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Abstract

Most available integration techniques for stochastically driven engineering dynamical systems are based
on stochastic Taylor expansions of the response variables and thus require numerical modelling of multiple
stochastic integrals (MSI-s). Since the latter is an extremely involved numerical task and becomes inaccu-
rate for higher level MSI-s, these methods fail to achieve an accuracy beyond a limited order. Recently, the
first author has proposed a locally transversal linearization (LTL) technique that completely avoids the use
of Taylor-like expansions in the construction of the integration map [Proc. Roy. Soc. Ser. A, 457 (2001)
539; Int. J. Numer. Methods Eng. 61 (2004) 764]. A crucial step in the implementation of the LTL method
is to arrive at a conditionally linearized solution which is then made to transversally intersect the non-linear
solution manifold in the associated phase space. The present paper is the first part of an investigation con-
sisting of two parts to considerably simplify and numerically expedite the generation of the conditionally
linearized solution without affecting the local and global error orders of the original LTL method. In par-
ticular, the derivation of the conditionally linear form of the stochastic differential equations is done in such
a way that the corresponding fundamental solution matrix (and consequently its inverse) remains
unchanged during the entire integration process. In this part of the work, only strong (path wise) stochastic
solutions are constructed. Through formal error estimates, it is verified that the present version of the LTL
method has the same error orders as its older counterpart. Further, a host of numerical examples on sto-
chastically driven non-linear oscillators are presented to illustrate its superior computational speed and ease
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of implementation. In a companion paper related to this work, a weak form of the alternative LTL
approach will be derived.
1. Introduction

Sample path-wise numerical integration of noise-driven engineering dynamical systems cannot
generally be performed beyond a limited level of accuracy, especially when the noise processes are
modelled using (filtered) white noises [1]. A white noise process does not have a valid graph be-
cause the associated Wiener process is only continuous and not differentiable. In addition to non-
differentiability, sample increments of a Wiener process change by Oðh1

2Þ in a time interval of h.
One way to generate consistently higher orders of accuracy while developing a numerical algo-
rithm for strong (pathwise) solutions of SDEs is to use the stochastic Taylor (either Ito–Taylor
or Stratonovich–Taylor) expansion [2]. The stochastic Euler method, which may be thought of
as a stochastic Taylor expansion with O(h) terms, has O(h) and Oðh1

2Þ local and global errors
of convergence respectively [3–5]. Milstein [6,7] has also proposed a strong Taylor scheme of local
error O(h). By adding more terms to the Milstein scheme, strong Taylor schemes of Oðh3

2Þ and
O(h2) have been proposed, among others, by Wagner and Platen [8], Milstein [7] and Kloeden
and Platen [9]. A comprehensive review of all these methods may be found in Kloeden and Platen
[2]. However, a major obstacle in using higher order Taylor approximations is the difficulty in
evaluations of first and higher order derivatives of drift and diffusion terms. This is compounded
with the daunting task of numerically evaluating the multiple stochastic integrals (MSI-s). The
stochastic Runge–Kutta scheme provides an alternative integration strategy. Rumelin [10] system-
atically investigated stochastic Runge–Kutta schemes of strong order 1.0. For SDE-s driven by a
1-dimensional Wiener process, the stochastic Heun scheme (SHS) is, by far, one of the most gen-
eral as well as accurate integration scheme of strong (local) order 1.5 (see [1]). However, for SDE-s
with a higher dimensional Wiener process vector, SHS generally only yields a local error order 1.0
unless certain conditions on the gradients of the diffusion terms are met with. Recently, several other
approaches for strong and weak solutions of SDE-s have appeared in the literature. They include
methods based on polynomial chaos expansions [11], stochastic Runge–Kutta using B-series [12],
and a Lie algebraic approach [13,14]. A Lie algebraic integrator for a stochastically driven system
may be thought of as a geometric integrator in the sense that certain intrinsic or special structures
of the solution are preserved during numerical integration. This imparts a far greater reliability to
this class of methods than is achievable by methods based on implicit or explicit forms of the Ito–
Taylor expansion.

