Indian J. pure appl. Math., 34(6) : 859-871, June 2003
© Printed in India.

A WAVEGUIDE PROBLEM INVOLVING A THICK IRIS IN THE
THEORY OF ELECTROMAGNETISM

*k

A. CHAKRABARTI', MRIDULA KANORIA™* AND B. N. MANDAL"

Department of Mathematics, Indian Institute of Science, Bangalore 560 012
*Department of Applied Mathematics, Calcutta University, 92 A.P.C. Road,
Calcutta 700 009
**Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road,
Calcutta 700 108
E-mail: biren@isical.ac.in

(Received T December 2001; after revision 5 July 2002; accepted 22 November 2002)

The problem of electromagnetic wave propagation in a rectangular waveguide containing a thick iris is considered
for its complete solution by reducing it to two suitable integral equations, one of which is of the first kind and
the other is of the second kind. These integral equations are solved approximately, by using truncated Fourier
series for the unknown functions. The reflection coefficient is computed numerically from the two integral equation
approaches, and almost the same numerical results are obtained. This is also depicted graphically against the
wave number and compared with thin iris results, which are computed by using complementary formulations
coupled with Galerkin approximations. While the reflection coefficient for a thin iris steadily increases with the
wave number, for a thick irs it fluctuates and zero reflection occurs. The number of zeros of the reflection
coefficient for a thick iris increases with the thickness. Thus a thick iris becomes completely transparent for some
discrete wave numbers. This phenomenon may be significant in the modelling of rectangular waveguides.
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1. INTRODUCTION

Problems of electromagnetic wave propagation in a waveguide lead to those of determining the
solutions of the reduced wave equation or the Helmholtz equation under appropriate boundary
conditions (see Jones!” ) It has been shown in Jone’s books that electromagnetic wave propagation
in a waveguide gives rise to a class of interesting boundary value problems which can be handled
for solution by reducing them to integral equations. The study of one such boundary value problem
involves the determination of the electromagnetic field in a rectangular waveguide containing a thin
iris formed by placing a thin sheet of metal parallel to the longer side of the waveguide. This
problem has been tackled in Jones books by reducing it to two integral equations of the first kind,
one valid in the aperture portion below the iris and the other valid in the perfectly conducting metal
portion of the iris. These equations can be solved approximately by employing a truncated Fourier
expansion method. Such truncated series methods of solution are particular cases of a general method,
known as the Galerkin’s technique (see Jones! [p 269)).

The present paper is concerned with the problem of electromagnetic wave propagation in a
rectangular waveguide, in which is present a rhick iris i.e., an obstacle in the form of a rectangular
thick perfectly conducting metal plate placed parallel to the longer side of the waveguide. This
problem generalizes the iris problem of Jones' 2 in which the thickness of the iris is zero. This
generalization takes care of situations when a discontinuity in the medium consists of a region whose
thickness is not negligible compared to other geometrical dimensions describing the physical situation.
It may also be emphasized here that in practice, the effect of the thickness of the iris can be of
utmost importance. In the context of other problems of scattering of electromagnetic waves, there
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have been efforts to study the effect of the thickness of the scatterer (see Davis and Leppingtor13”4
Also in the case of scattering of water waves by barriers, the effect of the thickness of the barriers
has been the sub_]ect of mvestlgatlons by several workers for quite some time (see Mei and Black’,

Guiney et al%, Owen and Bhatt’, Kanoria et al. )

It may be noted here that the thick iris can be viewed as a double wave%ulde discontinuity.
There ex1sts a considerable literature on waveguide discontinuities (see Collin®, De Smedt and
Denturck! ) and various numerical techniques such as scattering matrix techniques, Galerkin or point
matching techniques etc. have been employed to tackle them. Here the thick iris problem is solved
by reducing it to that of finding the solutions of two independent integral equations, one of the first
kind and the other of the second kind. Both these integral equations are solved approximately by
truncated Fourier series expansion methods, and the reflection coefficient is evaluated numerically
by using both the approaches. It is observed that both the approaches produce almost the same set
of numerical results. This gives a check on the correctness of the numerical results. Also, the
reflection coefficient is depicted graphically against the wave number and compared with the thin
iris results. As the thickness increases, the reflection coefficient is seen to fluctuate against the wave
number and zero reflection occurs. Thus a thick iris becomes completely transparent for some discrete
frequencies of the incident wave field.

