  to be solved is 

= -ecz)Ezi(z).  (24) 
Since using the DFT in the  computation of the  Fourier trans- 
form amounts to assuming a piecewise constant  representation 
for  both  the  function Hp(mAz) and  the  exponent in (18), we 
express J in terms  of piecewise constant basis functions. How- 
ever, unlike  moment  method, J is defined o\rer the entire range 
[-N/2,  (N/2) - 11 and  the  operator 0 does  the  truncation over 
the  antenna (Fig. 1). 

where 

Az  Az 
pn(z ) ' I ,  n - - < z < n + -  2 2 

= 0; otherwise 
Pn denote pulses of  width Az and  the I,] are the  constant coef- 
ficients to be determined.  Note  that  the  choice  of pulses  as basis 
functions does not  meet  the  requirements  of  the  current going to 
zero  at  the wire ends. This is usually  overcome in  moment 
method  solutions  by providing extra pulses at  the wire ends 
with  zero  currents. We need  not be concerned  about this com- 
plexity  here since when  the  iteration process to be employed  in 
the  solution converges, it  gives a current  distribution  that is 
numerically  zero  at  the wire ends. A delta  function in the DFT 
sense can be treated as  a pulse of  width  equal to  the sampling 
interval Az and  height l/&. All P, can be related to Po as 

P,(z) = [P,(z - rzAz)/4z] 4 z  

( 2 1 )  and 

(22)  Fn(mAf) = Az exp (-j2nnAzrnAf). 
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Using (25)  and (26) in  (24), 

A set  of  weighting functions  exp (-j27rmAfi), -N/2 < m < 
N/2, are  defined over the range (a, -). Taking the  inner  product 
on both sides of (27)  with these  weighting functions,  (the equiva- 
lent of Fourier transforming)  a matrix  equation  for  the  unknown 
currents  can  be  written. Since the DFT is employed,  the integra- 
tion reduces to  a summation  and  the range to  [-1V/2: (N/2) - l ]  . 
The weighting functions  chosen  can be regarded as of the  entire 
domain  type. However, as the  term  entire  domain in moment 
method parlance usually refers to basis function defined  over 
the  entire  domain of the  antenna  alone,  here their domain is 
(-m, -). Note  that  instead of matching  the tangential  electric 
field due to J ,  (say F z )  wit$ Ezi at  certain specified points as in 
point  matching or matching  the averaged value of Fz with a 
corresponding averaged Ezi as in Galerkin's method,  here,  the 
spectrum  of F, is matched  with  the  spectrum  of EZi. 

As mentioned in [9] a  main  advantage of dealing in the 
spectral  domiin is that  the  time  consuming  convolution integral 
in  the  spatial  domain is  reduced to an  algebraic product  of trans- 
forms in the  spectral  domain. In fact, this is an efficient algorithm 
for  computing  the  convolution of two  functions by taking  the 
inverse DFT. of  the  product of their DFT's  1151.  However, it 
must be remembered'  that  due to the periodic representation of 
the  function  and  its  transform  in  the DFT, this operation results 
in circular convolution  rather  than  the linear convolution  that is 
desired. We shall for  the  time being assume that  the  convolution 
property  of  the  continu0.w  Fourier  transform is valid for  the 
DFT and we will later ,on  show how circular convolution  can be 
overcome by the  truncation  operator 0. 

Taking  the  Fourier  transform  on  both sides of (27) and  after 
some simplifications, the following matrix  equation is obtained. 

[AI [11, = [El, , (28) 

[AI = [4'1 [el (29) 

where 

[A'] =CAz[W]  [e]Af[W]  [DG]Az[W] (30) 

and  the  elements  of  the  matrices  are 

[e] - e ( n b ) s :  

[DG] - @rnAf)Z(mAf)€i: 

[I1 c - 1, 

[ E ] ,  - -OEzi(nzAf). 