An implicit, semi-analytical integration method, called the locally transversal linearization
(LTL), has been proposed by Roy [15] for non-linear, stochastically driven dynamical systems.
The essence of the method is to locally construct a set of conditionally linear and easily integra-
ble (non-unique) system of SDE-s such that, given a discretization of the time axis, solution vec-
tor of the linearized SDE-s transversally intersects that of the original SDE-s at the points of
discretization (grid points). The discretized solution vector may then be found by locating the
points of transversal intersections. A host of extensions of the method along with detailed



theoretical error analyses of the linearization approach, especially as applied to problems in non-
linear stochastic engineering dynamics, has been studied by the same author [16]. In its present
form, the LTL-based methods involve computations of the fundamental solution matrix (FSM)
and its inverse in each time step, crucial for the construction of a linearized solution. Numerical
evaluation of the FSM over any time step requires the exponentiation of certain (possibly quite
large) system matrices. Thus the computational effort for evaluating these functions at each time
step is quite high. In order to further reduce the computational cost and to impart a greater level
of flexibility in the implementation of the procedure, one must also explore ways of minimizing
the evaluations of the transcendental terms, such as sine, cosine, exponential and hyperbolic
functions. However, a reduction in the computational effort should not come at the cost of a
loss of accuracy. Finally, the semi-analytical form of the locally linearized solution of the
LTL method and the associated exponential form of the solution are pointers to the possibility
of derivation of a geometric form of the method. These observations naturally provide an
impetus for the development of alternative tools based on the basic philosophy of the transversal
linearization approach.

This paper constitutes the first part of an investigation that considers an alternative version of
the stochastic LTL method avoiding repeated and laborious evaluations of the FSM over each
time step. The basic idea behind this new approach is to treat the non-linear part of the drift vec-
tor as a conditionally known constant or time dependent force vector and the state dependent
(multiplicative) part of the diffusion vectors as conditionally additive diffusion vectors. In the pro-
cess, the FSM of the linearized SDE-s becomes state and time-invariant. In this part of the work,
only strong solutions are constructed. A rigorous error estimate for the displacement and velocity
vectors suggest that the local and global error orders in this new implementation remain the same
as in the ones in the previous versions of the stochastic LTL method. A limited numerical illus-
tration of the method for a few low-dimensional non-linear oscillators demonstrates its ready
applicability and computational advantages. A weak form of this alternative LTL approach will
be provided in a companion paper.
2. The methodology

Consider a very general n-DOF non-linear stochastic engineering dynamical system in the fol-
lowing canonical form
€X ¼ AðX ; _X ; tÞ þ
Xq
r¼1

GrðX ; _X ; tÞ _W rðtÞ; ð1Þ
where X, _X 2 R2n;AðX ; _X ; tÞ : Rn � Rn � R ! Rn is an n-dimensional drift vector function (non-
linear in X and _X and with or without explicit time dependence). The diffusion vectorPq

r¼1GrðX ; _X ; tÞ _W rðtÞ may be split into a constant or time dependent vector
Pq

r¼1rrðtÞ _W rðtÞ and
a state and (possibly) time dependent vector

Pq
r¼1BrðX ; _X ; tÞ _W rðtÞ. Thus, the diffusion terms

may be written as
Xq
r¼1

GrðX ; _X ; tÞ _W rðtÞ ¼
Xq
r¼1

rrðtÞ _W rðtÞ þ
Xq
r¼1

BrðX ; _X ; tÞ _W rðtÞ: ð1aÞ



In what follows the pth scalar element of the n-dimensional diffusion vectors BrðX ; _X ; tÞ and
rrðX ; _X ; tÞ for each r would be denoted as BðpÞ