2. STATEMENT OF THE PROBLEM

A Cartesian co-ordinate system is used here and it is assumed that a rectangular waveguide occupied
the region defined by 0<x<a,0Sy<h,— e <z<eo, except that there is a thick iris present in the
middle. The configuration of the thick iris is given by —b<z<bh,0<x<qa,d<y<h with 2b
representing the thickness of the iris.

The problem here is to determine the electromagnetic field scattered. by the iris when a
time-harmonic field of known wavelength from the direction of z=+ o is incident on the iris. Then
the field is partially reflected and transmitted by the iris. For simiplicity, the incident field is
considered to be of the transverse electric type with the magnetic field having a component along

the x-direction, which is represented by Re {¢’"° 0, 2) sin-%&e"'“" } where

¢ (y,z)=2e A=), .2

Here A represents the wave number of the incident field, determined by 12=k2—£2>0 in which
a

k=aV(e u)l/ 2 M being the dielectric constant and permeability, respectively, of the interior of the
waveguide. Assuming that the boundaries of the waveguide as well as the iris are perfectly
conducting, the boundary value problem involves the determination of the total field represented by

¢ (3, 2) sin -’-tal e’ ‘”'} where the function ¢ (y, z) satisfies

(VP+42) ¢=0 for b<lzi<o,0<y<h, and IzI<b, 0<y<d, - 2.2)
$,(0,2)=0 for —ee < z< oo, . (23)
¢y=0ony=nhforlzI>b and on y=d for 1z1<b, .. (2.4)

¢, (7,2 b)=0 for d<y<h, - (2.5
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00, xb+0)=¢(y,£b-0) for O<y<d, .. (2.6)
¢, (0, 2b+0)=9,(y,2b-0) for 0 < y < d, .. 2D
1/3 .

r’° V¢ is bounded as r— 0, .(2.8)

where r denotes the distance from the corner points (d, £ b),

¢inc 0,2)+R ¢i"C 0,—2) as z->oo,
o0, z) ~ . .. (2.9)
T ¢"™ (y,2) as z7-— — oo,

where R and T are respectively the reflection and transmission coefficients (complex) to be
determined in the course of the mathematical analysis.

3. SOLUTION OF THE PROBLEM

Due to the geometrical symmetry of the thick iris about the centre plane z = 0, it is convenient to
split ¢ (y,z) into its symmetric and antisymmetric parts ¢’ (y,z) and ¢° (y, z) respectively so that

P0,=¢"02)+¢" (.2 . (3.1
where 9°0,-)=¢" 02, ¢ 0.-2)=-9(,2). .. (3.2)

Thus the analysis here may be restricted to the region z>0 only. Now ¢’ (y,z) satisfy the eq.
(2.2) and the conditions (2.3) to (2.8) together with the conditions

¢, (,0=0,¢°(0)=0for 0 <y < d. .. (3.3)
Let the behaviour of ¢*“(y,z) for large z be represented by
95 (,2) ~ e AETD L Rea fAEb) 45 4,0 . (34

where R* and R® are unknown constants. By using the conditions (2.9) it is found that these constants
are related to R and T by the relations

R, T=—;—(R’1R“)"2Mb. . (35)

Now, the eigenfunction expansions of ¢™°(y, z) satisfying the eq. (2.2) and the conditions
(2.3), (24), (3.3) and (34) (for z > b) in the two regions z > b, 0 < y < h and 0<z<b,
O<y<d are given below :