6 %  denotes  the  Kronecker  delta  and is used to  indicate a  diago- 
nal  matrix. 

Since we are interested in the  current  distribution  on  the 
antenna  alone, Le., [e] [ZIc, (28)  can  be regarded as a solution 
t o  (24) with an over determined  set of weighting functions. 
In a conventional  moment  method  type of solution  one  would 
have to  evaluate the  elements  of  the  matrix [ A ]  and  then  obtain 
its inverse. However, in the  method described in this paper, 
we do  not explicitly  evaluate the  elements of the  matrix  [A], 
but  the  matrix  product [A] [ I J  is rapidly computed  with a 

minimum  number  of  multiplications  by  the  FFT algorithm. 
Also, since this product  directly gives the  near field, it provides 
a convenient  means  for checking the  satisfaction of the  boundary 
condition, a  provision  which would  require  extra  computations 
in a conventional  moment  method  solution. 

The middle (h; + 1) elements  of  the  matrix [e] are  ones 
(corresponding t o  points defined on  the  antenna)  and  the  rest 
are zeros. Therefore,  from (29), matrix [A] can be written 
in  a partitioned  form as [[a] [A"] [ O ]  ] . where [A"] is  a N X 
(hi + 1)  matrix whose elements are the -1Vp/2 to1VP/2 column 
elements of  [A'] and  the remaining elements of [A]  are  zeros. 
It will be shown later  that XP  must be less than N/2 .  In view of 
this, matrix [A]  becomes sparse and  half  or  more  than half of 
its  elements  can be zeros. Consequently  equation (28) lends 
itself  ideally to a solution  by an iterative method. 

To  do this, (6) itself can be written in an iterative form as 

= -eEzi + Ci - + p2 (G * &Ik). 1 
Fourier  transforming this equation on both sides, the following 
equation is obtained 

C[Q] [Z"l]c = [E], + CAz[M,] [ i ]Af[W] 

- [DGIAz[W P I  [Ik], (3 2) 
where [Q] = Az[DG] [W] and  the  matrix [ i ]  = [a - [e]. 
The  diagonal matrix [DG] is nonsingular (1 1) and so is [Q] . 

Solution to (28)  can be written as 

[Ik+' 1 C = C + 1'1 [ Ik]  C (33) 

where 

fEQ1C =('/')[Q]-' (34) 
and 

[GI = A f [ w ]  [DG]-'Az[W] [8]4f[@] [DGIAz[wl [ e ]  

= [el - 1QI-l  [AI (3 5) 

which is the iterative solution  for  the  system given by (28). 
The matrix [GI is the (N X iV) iteration  matrix  for  this  method. 

The  method is of the  first degree since [Zk+'] depends  explicitly 
on [Ik] and  not  on [Zk-'] , *.. [Z'] c. It is  linear  since neither 
[GI nor [Ea] depend on [IK] , and is stationary since neither 
[GI nor [E,] depend on k.  

Convergence of  the  iteration process now requires the  spectral 
radius of [GI to be less than  unity [ 131. From  (35) it can be seen 
that  for a given N and hrp, the  only  matrices whose elements 
depend on the  antenna dimensions  are  [DG] and [DG] -'. 
Therefore  the eigenvalues of the  matrix [GI would  depend on 
the  matrices [DG] and [DG] -'. This  condition  can be met  by 
a proper choice  of N and Np.  