r ðX ; _X ; tÞ and rðpÞ
r ðX ; _X ; tÞ respectively. Here,

{Wr(t)jr = 1,2, . . . ,q} denotes a set of independently evolving Wiener processes with Wr(0) = 0
and E[jWr(t)	Wr (s)j2] = (t 	 s), t > s. It may be noted that the over-dot (meaning differentiation
w.r.t. time, t) over Wr(t) needs to be construed in a formal sense since Wiener processes are only
continuous and not differentiable in t. From this point of view, the acceleration vector €X also does
not make much of mathematical sense and thus it would be preferable to cast the system of second
order Eq. (1) via the following incremental form in the state space:
dX 1 ¼ X 2 dt

dX 2 ¼ AðX 1;X 2; tÞdt þ
Xq
r¼1

rrðtÞdW rðtÞ þ
Xq
r¼1

BrðX 1;X 2; tÞ _W rðtÞ;
ð2aÞ
where X 1 ¼ fxð1Þ1 ; xð2Þ1 ; . . . ; xðnÞ1 gT and X 2 ¼ fxð1Þ2 ; xð2Þ2 ; . . . ; xðnÞ2 gT are respectively the displacement
and velocity vector components of the 2n dimensional response vector bX ¼ fXT

1 ;X
T
2g

T . Similarly,
the vectors A and rr may be written in terms of their scalar components as
A = {A(p)jp = 1,2, . . . , n} and rr ¼ frðpÞ

r jp ¼ 1; 2; . . . ; ng. It is assumed that these vector drift
and diffusion functions are measurable with respect to all the arguments, Lipschitz continuous
and have appropriate growth bounds (not necessarily linear). Thus the sample continuity of
any realization of the (separable) non-linear flow /t(x,X1(0),X2(0)) for any x 2 X (X being the
event space) is assured provided that the (norms of) initial displacement and velocity vectors,
X1 (0),X2(0) 2 Rn (taken to be deterministic without the loss of any generality), are bounded.
In all the discussion to follow, no differentiability requirements are imposed on the drift and dif-
fusion vectors, unless specifically mentioned on the contrary. Finally, it is assumed that the diffu-
sion vector may be decomposed into its linear, time-invariant and non-linear, parametric
constituent parts as follows:
AðX 1;X 2; tÞ ¼ AlðX 1;X 2Þ þ feðtÞ þ AnðX 1;X 2; tÞ; ð2bÞ
where the vector AðpÞ
l ¼ fAðpÞ

l jp ¼ 1; . . . ; ng is time invariant and linear in X1, X2; feðtÞ ¼
ff ðpÞ

e ðtÞjp ¼ 1; . . . ; ng is the external excitation vector and AnðX 1;X 2; tÞ ¼ fAðpÞ
n ðX 1;X 2; tÞjp ¼

1; . . . ; ng is non-linear in X1 and X2. Moreover, An also contains any (non-stochastic time varying)
parametric excitations that may be non-conservative in nature.

Let the subset of the time axis over [0,T] be ordered such that 0 = t0 < t1 < t2 < < ti < . . . <
tN = T and hi = ti 	 ti	1 where i 2 Z+. The purpose of the stochastic LTL method is to replace
the non-linear system of SDEs (2) by a suitably chosen set of L linear systems of SDE-s, wherein
the ith linear system should, in a sense, be a representative of the non-linear flow over the ith time
interval Ti = (ti	1, ti]. Such a replacement is non-unique and using the basic steps for constructing
the LTL equations [15], the following system of conditionally linearized SDEs constitutes a valid
LTL system corresponding to Eq. (2) over the interval Ti:
dX 1 ¼ X 2 dt

