Indian J. pure appl. Math., 34(11) : 1631-1644, November 2003
© Printed in India.

A NOTE ON SURFACE WATER WAVES FOR FINITE DEPTH IN THE
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A class of boundary value problems involving propagation of two-dimensional surface water waves, associated
with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that
the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic
plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in
a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the
horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order
derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate
edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value
problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.
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1. INTRODUCTION

The problem concerning the propagation of two-dimensional time-harmonic surface waves in the case
of deep water against a vertical cliff was considered long ago by Stoker!! under the assumption
that surface tension was negligible, In order to pose the problem well enough for its mathematical
treatment for solution, a source/sink like behaviour of the associated irrotational fluid motion was
assumed and the resulting boundary value problem for the Laplace’s equation was solved completely
(see Chakrabartil, Mandal and Kundus, Chakrabarti and Sahoo”. The effect of surface tension in this
type of surface wave phenomena was investigated by Packham® who showed that the assumption
on the source/sink like behaviour of the flow was not necessary to specify the mathematical boundary
value problem completely. Packham also assumed that there was no reflection by the wall, for an
incoming plane wave-train. Rhodes-Robinson'® re-investigated the problem of Packham and had
shown that there should exist reflected waves against a vertical wall, under the influence of surface
tension and that the associated boundary value problem for the quarter-plane could be solved only
within an unknown constant which was related to the contact angle of the surface elevation at the
vertical wall.

In the present paper we have investigated a class of such surface water wave problems, in
the case when the depth of the water is finite, under the assumption that there exists a thin ice-cover
on the top surface. Such two-dimensional problems, within the linearised theory of surface water
waves, in the presence of an ice-cover, can be formulated (Gol'dshtein and Marchenko5 and Fox

and Squire4 in terms of the two-dimensional Laplace’s equation for the velocity potential

Re{o¢ (x,y) ey (x, y represent non-dimensional cartesian coordinates and ¢ represents non-dimensional
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time, with i? = ~1). The boundary condition on the ice-cover i.e., on y = 0, is given by the relation:

5
Da—@+ﬁ+¢ = 0, in which the small positive constant D is known in terms of the constant

dyat
density of the water under consideration, the acceleration due to gravity, the wave-length of the
propagating surface water waves as well as the Young’s modulus and the Poisson’s ratio of the

ice-sheet, considered as an isotropic homogeneous thin elastic plate (see [5] for details). On the plane

=u(y), (0 <y <H) to hold good,

. .. 0
vertical boundary x = 0, we assume a general condition 5? |x:0

where u(y) is a known differentiable function of y, giving rise to different wave problems for

different choices of u(y). The boundary at the bottom, y = H, is assumed to be rigid, on which

.. d . . .
holds the Neumann condition 99 = 0. We also require two edge-conditions at the ice-covered edge

oy

x— 0",y = 0, for the purpose of obtaining the unique solutions of the boundary value problems

under our consideration.

We have described in the next three sections, the mathematical formulation of the boundary
value problems and the method of solution.

We have employed a Fourier cosine transform technique to solve the boundary value
problems under consideration and have determined the complete solutions of the problems by
exploiting the regularity property of Fourier transform, as in the work of Mandal and
Bandyopadhyay7.

Because of the complexity of the boundary condition on the boundary y = 0 of the
quarter-plane, the algebraic calculations are a bit involved and we have finally determined the
reflection coefficients under special choices of the function u(y), numerically, for various values of
the parameter D and the depth H of the fluid. The numerical results are presented in the tabular
forms.

2. THE BOUNDARY VALUE PROBLEMS

The class of boundary value problems under consideration, is formulated, by using the notations of
[5], as described below:

We consider the irrotational motion of an incomressible inviscid fluid due to a harmonically
oscillating vertical plane wavemaker under the action of gravity. We use a rectangular cartesian
coordinate system in which the y-axis is taken vertically downwards so that y = 0, x > O is the
undisturbed ice-covered surface and x = 0 is the wavemaker, and in the undisturbed state the fluid
occupies the region x > 0 and 0 <y<H. The motion is assumed to be two-dimensional and
time-harmonic and is described by a velocity potential @(x,y,f) which is the real part of

¢ (x,y)e”", where t denotes the non-dimensional time. The time-dependent factor e s suppressed
throughout the analysis.