, s _ s : _ _ Fi4
¢J.a(y’z)=e—z/1(z-b)+Rs.ae¢).(z b)+ Z A;‘e H, (z b)cosﬁzl

n=1

forz>b 0<y<h ... (3.6)

where A:a (n=1,2,..) are unknown constants, and
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(‘f(y’Z)J= Bycos Az N o | B cosh&,z

¢ (. 2) iBysinAz | = | iBysinh&,z
cos%xfor 0<z<b,0<y<d, .. 3.7

with

2 1/2
5":("42 J >0, n =1, 2.

and B:a(n = 0, 1, 2, ..) being unknown constants.
The condition (2.5) gives rise to the relations
iA(1-R"Y+ Y u,,Af,“’cos”—h’EX=0,d<y<h. . (38)
n=1

Again, the conditions (2.6) and (2.7) give rise to the relations

s,a sa sa nmn
1+R"% + zl A, cos 22X 2 up, os-—d-z,0<y<d . (3.9
n= n=0
and Si2(1-RY - Y p, Ay cos T = Z B, v, “cos "7, 0<y<d ... (3.10)
n=1 n=0
us\ Ab w | cosh& b
0 |_[ cOs n |_ n
where a [=| isindb I a [=| sinh& b ,n>0 .. (3.11)
uo un \ n
\
3\ S ) .
and ”(s) - —AsinAb Yy - énsmhgnb n>0 (3.12)
Ug | iAcosAib | v: | &,coshg, b |’ ' A
J

Two approaches are now used to reduce the series relations (3.8)-(3.10) to integral equations
of first and second kind.

Approach 1
s, a
Let A, (n=1,2,..) be represented by

AS =

" ;}; f* ()’””drn21 .. 3.13)

O G 0,

then using the generalized identity
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_1,l g onmy
S0 =57+ 21 cos =5, 0<y<h, - (3.14)
n=

it is found that the relations (3.9) and (3.10) reduce to integral equations of the first kind in
£54 (), as given by

d
| PeoM G, ndi=1for0<y<d .. (3.15)
0
s,a
where F”"(t):i—(—t)—,0<t<d .. (3.16)
1+R>1
M@y, |__1( -cotdd
and (Ma(y,,)]_ld( tanftb)
- 1 coth §,. b rry rreet 1 rrwy rmt
+ 2 Zl[érd[ tanhé,b)cos 4 cos d +#rhcos p cos MRS 3.17
r=

Also, the relations (3.8) give rise to the relations

d
[ Fawar=cne .. (3.18)
0
y a
where C”“:—ilhl_Rs ) - (3.19)
1+R"¢

It is important to note that, since M™“(y, r) are real, the functions F°(r) and the constants
C*“ are all real quantities. The solution of the integral equations (3.15) can be utilized to obtain

C*? from the relations (3.18), and these in turn produce the actual reflection and transmission
coefficients | Rl and | T |, respectively, from the relations

AR+l o ARIC-CY
A CATETTA

IRI=

172
with a=[ @ R+ am{eP++ant] .. (3.20)

obtained by using the relations (3.5) and (3.19). The relations (3.20) also produce the physical
equality IR +I1T=1.

The functions F*°(f)=(0,<t<d) are now approximated by truncated Fourier series
expansions in the form
N

FP%= a;’a cos gst 0<t<d . (321
q=0



864 A. CHAKRABARTI, MRIDULA KANORIA AND B. N. MANDAL

where a;’ (g=0,1,2,... N) are unknown constants satisfying the linear systems

M =

a, " Kypg =d 8oy m=0,1,2, .., N . (3.22)
=0
K‘ d = CO[hé b
mg | _4 —cotAb d r 2
Where K “/1( tan A b ]50450m+ 2:1 2.;( tanhérbjamarq+y 7 Prmg
(3.23)

with Prmq being given by

rd
for —#morgq,

2 2 h
m? - 2_(rd ]
qu = h q h }
é for _EQ =m=
4 wo "o
. 0 otherwise.
and d,=d 60m. ... (324

After finding the unknowns a (q 0,1,...N) by solving the linear systems (3.22), the

constants C*“¢ are determined approximately from the relations

N
=Y ay’d, . (3.25)
q=0
obtained by using the approximations (3.21) in the relations (3.18). The reflection and transmission

coefficients | R | and | T | are then computed by using the relations in (3.20). This completes the
method used in the first approach.