dX 2 ¼ ðAlðX 1;X 2Þ þ �wvðtÞÞdt þ
Xq
r¼1

rrðtiÞdW rðtÞ þ
Xq
r¼1

BrðX 1;i;X 2;i; tiÞdW rðtÞ:
ð3Þ



The conditionally known time-dependent function �wvðtÞ is defined as
�wvðtÞ ¼ AnðX 1;i;X 2;i; tiÞ þ feðtÞand X 1;i¼D X 1ðtiÞ;X 2;i¼D X 2ðtiÞ: ð4Þ
In Eq. (3), X 1;X 2 denote the LTL-based approximations to X1 and X2 respectively. It may be
noted that the linear, time-invariant part of the drift vector should admit the following
representation:
AlðX 1;X 2Þ ¼ 	½KX 1 	 ½DX 2; ð5Þ
where [K] and [D] are respectively the time-invariant stiffness and damping matrices. Denoting
by ui = (X1,i,X2,i, ti) and �ui ¼ ðX 1;i;X 2;i; tiÞ, the state-space solutions (discrete points) to the non-
linear and linearized SDE-s at t = ti, one may readily observe (see [15] for details) that the
corresponding tangent spaces Tui and T �ui (constructed respectively at ui and �ui) are transversal
(non-tangential). It is known that the local evolutions of solutions Utðx;X 1;i	1;X 2;i	1Þ;
Utðx;X 1;i	1;X 2;i	1Þ for t 2 (ti	1,ti] and x 2 X fixed, of the non-linear and linearized SDE-s
respectively are governed by their respective tangent spaces. One may thus argue that Ut and
Ut are transversal to each other on and around t = ti. It is moreover observed that the vector
fields of the non-linear and linearized SDE-s (Eqs. (2a) and (3) respectively) are instantaneously
identical at t = ti. If it is possible to construct the solution ðX 1;X 2; tÞ of the linearized SDE-s (Eq.
(3)) explicitly around t = ti, then the unknown discrete solution (X1,i, X2,i,ti) may be determined
as the point of intersection of the linearized and non-linear solutions at t = ti. Before attempting
to construct the linearized solution, it is convenient to introduce a 2n-dimensional (conditional)
forcing vector �wðtÞ as
�wðtÞ ¼ f�wT
h ;
�w
T
v g

T
; ð6Þ
where
�whðtÞ ¼ f0gn�1;
�wvðtÞis as defined in Eq:ð4Þ: ð7Þ
Eq. (3) has to be solved subject to the known initial condition vector ðXT
1;i	1;X

T
2;i	1Þ

T 2 R2n:
Closed-form solution, X ðtÞ ¼ fXT

1 ðtÞ;X
T
2 ðtÞg

T , for Eq. (3) may now be constructed in terms of

the unknown state vector, bX i ¼ fXT
1;i;X

T
2;ig

T , as
X ðtiÞ ¼ ½Uðti; ti	1Þ bX i	1 þ
Z ti

ti	1

½U	1ðs; ti	1Þ�wðsÞdsþ
Z ti

ti	1

½U	1ðs; ti	1Þ
�

�
Xq
r¼1

ð�rrðsÞ þ Br;iÞdW rðsÞ
)
: ð8Þ
In the above expression, �rrðsÞ ¼ ff0g; frrðsÞggT ;Br;i ¼ ff0gT ; fBrðX 1;i;X 2;i; tiÞgTgT are 2n-dimen-
sional diffusion vectors, obtained by pre-augmenting rr(s) and Br,i with an n-dimensional zero vec-
tor, {0}. The superscript �T � stands for vector transposition. Moreover, U(t, ti	1) is the
fundamental solution matrix (FSM) associated with the transversally linearized vector field of
SDE-s (Eq. (3)) and has the following simple form:
Uðt; ti	1Þ ¼ expf½Aðt 	 ti	1Þg; ð9Þ



where the 2n · 2n constant coefficient matrix, A, has the form
½A ¼
½0 ½I 

	½K 	½D

� �
: ð10Þ
Details of evaluating the matrix exponent, as needed to obtain the RHS of Eq. (8), will be con-
sidered shortly. Presently, the desired vector, bX i ¼ fX 1;i;X 2;igT , may be obtained by enforcing the
2n constraint conditions:
X 1;i ¼ X 1;i and X 2;i ¼ X 2;i: ð11Þ