The function ¢ (x, y) satisfies the p.d.e.

£27¢+—82—2¢=0, inx>00<y<H, - (2.1)
ox ay
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with
Di%+i?+¢=o, on y=0,x>0, . (2.2)
ot b
29 _ -
5, =40 on x=0y>0, . (2.3)
a@‘P-:o, on x>0,y=H. . (24)

where D (> 0), is known constant and u(y) is a known function.

Also, ¢ (x,y) behaves like cosh [A(H — )] em‘x, as x — oo, where A is the positive root of
the transcendental equation

o (1+ Do) tanh AH-1=0, .. (2.5)

which ensures the wave-like behaviour for ¢ as x — oo,
Finally, for the uniqueness of the solution of the above boundary value problem, we must

impose two appropriate edge-conditions, at the corner (edge) point (x — 0%,y —0). The relevant
edge-conditions are given by

& o

(D) P — fy (a known constant), as x — 0, y =0, .. (2.6)
X

and

(if) 83;2 —> 11, (a known constant), as x — 0%,y — 0. . 27
24

which are related to the concentrated force and concentrated moment at the ice-edge (see [5]),
respectively.

Thn eq. (2.5) has a similar structure as the one appearing in the work of Balmforth and
Craster while modelling an ice-cover (see [3]) and it has been shown in the Appendix that the
equation does not have any other root except one positive real root A, four complex conjugate roots
Ay Aps Ay, Ay with Re(4)) >0,Re(4,) < 0 and Im(4;) > 0, Im(4,) > 0 and an infinite number of

imaginary roots, k = ik, (k, real, n = 1, 2, 3, ..).

3. THE METHOD OF SOLUTION

By seperating out all possible wave-like solutions, we write the general solution of the problem
(2.1)-(2.4) as,

_ 4 Cosh[AH-Y)] —iax | pcosh [AMH -] i
00y = Ao =k v ¢ T R = cosh H ¢

A cosh (4| (H-y)] _, cosh [%,(H - y)]
1 cosh (4 HT ¢ T2 cosh [IH]

et 1 w(xy), . (3.1
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where R,A, and A, are unknowns to be determined whilst the constant A is assumed to be known
and ¥ (x,y), is an unknown function, which satisfies the following equation and conditions.

V¥xy) =0inx>00<y<H, . (32)
D5;4+%y+ Y=0,ony=0 x>0, .. (3.3)
%II: uy), onx =0,y >0, .. 34
%II=O, onx >0 y=H, .. (3.9

where

AN cosh [AH-y)] . cosh [A,(H - y)]
v(y) =u(y) —i(R-Ay A osh AH] A A ——— AH

. cosh [,(H - y)]
+idhy cosh 7,H

The edge conditions (2.6) and (2.7), in terms of ¥(x,y), become

@) ;:;; — y —i(R—Ag) A* tanh AH — iA, A; tanh A, H

+iA2141'tanh7LlH, as x> 0%, y—0,

(i) ;j;; - t,—i(R+Ag) A* tanh AH - A, A tanh A, H

=A, 7> anh 7 H, as x— 0%, y—>0. .. (36)

Now we utilize the Fourier cosine transform of ¥ to reduce the boundary value problem
(3.2)-(3.5) into a new boundary value problem, as explained below:

We set

oo

20, 8)= j ¥ (x, y) cos Exdsx.

0

Then the problem is to determine for y(y, £) satisfying

-‘3%—5%: uy),0<y<H, - (3.7

2+(1+DEY % = D[(t) — 38 = i(R — APAZ (& + A2) tanh AH
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. 2 .2 2 . 2 .0 2 _
—iA; A (" + A tanh A H+iA, 2| (§°+7 ) tanh 7 H], on y = 0,

%=O,ony=H.

where 79 (x,y) = ly (an unknown constant), as x —» 0%,y -0, giving

dy ox

F ¥
Jy o

as x — 0%, y—0,

(%, ) = iy + i(R ~ AA® tanh AH + iA A tanh A, H — iAy 7> tanh T , A,

We will finally determine y; by using the edge condition (3.6).