Approach 11

In this approach the series relations (3.8), (3.9) and (3.10) are reduced to a set of second
ind integral equations, which are then solved approximately by the truncated Fourier series
expansions.

Let A:'a (n=1,2,..) have another representation as given by

h
aedl [ g (;)cosﬁ-’ﬂd:— j g3 @eos i ay |, . (3.26)

d

where the functions gy * (#) and g; ° (¢) (d <t < h) are unknown, then the series relations (3.8) become
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h h
_il(1~R”“)_-—1-5 | g;'a(t)dH--}l- [ &0ovona
2n° d
1 s,a
+ﬂ s (0=0,d <y<h .. (327
where U@y, t)=- lim Z e " u cos BAY cos BEL .. (3.28)
£€>+0 " h h
n=1

Substitution of the integral representations (3.26) for A;’a in the series relations (3.9) and
(3.10) produces two expressions for each of the constants B:'a (n=0,1,..) in terms of the unknown

. s 5, a . . . .
functions g”; N () and g, (1) by using the results of Fourier series expansions.

If the two expressions for each of B:;'a (n=1,2,..) are equated, then one obtains for each
nn=12 .)

{0 en-g 05" 6n}d=o, .. (3.29)

A, C—, 3

which, after summing over n from 1 to oo, produce the relations

oo h
y {g{'“(t) Lem+g o Ijl’a(t,n)}dt=0, .. (3.30)
n=1 d
us,a 00
where Li’a(t, n)=% ';'a Z ;tramcosrTm, . (3.31)
Un r=1
s, a 1 - o, rmt
(t,n)=— —Ccos —— .. (3.32)
k K? E’, Hy h
(L ()
n+17a h rd
-1 h 3 for h#n,
. _ d
with o =1 (,,2_(%) ] .. (333)
d rd _
{ 5‘ for h =n.

The relations (3.30) are satisfied if one selects
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o0

S L¢n

gfm=-g"0 —- .. (334)
Y Ly @ n)
n=1

Again, equating the two expressions for B(s)’ﬂ for the symmetric and antisymmetric cases and
using the relations (3.34) between g';'a(t) and g;'a(t), it is found that the real constants C*¢ are

related to the unknown functions g;'a (#) by the relations

c:'“ Il'i?( cot A b, tan A b) + f Gy () W2 (1) dt .. (3.35)
where G;’a(t)=————§2—(t)—————,d< t<h, .. (3.36)
iAR(1-R"%
Y, L ¢n
WOl ()= L% () + N % (i) "L . (337)¢
Z “t.n
with L""'(t)=2;h2 (cotlb,—tanlb)+n_2d 2:1 "L, sinrzd sr:t, . (3.38)
N“(:):;‘; %+ —— (ot Ab, ~tan Ab) Z ’;d s TELIL L 339)

r=1

The relations (3.27), after using (3.34), give rise to integral equations of the second kind for
the unknown functions g;’a (® (actually G';'a (1)), as given by

[ oo 7
Y Len
+j' G% ) —-——U(y n"=l——— la=1, d<y<h .. (340)

Z 4t n)

n=1

. -

G'(y)

The functions G; y (y) (d <y < h) are determined approximately by using the truncated Fourier
series expansions, as given by
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,a s,a Tnh—y
G‘; ) = 2 b cosg—%—'—),d<y<h .. (34

s, a . . .
where bq (g=0,1,2,... N) are unknown constants satisfying the linear systems