It may be noted that the imposition of equalities (Eq. (11)) implies a transversal intersection of

the linearized and non-linear solution manifolds at t = ti [15]. These equalities constitute 2n (non-
linear) algebraic equations in as many unknowns. Thus the vector bX i as found by solving Eq. (11)
is a (not necessarily unique because of a possible multiplicity of solutions owing to non-linearity)
desired solution of Eq. (3) at t = ti.
3. Error estimates

The sample path, (X1(t),X2(t)) traced by Eq. (2a) is, in general, different from the approximated
LTL solution, ðX 1ðtÞ;X 2ðtÞÞ corresponding to Eq. (3), unless the trajectory is in a phase-indepen-
dent regime (see [15] for details). Thus, in the more common case of phase-dependent solutions
(these include transient solutions), the signed instantaneous error at t = ti may be defined as
the following vector in R2n:
Ei ¼ ffEj1;ig
T
; fEðjÞ

2;ig
TgT ¼ ffðxðjÞ1;i 	 �xðjÞ1;iÞg

T
; fðxðjÞ2;i 	 �xðjÞ2;ig

TgT ;
where j = 1, . . . , n, and the instantaneous Euclidean error norm is denoted as

ei ¼ kðXT
1 ;X

T
2 Þ

T
i 	 ðXT

1 ;X
T
2 Þ

T
i k. This (signed error) vector may be treated as a vector of conditional

random variables such that the local initial condition vector, ðXT
1;i	1;X

T
2;i	1Þ

T is deterministic and

ðXT
1;i	1;X

T
2;i	1Þ

T ¼ ðXT
1;i	1;X

T
2;i	1Þ

T
: For a simplicity in further presentation, the superscripts 0T 0 on

2n-dimensional vectors are omitted in cases where there is no scope of confusion.

Definition 3.1. Let rm and rs respectively denote the orders of the mean and mean square of the
conditional (local) error with respect to the uniformly chosen time step size, h = ti 	 ti	1. The
chosen uniformity of the time step size is only for convenience of discussion to follow and may be
readily extended for cases with non-uniform or adoptive step sizes. Then, one can define the
following local error bounds:
kEfðX 1;i;X 2;iÞ 	 ðX 1;i;X 2;iÞgk 6 Qð1þ kðX 1;i	1;X 2;i	1Þk2Þhrm ; ð12Þ

½EkðX 1;i;X 2;iÞ 	 ðX 1;i;X 2;iÞk2
1
2 6 Qð1þ kðX 1;i	1;X 2;i	1Þk2Þhrs ð13Þ
provided that the positive real constant Q 2 R+ does not depend on rm, rs and h.

Proposition 3.2. Let rs P 1/2 and rm P rs + 1/2. Then, one has the following bound on the global
error:



½EkðX 1;i;X 2;iÞ 	 ðX 1;i;X 2;iÞj2
1
2 6 Qð1þ jðX 1;0;X 2;0Þj2Þhrs	

1
2: ð14Þ
That is, the global order of accuracy of a local (i.e., single-step) method, constructed using a one-step
approximation, is rg = rs	1/2.

Proof. For proof, one may refer to the monograph by Milstein [7, pp. 12–17]). h

The essence of the error analysis to follow is based on stochastic Ito–Taylor expansions of the
non-linear and conditionally linear vector fields. These expansions are in turn derived based on a
repeated application of Ito�s formula, which, as adapted specifically for Eq. (2), is stated below:
f ðX 1ðtÞ;X 2ðtÞ; tÞ ¼ f ðX 1;i	1;X 2;i	1; ti	1Þ þ
Xq
r¼1