Again, setting

nw, &) =x0. &) -A&),

where

1635

.. (3.8)

.. 3.9)

RE) = DI, - 18 — iR - APA® (& + A2) tanh AH — iA Ar (& + A0) tanh A, H

+ iAZIT (§2+I?) tanh 7  H].

the problem (3.7)-(3.9) becomes

%:;121—5277=8()” 5),

n+(1+D§4)%yl =0, on y=0,

an
=0, on y = H.
EY y

where
g8, €)= 1) + ERE).
Now, the Green’s function for the problem (3.10)-(3.12) is

_cosh [&(t— H)] P(y, &)
§A(E)

(For 0 <t<y,y and ¢ are to be interchanged in (3.13))

Gy, )= , for 0 <y <1,

where

PO, &) = {£(1+DEY cosh & - sinh &},

A(E) = {£(1+DE cosh EH - sinh EH).

. (3.10)

. (3.11)

. (3.12)

. (3.13)
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Using the above Green’s function the solution for the problem (3.10)-(3.12) can be written
as

Y
1
O, E)=— -5 | s - , ).

Therefore, the solution of the problem (3.7)-(3.9) can be expressed as
X(y’ 5 ) = (R - 1) L(y’ gi )') +A1L(y’ éa 2'1) —AzL(y’ é’ I]) - M(y’ é)? (314)

where

_ ixP(v, &) sinh [(£ + x) H] sinh [(£ - x) H]
Lo, &%) = 2§A(§)costh|: E+x E—x ]

iDx* (€% +x?) tanh xH [—’i(-L‘f—) sinh EH - cosh & J

A)
ix 2£ cosh [x(H - y)] cosh [(xH + &y)]  cosh [(xH — &y)]
* 2& cosh xH §Z—x2 E+x E—x ’

M@, &)= §A(§) j u(t) cosh [E(t~ H)] dt+ — ju(t) sinh [£(z — y)] dt

+ D(u) - u, & [—A('%g)— sinh £H — cosh ﬁy}

Then the Fourier cosine inversion formula gives ¥ (x,y) as

‘P(x,y)=2 I X0, &) cos Ex dE, .. (3.15)
K 0

where x(y, &) is given in (3.14).

The contour in the relation (3.15) can be extended to the whole real axis with 2 coséx
replaced by ¢/ This may then be evaluated by the method of residues at the poles k = ik,, for
n =1,2, .. .We note here that the poles at {=2, 4, and A, can be removed by chosing the
constants R,A, and A, suitably (This will be explained little later). Then we obtain

Y(X, =20 Y &

Jj=1
[(R=A9 L0k 1+ A LGk, )AL 0k T =M 0k | L G16)
where
, o0, k) sin [(kj —ix)H] sin [(kj +ix) H]
LGk, x)= 2k cosh xH[ k—ix kit ix
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2,2 42 . .
—2ijx x ~ kj) sinh xH sin ij ]

- —EDL",'(T [k; (cosh xy — tanh xH sinh xy — cos ky) +x tanh xH sin k]
kj x" + j)

~iDx? (* - k ) cos ky tanh xH, .. (3.17)

o k)| A 2
MG, k)=——L| -i | (o) cos tk; (¢ — HY) di + ik, + psk)) sin kH
j 0
+ 1 T u(e) sin [k.(t - y)] dt — D, + s K2 cos k.
kj 5 J 1K P

with

4 )
kj(l + ij) cos kjy — sin kjy

Q()’, kj) = 4 .
(1+5Dk;) sin ij+H{ k(1 + Dk;) cos k;H — sin ij}

1637

By some simple algebraic manipulations, utilizing the second edge condition (3.6), we get

the unknown constant i, as:
1
Ky =T [(R-Ay P{+APy—AP3— P,
5
where

2 3
P =2i Y k' L” (A k) + A° tanh AH,
j=1
A o 2., 3
Py=2i Y, ki L” (A}, k)+ A tavh A,H,
j=1