N
2 bog=(h—d) 8, m=0,1,2,...N .. (342)
s.a 1 h d
qu 50(] 4 h 60m) mq
_ L Z Ly “ ¢ n)
+ lim 2 e T 1 B J cos q’;(h;t) n=1 cos T dr... (3.43)
E-+0 ,._ d - s h
Z Ly @ n)
n=1
. n(h—-d
s} ———=
o mers1r(h=d)? [ h ] r(h=d
-1 h 5 for p #m
with B, = m2—[1%?—d)~] . (3.44)
1yhzd for =D,

After obtaining the constants b;’a(q=0, 1,..,N) by solving the linear systems (3.42), the
constants C*“ are determined approximately from the relations

N

h
Cyl,azﬁ(‘m‘“ﬂanle > b | W"“(t)cosg—%—ldt . (3.45)
q=0 d

obtained by using the approximations (3.41) in the relations (3.35). The reflection and transmission
coefficients |R1 and |T| are then obtained by using the relations in (3.20). This completes the
method used in the second approach..

4. NUMERICAL RESULTS

Since IR +1T1= 1, it is sufficient to compute the reflection coefficient | R | only for various values
of the different parameters. For numerical computation, one has to compute infinite series of the

form Kc given by relations (3.23) if the first approach is used and D glvcn by the relations
(3.43) 1f the second approach is used. These series are computed numencally by truncation. An
accuracy of four figure is achieved by taking two hundred terms in these series.

The Table 1 displays a representative set of numerical estimates of IRl for the rthick iris
problem, computed by using the aforesaid two approaches, for N = 0, 1, 2, 3, 4 and some particular
values of the non-dimensional parameters Ah,d/h and b/h. It is observed from this table that the
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numerical estimates of | R | computed by using both the approaches, converge fairly rapidly with N,
and for N 23, an accuracy of almost three decimal places is achieved.

TAaBLE 1 : Reflection coefficient IRl

Ah=0.1 dih = 0512 bh = 0.1
N Approach 1 Approach II
0 0.0402 0.0315
1 0.0385 0.0377
2 0.0381 0.0382
3 0.0379 0.0384
4 0.0379 0.0384

In Figure 1, IRl for a thick iris, computed through approach I and approach II, is depicted
against the wave number Ah taking d/h = 0.512, b/h = 0.1, N = 4 in the (N + 1)-term Fourier
series expansions. It is observed that the two approaches produce almost the same numerical results.
However, slight flucturation occurs in the curve of IRl generated by approach II. This may be due
to a number of truncations made in various series appearing in the mathematical analysis of the
approach II. Also the numerical calculations in the approach II are much more extensive than those
in the approach I. In fact, the approach I takes less time to compute the numerical results for IR

0.6 |
04
5
0.2
OLLALLA...L....I..
0 0.5 1 1.5 2

FiG. 1. Reflection coefficient vs wave number for b/h = 0.1, ¢/h = 0.512

compared to the approach II. However, the approach II provides a very useful check on the
correctness of the numerical results. The approach I is used to calculate the reflection coefficient in
the thick iris problem for various values of the different parameters to generate the Figures 2 and
3 below.
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In Figure 2, IRl for a thick iris is plotted against d/h for different values of A4 and the
fixed values of the thickness parameter b/h = 0.1. It is observed that for a fixed A h, | RI decreases
to zero as d/h increases to 1. This is physically plausible since as the height of the gap below the
thick iris increases, most of the incident wavefield is transmitted through the gap. It is also observed
that more than 80 percent of the energy is transmitted even through a narrow gap when the
wavenumber is as low as 0.1 and the thickness of the iris is one-fifth of the height h of the
waveguide.