Z s

ti	1

Krf ðX 1ðsÞ;X 2ðsÞ; sÞdW rðsÞ

þ
Z s

ti	1

Lf ðX 1ðsÞ;X 2ðsÞ; sÞds; ð15aÞ
where f is any sufficiently smooth (scalar or vector) function of its arguments, t P ti	1. The opera-
torsKr andL as applied to the deterministic function f(X1,X2, t) of the response vectors are given by:
Krf ¼
Xn
j¼1

frðjÞ
r ðtÞ þ BðjÞ

r ðX 1;X 2; tÞg
of ðX 1;X 2; tÞ

oxðjÞ2

Lf ¼ of
ot

þ
Xn
j¼1

xðjÞ2

of

oxðjÞ1

þ
Xn
j¼1

fAðjÞ
l þ AðjÞ

n g of

oxðjÞ2

þ 0:5
Xq
r¼1

Xn
k¼1

Xn
l¼1

ðrðkÞ
r þ BðkÞ

r ÞðrðlÞ
r þ BðlÞ

r Þ o
2f

oxðkÞ2 oxðlÞ2

( ) ð15b;cÞ
For convenience of further discussion, it is also necessary to define a multiple stochastic
integral.

Definition 3.3. A multiple stochastic integral (MSI) of the kth level is defined as
Ij1;j2;...;jk ¼
Z ti

ti	1

dW jkðsÞ
Z s

ti	1

dW jk	1
ðs1Þ

Z s1

ti	1

. . .

Z sk	2

ti	1

dW j1ðsk	1Þ; ð16Þ
where the integers j1, j2, . . . , jk take values in the set {0,1,2, . . . ,q} and Ij1;j2;...;jk is called the kth Ito
multiple integral. Moreover, dW0(s) is taken to indicate ds. Moreover, the following proposition is
essential.

Proposition 3.4. One has EðIj1;j2;...;jkÞ ¼ 0 if there exists at least one jl 5 0, l = 1,2, . . . ,k. On the
other hand, EðIj1;j2;...;jkÞ ¼ OðhkÞ if jl = 0"l 2 [0,k]. Moreover,

1

½EðIj1;j2;...;jkÞ
22 ¼ OðhwÞ;

where w ¼
Xk
l¼1

ð2	 �jlÞ=2;�jl ¼ 1 if jl 6¼ 0; else �jl ¼ 0:
ð17Þ



Proof. The first part of the above proposition regarding the mean is quite straightforward. For

the second part, involving Eq. (17), reference is made to the monographs by Milstein [7] or
Kloeden and Platen [2]. h
3.1. The case of only additive noises (Br = 0)

To begin with, the case of purely additive stochastic excitations (possibly with either constant or
time dependent coefficients), i.e., rrðtÞ ¼ frðpÞ

r ðtÞjp ¼ 1; . . . ; ng, is considered.
Proposition 3.5. Consider the LTL-based replacement given by Eq. (3) corresponding to the system
of SDE-s in Eq. (2a) with Br = 0, r = 1, . . . q. Let the drift vector in Eq. (2a) be at least once
differentiable with respect to t and at least twice differentiable with respect to all the displacement
and velocity components. Moreover let the diffusion vector be at least once differentiable with respect
to t. Then the exact solution of the LTL-based SDE-s of Eq. (3) has local error orders of O(h)2.5 and
O(h)1.5 for displacement and velocity components respectively. The global orders of accuracy are less
by order 0.5 than their corresponding local counterparts.

Proof. For simplicity of the discussion to follow, the linear, time-invariant and external forcing
vectors, earlier denoted via Al (X1,X2) and fe(t) respectively, are added together to form a new
time-variant vector Af(X1,X2, t), i.e., Af(X1,X2, t) = Al(X1,X2)(X1,X2) + fe(t). Now, using the ori-
ginal vector field as in Eq. (2a), the displacement components, xðpÞ1 ; p ¼ 1; . . . ; n, may be expanded
in an Ito–Taylor series as
xðpÞ1;i ¼ xðpÞ1;i	1 þ xðpÞ2;i	1hþ
Xq
r¼1