, - 2., 3
j:

H
2
K £ u(t) cos [k; (1 — H)] di

o0

.. (3.18)

P =, ~227 tanh AH + 1, -2 Y,

with

2 4 4
i sinij{—H{kj (1+ij)2+1}+(1+5ij)}

3
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sin [(k.,— ix) H] sin [(k. + ix) H]
x i Lo
k.—ix k. +ix
” _ ] J
L” (x, kj)“ ) 2 4.2 4
2cosh xH sin ij[—H kj (1 +ij) +13(1+ Sij) ]

+ 2Dk (2 - kf) sinh xH sin kH

0 k?

— J
I;=2D 3, - 2 7, Bk
i —H{kj (1+Dk)) +1}+(1+5ij)

oo k§

— J
Is=2D 3, - ) T 4 -
= —H{kj (1+Dk;) +1}+(1+5ij)

At this stage, we can obtain the unknown function ¥ (x, y) in terms of the unknown constants
R,A, and A, which are determined as described below:

Since x(y, &) is the Fourier cosine transform of the function ¥ (x,y), then, treated as a
function of the complex variable & x(y, £) cannot have singularities in the half plane Re(£) > O.
This forces us to choose the unknown constants (R —Ag), A; and A, in such a way that the function
X0, &), as given by the relation (3.14), is analytic in the half plane Re(£) > 0. In other words, the

constants (R—Agp),A; and A, must be so chosen as to meet the regularity requirements of the

function x(y, &) at the points A, A, ;.

The above regularity considerations give rise to the following system of linear equations for
the determination of the unknown constants (R —Ag),A; and A,:

ry(R—Ag) +ayA; +bA, = s, . (3.19)

where

i sinh [(A+A)) H] sinh [(A-A)) H
a1=2coshllH A+ A * A2

iDA A3 sinh A H
- I5 cosh }‘1 H

P4

[DR R +2uD? 221,

. 2, 2 2
2D AT -iDAA (A*+A)) - 7

sinh A H tanh A H,

iD A tanh A, H

I

[sinh 2 A, H] +2 A, H] - P

i
%= % cosh AMH
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[DA}+2i0? A1}
Is

—{250@—1)1?— }sinh/’LlHtanhll H,

93= 7 cosh AMH A+ 2 * -4

iD A, % sinh 7, H
- Igcosh A H

P(4,)

D7 xl+2iDZIfAT13}J

L2733 a2, 1 2
—{2;02111,-:Dx112(xf+zl)—{ T

sinh Il H tanh ll H,

i [sinh[(l+7[l)H] sinh[(l—Zl)H]:' iDIll3sinthPa)
= 1

P 7 R W A I5cosh &, H

333 .~2 1334
DA% - 2D R 7| Iy}
15

+[2iD2/‘L3/_lf—iDl_if(2.2+Z?)+{ }sinthtanhll H,

iZ, [sinh[(ll+}{])H] sinh[(ll—Zl)H]J lilafsinh)LlHP(;{)
= 1

by=- 2cosh 7, H M+ + A -7 Iscosh A, H

353 .2 ,354
= = - DA A, -2iD° A, A, I
+liZiDZA?Af—iDllﬂ,?(),%...lf)_,_{ 14 i 13}}

15
sinh )‘1 H tanh 3{1 H,

iD7, tanh 7, H
I

[sinh [2 7, H] +2 %, H] + P(%)

i
b3"4coshx,H

D%} 20?7 1,
15

+[2iD(D—1)1f+ Jsinh A, Htanh 7, H,

iD2*tanh A H

[sinh [2AH]+2AH]- I

i

"1 = Gcosh AH 5 P

[DA+202 71,
15

—[2iD(D—1)/‘L5— Jsinthtanth,
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i1 [ sinh [(A, + ) H]  sinh [(4, = A) H] } iD A A, sinh A, H .