In Figure 3, IRI for a thick iris is plotted against the wave number A 4 taking d/h = 0.512
and various vaues of the thickness parameter b / h such as b / h = 0.01, 0.1, 0.5, 0.7, 1.0, 2.0.
For the purpose of comparison with the thin iris results, IRl for a thin iris (obtained by using Jones
method) is also plotted against A A taking d / h = 0.512. For a thin iris, IRl increases steadily with
Ah. This nature of IRl remains almost the same for a thick iris so long as the thickness remains
less than one-fifth of the height of the waveguide. However, as the thickness further increases, IRl
starts fluctuating and assumes zero values. The frequency of occurrence of zero values of IRl depends
on the thickness parameter b/h. The number of zeros of IRl increases with the increase of b/h. This
may be attributed due to the interference of incident wave field by the two edges of the thick iris.
As the thickness increases, the distance between the two sides increases and this produces multiple
reflections of the incident wave field by the two sides, which results in the fluctuation of the
reflection coefficient against the wave number.

5. CONCLUSION

Appropriate solutions have been obtained for a rather complicated boundary value problem in the
theory of electromagnetism, associated with the propagation of waves of transverse electric type in
a rectangular waveguide in the prsence of a thick iris. Two approaches, one leading to an integral
equation of the first kind and the other to an integral equation of the second kind, have been used
to tackle it. The integral equations are solved numerically and numerical estimates of the reflections
coefficient are obtained ultimately. The two approaches produce almost the same numerical results.
However, the first approach, based on a first kind integral equation, appears to be more economic
than the second approach, based on a second kind integral equation, from a computational point of
view. Because of this, the curves of the reflection coefficient for the thick iris problem, have been
generated by using the first approach. One potential advantage of the numerical technique employed
here is that it appears to be simple and straightforward, and there is scope for checking the
correctness of the numerical results as two different approaches have been utilized to compute these.

The thickness of the iris plays a significant role. So long as the thickness is small compared
to the height of the rectangular waveguide, the reflection coefficient IRl increases uniformly with the
wave number as in the case of the thin iris problem. However, as the thickness increases, IRl starts
fluctuating and assumes zero values for a discrete set of wave numbers. Thus for a number of values
of the incident wave frequency, the thick iris becomes completely transparent. This phenomenon may
have some significance in the modelling of rectangular waveguides. A somewhat similar phenomenon
occurs in the case of water wave scattering by a thick rectangular barrier ?resent in water of uniform
finite depth (cf. Mei and Black®, Kanoria et al.%, Mandal and Kanmoria )

ACKNOWLEDGEMENT

The authors thank the Reviewer for his comments and suggestions to revise the paper in the present
form. This work is partially supprted by CSIR.

REFERENCES

1. D. S. Jones, The Theorv of Electromagnetism, Pergamon Press, Oxford, 1964 pp 265-71.
2. D. S. Jones, Acoustic and Electromatic Waves, Clarendon Press, Oxford, 1986 pp 241-46.



THICK IRIS IN THE THEORY OF ELECTROMAGNETISM 871

1. Davis and F. G. Leppington, Proc. R. Soc. Lond., A 353 (1977), 55-75.

J. Davis and F. G. Leppington, Proc. R. Soc. Lond., A 358 (1977), 243-51.

Mei and J. L. Black, J. Fluid Mech., 38 (1969), 499-511.

Guiney, B. J. Noye and E. O. Tuck, J. Fluid Mech., 55 (1972), 149-161.

D. Owen and B. S. Bhatt, Q. J. Mech. Appl. Math., 38 (1985), 397-409.

Mridula Kanoria, D. P. Dolai and B. N. Mandal, J. Engng. Math., 35 (1999), 361-84.
Robert E. Collin, Field Theory of Guided Waves, 2nd edition, IEEE Press, New York (1991).
10. Ronald De Smedt and Bart Denturck, IEE Proc. Pr, H 130 (1983), 183-90.

11. B. N. Mandal and Mridula Kanoria, J. Offshore Mech. and Arctic Engng., 122 (2000), 100-9.

A M
A M
C.C
D. C

© o N AW