rðpÞ
r ðti	1ÞIr0 þ fAðpÞ

l ðX 1;i	1;X 2;i	1Þ þ AðpÞ
n ðX 1;i	1;X 2;i	1; ti	1Þg

� h2

2
þ T ðpÞ

1 ; ð18Þ
where
T ðpÞ
1 ¼

Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

KrfAðpÞ
l ðX 1ðs2Þ;X 2ðs2ÞÞ

þ AðpÞ
n ðX 1ðs2Þ;X 2ðs2Þ; s2ÞgdW rðs2Þds1 dsþ

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

LfAðpÞ
l ðX 1ðs2Þ;X 2ðs2ÞÞ

þ AðpÞ
n ðX 1ðs2Þ;X 2ðs2Þ; s2Þgds2 ds1ds	

Xq
r¼1

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

_rðpÞ
r ðs2Þds2 dW rðs1Þds: ð19Þ
An implicit form of Eq. (18) may be written by noting that
AðpÞ
n ðX 1;i	1;X 2;i	1; ti	1Þ ¼ AðpÞ

n ðX 1;i;X 2;i; tiÞ 	
Xq
r¼1

Z ti

ti	1

KrA
ðpÞ
n ðX 1ðsÞ;X 2ðsÞ; sÞdW rðsÞ

	
Z ti

ti	1

LAðpÞ
n ðX 1ðsÞ;X 2ðsÞ; sÞds ð20Þ



so that Eq. (18) takes the form
xðpÞ1;i ¼ xðpÞ1;i	1 þ xðpÞ2;i	1hþ
Xq
r¼1

rðpÞ
r;i	1Ir0 þ fAðpÞ

l ðX 1;i	1;X 2;i	1Þ þ AðpÞ
n ðX 1;i;X 2;i; tiÞgh2=2þ RðpÞ

1 : ð21Þ
The displacement remainder is finally given as
RðpÞ
1 ¼ T ðpÞ

1 	
Xq
r¼1

Z ti

ti	1

KrfAðpÞ
n ðX 1ðsÞ;X 2ðsÞ; sÞgdW rðsÞ

 

þ
Z ti

ti	1

LfAðpÞ
n ðX 1ðsÞ;X 2ðsÞ; sÞgds

!
h2=2: ð22Þ
A similar expansion for the LTL-based displacement component, �xðpÞ1;i (p = 1,2, . . . ,n), subject to
same initial conditions, (X1,i	1,X2,i	1), leads to
�xðpÞ1;i ¼ xðpÞ1;i	1 þ xðpÞ2;i	1hþ
Xq
r¼1

rðpÞ
r;i	1Ir0 þ ½AðpÞ

l ðX 1;i	1;X 2;i	1Þ þ AðpÞ
n ðX 1;i;X 2;i; tiÞh2=2þ R

ðpÞ
1 ; ð23Þ
where the displacement remainder corresponding to the LTL equation is
R
ðpÞ
1 ¼

Xq
r¼1

Xq
m¼1

Z t

0

Z s

0

Z s1

0

Krr
ðpÞ
r ðs2ÞdW mðs2ÞdW rðs1Þds

þ
Xq
r¼1

Z t

0

Z s

0

Z s1

0

Lðrpr ðs2Þds2 dW rðs1ÞÞds

þ
Xq
r¼1

Z t

0

Z s

0

Z s1

0

KrA
ðpÞ
l ðX 1ðs2Þ;X 2ðs2ÞÞdW rðs2Þds1 ds

þ
Z t

0

Z s

0

Z s1

0

LAðpÞ
l ðX 1ðs2Þ;X 2ðs2ÞÞds2 ds1 ds: ð24Þ
If the constraint conditions xðpÞ1;i ¼ �xðpÞ1;i ; x
ðpÞ
2;i ¼ �xðpÞ2;i are satisfied, then it is observed that the expan-

sions for xðpÞ1;i and �xðpÞ1;i match except for the remainder terms, viz. RðpÞ
1 and R