The advantages  of truncating  the  current  distribution (7) 
can  now be explained. In the  first place,  since the  Fourier inverse 
of the  kth  transform of the  current  distribution does not give rise 
to  a current  that is zero  outside  the range of the  antenna [9], 
this truncation can be viewed as an acceleration scheme  itself 
since we use our a priori knowledge that  the  current  distribution 
is zero  outside  the  antenna.  Secondly, this operation  prevents 
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circular convolution. While computing F[G*J), if the Green's 
function  can be regarded as essentially support  limited over the 
range of  the  antenna alone: and if Alp < AT/2, the  operator 0 
does the same as that of adding  the  appropriate  number  of zeros 
to the  current  distribution, which is a  suggested remedy  for 
circular convolution [15] . Fourier  transform of (G*J) then 
becomes the N point  DFT of two N p  point sequences G and J. 
Lastly, the  truncation of the  current  distribution is  essential 
for  the  iteration process. It  can be seen from  the  elements of the 
matrix [GI that in the absence of  the  matrix [ e ]  (which operates 
on the  current  distribution) [6] is flanked on both sides by 
matrices which  are the inverses of  each other.  Consequently 
the eigenvalues of  the  matrix [GI will be  the same  as those  of 
the  matrix [ B ]  which  are one  and  zero. Hence the  iteration 
process wiU not converge  if the  current  distribution is not  trun- 
cated  before  taking  its  transform. 

V. NUMERICAL RESULTS AND DISCUSSION 

Analysis of  cylindrical antennas of  various lengths  has been 
carried out  and  the results  are presented in this  section.  The 
method of solution being iterative, a good choice of  the initial 
current  distribution  can significantly hasten  the convergence. 
Since the sinusoidal distribution is known  to be an excellent 
approximation  for  the  current  distribution on a  cylindrical 
antenna,  in all examples illustrated,  the initial current distribu- 
tion is assumed to  be sinusoidally distributed in magnitude  and 
of  zero phase. 

As mentioned earlier, the tangential electric field on the sur- 
face of  the  antenna  can be taken as a measure of  the convergence 
of  the  iteration process.  However,  since the  occurrence  of  strong 
fields at  the  ends of the  antenna is inevitable, we enforce  the 
boundary  conditions everywhere except  the wire ends  and de- 
fine  the  error field as 

where Ezin and F,, denote  the values of EZi and F, at  points 
n. 

The  input  impedance  has been  evaluated by using the  stationary 
expression [ 81 , 

h - /  F,.J 
- -  h 

zin = (3 7) 
I f e e d  

Note  that this form  depends  not  only  on  the electric  field in 
the  feed region but also that  on  the surface  of the  antenna. 
Moreover, it is also valid for widely distributed source fields. 
Since the  computed value of the  input  impedance is a  local 
function of the  current  at  the  feed region, for  the sake of com- 
pleteness, we have also considered a nonlocal  parameter, namely 
the root mean  squared  current,  defined as [ 8 ] ,  

Results  pertaining to  specific parameters are discussed below. 

A. Convergence of the Iteration Process 

Convergence of this method  depends on the  elements of the 
matrix [DG] and  its inverse, which govern the eigenvalues of the 

// 4 
2Y I I I I I I I I 
0.1 0.3 0.5 0.7 0.9 1 . 1  1.3 1.5 1.7 

2 I/  X, 
Fig. 2. Convergence of the  iteration process as a  function of the antenna 

length, N = 64, h / a  = 100, Np = 4.6, 8, . . . ,32, and NT = number of 
values of Np for which the iterations  converged. 

matrix [GI.  A study  of  the convergence for a  wide range of 
antenna lengths,  is illustrated in Fig. 2. These  results were gener- 
ated  with  the  help  of an acceleration  scheme discussed in the  next 
section. N has been kept  constant (=64) and  for every antenna 
length investigated, N P  has been  varied from  four to 32 in steps 
of two. Of the 15 values, the  number  of values of N p  for  which 
the  iteration process  converged (denoted  by N,) is  plotted as 
a function of the  antenna  length (Fig. 2). It can be seen that as 
the  length increases, N, also increases, except in  a small neighbor- 
hood of the half-wavelength where  the  iteration  process is always 
convergent. The same trend  has also been  observed with a choice 
o f N =  128. 