"2= % cosh AH 2,1+7L + /ll—l Iscosth

303 51024354
DX 23+ 2D 23 24 1y |
I

- { 2iD? 20 22— iD Ay A% (A + D) - | } sinh A, H tanh 1 H,

" sinh [(, + A) H]  sinh [(Z, - A) H] } iDAZ3sinh A, H -

iA
r3m2¢05h/’LH{ A +2 * A=A Iscosh AH

D A +2D* 2 24 1, }

- [ 21D T 2= iD Ry A2 A+ 22 - { } sinh 7, H tanh A H,

Is
H
253 |
5= J u(t)cosh [A, (t—H)]dt+ 1, D A, 1+/ll—1- sinh A, H
0 5

D 2] sinh A, H
I

5
H
k2 f t [k (t— dt
- | sty =)
X 213tanh/1H-u2+2 2 5 a 7
= sinij[—H{kj (1+ij)2+1}+(1+5DkJ.)]
H I
§y= J u () cosh [4, (t—H)]dt+,ulD/'Lz[1+l;i:lsinh/11H
0
3.
D A, sinh A, H
-— X
Is
H
£ [ ucosk ¢~ H)d
- j u () cos j( H)] dt
2)«3tanth—‘u.2+2 9 ) ) 7
= sinij[—H{kj (1+ij)2+1}+(1+5ij)]
H
YA
sy= [ u@ocos Tty (- M) dr+py DRy | 147 2 |sinh T, H
0 5

DA sinh %, H

Iy
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H
_ £ ] uycostk (- M) de
0
X 213tanh/'LH—u +2 7\
2 E‘l _sinij[—H{kf(1+ij)2+l}+(1+5ij)]

K { cosh xH —x (1 + DK,) sinh xH}

with Px)=2 ) 7
E‘l (K +22) [—H{kj2 (14D k) +1 }+(1 +5Dk)))
We find that the constants R,A, and A,, satisfying the system (3.19), are given by the
following formulae:
R A [s3 (a; by —ay b)) —az (by sy = by 55) — by (a; 5, —ay 59)]
= + >
0" [r3(a; by—ayby) —ay (byry =by ry) = by (a; ry—ay 1))l

4= [(b2 5] b1 55) + (R—AO) (b1 Ty —b2 )

, ... (3.20)
! la) by—a, b)]

~ [(a; s, —ays)) +(R—-Ap) (ay 1y —a; ry)l
2 [a; by~ ay by] .

The final form of the solution ¢ (x,y) can be obtained by using the relations (3.20) in the
relations (3.16), (3.18) and (3.1).

4. NUMERICAL RESULTS FOR A SPECIAL CASE

As a special case of the general problems considered in the present work, we take up the problem
of reflection of incoming surface water waves against a vertical cliff, under an ice-cover. In such
circumstances, we must choose Ap=1 and u(y) = 0. We have selected various combinations of the

values of the edge constants u; and f, for the choices of the depths H = 10 and H = 50 and have

determined the reflection coefficient R numerically, for particular choices of the ice-cover parameter
D, in the case of the problem of an incoming surface water wave against a vertical cliff. The
absolute values of the reflection coefficient are found to be almost equal to unity in all the cases
considered, as is expected because of energy considerations since we have not assumed any
source/sink like behaviour of the fluid motion, at the corner point x = 0, y = 0. The tables provided
below give the values of R and its absolute value IRI, for different values of D, obtained by the
method explained above.

TABLE 1
Numerical values of R, | R | for y;=0,1,=0 and H = 10.

D R | R |
0.01 0.9998121960445526 + i 0.019379696606730636 0.9999999
0.02 0.9990229484796528 + i 0.04419443868883628 1
0.03 0.9975596108733402 + i 0.06981993092398515 1
0.04 0.9954739736306375 + i 0.09503456120816377 0.9999999

0.05 0.9928543287579676 + i 0.11933265213916151 1
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TABLE 1II
Numerical values of R, | R | for y;=02,4,=05 and H = 10.