A possible explanation  for  this  can  be given by utilizing any 
consistent multiplicative matrix norm, the  infinite  matrix  norm 
for  instance, as an estimate  of  the  spectral radius  of [GI.  From 
(1 1) it  can be seen that,  of  the  elements  of  the  matrix [DG] , 
the  element  for which m = n = -hr/2 has  the largest magnitude. 
The  element of  smallest magnitude  is in the  neighborhood  of m = 
n = 0 and is found  to be nearly the same for  antennas of  various 
lengths. It is easy to  see that  the  infinite  matrix  norm  of [GI 
can be kept  at a minimum by keeping Af small. However,  since 
the  infinite  matrix norm only gives an  upper  estimate  of  the 
spectral radius  of [GI,  this method is also found  to converge 
for values of N p  which  result in slightly larger values of Af. 
This is t o  be  expected since the eigenvalues of [GI would be 
complicated  functions  of  the  elements of [DG]. It  must  be 
mentioned  that  for every antenna  length we have investigated, 
there is always at  least one I\> for which the  iteration  process 
converges and sufficiently large enough so as to  result  in a  rea- 
sonably  good input  impedance. 

B. An Acceleration  Procedure 

It is  observed that  often  the main  difference between  the 
approximate Jk derived after a  few iterations  and  the  exact 
solution is a complex  factor. We have therefore investigated 
the use of a  variational  weight factor defined as [ 111 , 

(39) 
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Fig. 3 .  Convergence with and without acceleration, N = 256, Np = 42, h / a  
= 100, delta gap feed. 

where (.> denotes  the  inner  product  and F, is a tangential electric 
field due to Jk. The  current  distribution Jk is  multiplied  by X k  
after  each  iteration. With the use  of this factor,  one  can  start 
the  iteration  with a  sinusoidal current  distribution J" of an 
arbitrary  amplitude.  At  the  end  of  the  first  iteration,  the  cur- 
rent  distribution J' multiplied  by  the  factor X' will result 
in a  near  field comparable  to -Ezi. It is found  that convergence 
is  significantly  accelerated by this method  and is illustrated in 
Fig. 3. This is also helpful in situations where the  iteration process 
is very slowly  convergent or begins t o  oscillate. 

The above procedure  may alternatively be viewed as  a multi- 
plication of the  iteration  matrix [GI itself by a complex  con- 
stant.  Note  that  the  rate of  convergence will be higher the smaller 
the spectral radius  [GI. Since the  constant Xk tends t o  minimize 
the deviation between -Ezi and F,, it is  reasonable to  presume 
that this factor  after  multiplying  the  matrix [GI will reduce 
the  spectral radius of [GI and  hence accelerate the convergence. 
The  factor Xk will gradually tend t o  unity as the  number  of 
iterations increase and  consequently  the  rate of convergence 
reduces  with increasing number of iterations.  It  can also be seen 
from Fig. 3 that convergence with acceleration is monotonic 
and  the residual E,,, does  not oscillate. Although this  accelera- 
tion  procedure  has  no adverse effect on the  unaccelerated  itera- 
tion,  it  does  not  guarantee convergence always. An example 
of divergence is illustrated in Fig. 4. Refening  to Figs. 3 and 4, 
it can be seen that  for  the 0.3 h case, for  the same Np(=42), 
the  iteration converged for N = 256 and diverged for N = 128. 
Whereas, for  the 0.7 h case, for  the same N(=256), the  iteration 
converged for N p  = 42 but diverged for N p  = 44. Thus: N p  and 
N play an  important role in this method.  Note  that  the oscilla- 
tory behavior in Fig. 4 is on account of acceleration without this 
E,,, builds up almost exponentially. 
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Fig. 4. Illustration of divergence (a) 2h = 0.3 X, N = 128, Np = 42. (b) 2h 

= 0.7 X, N = 256, Np = 44. 
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Fig. 5. Near fields of a 0.3 X dipole with a three-segment pulse feed. k / a  = 
100, N = 256, Np = 42. 