D R I R I
0.01 0.999902192372107 + i 0.01009287663764384 0.9999531
0.02 0.9994730732258614 + i 0.02383419147118705 0.9997572
0.03 0.9986755885068032 + i 0.037891628822523844 0.9993941
0.04 0.9975509421349259 + i 0.05142372593236471 0.9988755
0.05 0.996162199939124 + i 0.06410759515644035 0.9982218
TABLE III
Numerical values of R, | Rl for u,=04,u,=09 and H = 10.
D R I R
0.01 0.9999825247692546 + i 0.0018032882703128267 0.9999841
0.02 0.9998715714242288 + i 0.005809139742992588 0.9998884
0.03 0.9996594052376961 + i 0.009744471698114134 0.9997068
0.04 0.9993770975752817 + i 0.013079300423291319 0.9994626
0.05 0.9990634794928692 + i 0.01563988491959552 0.9991858
TABLE IV
Numerical values of R, | R | for p,=0,4,=0 and H = 50
D R I R |
0.01 0.9998072463903708 + i 0.019633391589439633 0.99999
0.02 0.9989930890674694 + i 0.04486432876390823 1
0.03 0.9974791633747385 + i 0.07095997909547949 0.99999
0.04 0.9953177815442427 + i 0.0966566797580392 1
0.05 0.9926004755974633 + i 0.12142609210416275 0.99999
TABLE V
Numerical values of R, | R | for #,=02,4,=05 and H = 50.
D R I R I
0.01 0.9998990663673147 + i 0.010280842671947631 0.9999519
0.02 0.999454094020879 + i 0.024323606517907086 0.9997500
0.03 0.9986246898420348 + i 0.038714123351378096 0.9993748
0.04 0.9974529074587096 + i 0.052580525749461225 0.9988378
0.05

0.9960033813631122 + i 0.06558445601473398 0.9981603
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TABLE VI
Numerical values of R, | R | for u,=04,1,=09 and H = 50.

D R IRI

0.01 0.9999809677145101 + i 0.0019385801105487235 0.9999828
0.02 0.9998618946804774 + i 0.006153476200252212 0.9998808
0.03 0.9996336987117664 + i 0.010311152851099582 0.9996868
0.04 0.9993285647764047 + i 0.013860673097277626 0.9994246
0.05 0.9989872810617524 + i 0.01661870363305906 0.9991255

It is observed that the values of IRl are almost equal to unity and this fact can be attributed
to the special choice of the edge constants in our numerical work. We emphasize that the values
of the reflection coefficient have been computed by using the approximate values of the roots of
the transcendental eq. (2.5).

CONCLUSIONS

A special class of mixed boundary value problems, involving the two-dimensional Laplace’s equation
in a semi-finite strip, have been considered for their solutions, this class being the appropriate one
in connection with the propagation of linearised surface water waves in the case of finite depth of
fluid, in the presence of an ice-cover. A method of solution has been demonstrated which utilizes
the well-known Fourier analysis. Numerical results have been determined for the reflection
coefficients of waves against a vertical cliff for special choices of the various parameters involved.

APPENDIX

It is easy to demonstrate, numerically, that the transcendental equation

f(z)=2(1+ Dz* sinh zH - cosh zH=0, D >0, H>0 - (AD)

has two real roots £ 4, with 1>0, four complex conjugate roots 4, 4;, A,, 4,, with Re (4,) > 0,
Re(A,))<0 and Im (4))>0,Im(A,)>0 and an infinite number of imaginary roots, tik, with
k,>0, n =1, 2, 3, .. and it is found that 0<k; H<m<k,H<2m<... and k,H—>(n-1)m as
n — oo,

We prove, by Rouche’s theorem, that the transcendental eq (Al) does not have any other

roots. We choose, for comparison, the function

¢ (2) =z (1 + D*) sinh zH,

whose roots are given by z = 0, four complex conjugate roots ﬁ],Bl,ﬁz, B, and
zH=0,tim +i2m, .. on the imaginary axis. We see from the above that the functions f (z) and

g(z) have 2m + 4 number of zero’s in the square with vertices zH = (2m - l)g(ilii), for

sufficiently large m > 0. Note that the square is assumed to be chosen in a such a way that it does
not pass through any of the zero’s of the functions f and g.

Since _f@

(@) _ 4 B
’f(z)—g(z) =lz(1+Dz")tanhzH-11>1,
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uniformly on the square, we conclude by the Rouche’s theorem, that there are no other roots for
the transcendental eq. (Al).
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