C. Near Fields 
The  computed tangential  electric  fields for  three  different 

types of  source distributions  are  shown in Figs. 5-7. It  can be 
seen from Figs. 5 and 6 that in situations where the Source field 
can be represented  exactly in terms of pulse basis functions 
(like for  the  delta gap and  the pulse  feed) the  boundary  condi- 
tions at  the  feed region are  met  exactly right after  the  second 
iteration itself. Further  iterations improve the  near  field away 
from  the  feed region. This is to  be expected since the  FFT 
itself employs pulse functions as its basis. However, for  continu- 
ous field  distributions  such as the magnetic  frill (Fig. 7 ) ?  a larger 

c 
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Fig. 6. Near fields of a 0.7 X dipole with a delta  gap feed h / a  = 100, N = 
256, Np = 42. 

number  of  iterations will be required to  achieve an adequate 
representation  of  the  near field. Also a  larger Np is  required to 
satisfy the  boundary  conditions  adequately. 

D. Input Impedance 
The  input  impedance  has been calculated using (37). Results 

are  illustrated  for  three cases in Fig. 8. For  the 0.3 X and 0.7 X 
cases our  results  compare well with those of  Mittra  and Klein 
[8] with a  slightly larger N p ,  Le., with N p  = 30 we obtain  the 
same impedances as those  obtained in [8] and  19 piecewise 
sinusoidal basis functions. However,  as I V ~  is increased, the  input 
resistance for  the 0.7 X case does  not increase in  the  manner as 
illustrated in [ 8 ] .  For  example,  with Ab = 84 (not  shown  here) 
the  input resistance for the 0.7 X case is 494 !2 in contrast 
with s.570 L? (with 2 60 piecewise sinusoids [ 8 ]  j. This is to  be 
expected since when  the  iteration process  converges the  boundary 
conditions,  except  at  the wire ends,  are almost exactly met, 
and  the  current  distribution is zero  at  the wire  ends. Conse- 
quently  it is only  the  current  distribution at  the  feed  point  that 
governs the  input  impedance. Since the -rms current (Fig. 9) 
also converges it is unlikely for  the  input  impedance  to vary 
largely as the  number  of basis functions  are increased. Also 
there will be no difference between using the  stationary expres- 
sion for Zin (37) and  the usual equation 2, = V/I feed .  
Our results also compare well with experimental results of  input 
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Fig. 8.  Convergence of the input impedance. h / a  = 100, delta  gap feed. 
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Fig. 9. Convergence of the rms current. h/a  = 100, delta gap feed. 

impedance as measured  by Mack [l] . Convergence of the rms 
current is also in a good  agreement  with  the results of Mittra 
and Klein [SI. 

VI. CONCLUSION 

It  has .been shown  that  the  spectral  iteration  technique  pro- 
vides  a  numerically efficient  and  accurate  procedure  for solving 
cylindrical antenna problems.  Advantages  of this method  com- 
pared to  conventional  moment  method  solutions are clearly 
brought  out  and. convergence criteria have been established. 
Application of a  variational  weighting factor  for accelerating 
the convergence has been  illustrated.  It  must be pointed  out 
that  of  the  many acceleration  schemes tried  out by the  authors 
including  the  steepest  descent  acceleration,  the above  scheme 
proved to  be most promising.  Numerical comparisons of the  input 
impedance have been made  with results  deduced  elsewhere and 
are  found  to  be in good agreement.  Since the  satisfaction of the 
boundary  conditions is always ensured in this method,  the near 
fields obtained will be more  accurate  than those obtained  by 
other  methods.  This  technique  can also be extended  to  the analy- 
sis of arrays of cylindrical antennas.  The  fact  that this method 
is  always  convergent for dipole lengths in the  neighborhood 
of the half-wavelength indicates  that this method  could be 
effectively  used in the analysis of large arrays of resonant 
length dipoles. 
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