ðpÞ
1 . Thus the error order

for �xðpÞ1 is determined by the order of signed scalar measure EðpÞ
1;i ¼ RðpÞ

1 	 �RðpÞ
1 . Taking expectation

of this term followed by the use of inequality (Eqs. (12) and (17)) leads to the following estimate

(for some real constant vector Q ¼ fQðpÞjp ¼ 1; . . . ; ngÞ:
EðjEðpÞ
1;i jÞ 6 Q

ðpÞð1þ kX 1;i	1;X 2;i	1k2Þh3 ð25Þ
so that rm = 3.0. In deriving the above, use has been made of the identity KrrðpÞ
r ðsÞ ¼ 0. Similarly,

using inequality (13) and Eq. (17) one has the following estimate of the mean square error:
jEðEðpÞ
1;i Þ

2j
1
2 6 Q

ðpÞð1þ kX 1;i	1;X 2;i	1k2Þh2:5 ð26Þ
so that rs = 2.5. Now, a direct use of proposition (1) (noting that rm ¼ 3:0 ¼ rs þ 1
2
and rs > 1/2)

leads to the global error order rg = 2.0 for the displacement components obtained via the LTL



scheme of this section. In a similar manner, one can expand the velocity components, xðpÞ2;i and �xðpÞ2;i ,
respectively based on the original and LTL-based vector fields as
xðpÞ2;i ¼ xðpÞ2;i	1 þ
Xq
r¼1

rðpÞ
r;i	1Ir þ ½AðpÞ

l ðX 1;i	1;X 2;i	1Þ þ AðpÞ
n ðX 1;i;X 2;i; tiÞhþ RðpÞ

2 ; ð27Þ
where
RðpÞ
2 ¼ 	

Xq
r¼1

Z t

0

KrA
ðpÞ
n ðX 1ðsÞ;X 2ðsÞ; sÞdW rðsÞ þ

Z t

0

LAðpÞ
n ðX 1ðsÞ;X 2ðsÞ; sÞds

" #
h

þ
Xq
r¼1

Xq
m¼1

Z t

0

Z s

0

Kmr
ðpÞ
r ðs1ÞdW mðs1ÞdW rðsÞ þ

Xq
r¼1

Z t

0

Z s

0

LrðpÞ
r ðs1Þds1 dW rðsÞ

þ
Xq
r¼1

Z t

0

Z s

0

KrA
ðpÞ
l ðX 1ðs1Þ;X 2ðs1Þ; s1ÞdW rðs1Þdsþ

Xq
r¼1

Z t

0

Z s

0

KrA
ðpÞ
n dW rðs1Þds

þ
Z t

0

Z s

0

LAðpÞ
n ðX 1ðs1Þ;X 2ðs1Þ; s1Þds1 ds ð28Þ
and
�xðpÞ2;i ¼ xðpÞ2;i	1 þ
Xq
r¼1

rðpÞ
r;i	1Ir þ ½AðpÞ

l ðX 1;i	1;X 2;i	1Þ þ AðpÞ
n ðX 1;i;X 2;i; tiÞhþ R

ðlÞ
2 ; ð29Þ
where
R
ðpÞ
2 ¼

Xq
r¼1

Xq
m¼1

Z t

0

Kmr
ðpÞ
r dW mðs1ÞdW rðsÞ þ

Xq
r¼1

Z t

0

LrðpÞ
r ðs1Þds1 dW rðsÞ

þ
Xq
r¼1

Z t

0

Z s

0

KrA
ðpÞ
l ðX 1ðs1Þ;X 2ðs1ÞÞdW rðs1Þds

þ
Z t

0

Z s

0

LAðpÞ
l ðX 1ðs1Þ;X 2ðs1ÞÞds1 ds: ð30Þ
It may be noted that the third term of Eq. (28) and first term of Eq. (30) are zero as diffusion
vector r is either constant or time dependent.

As before, one observes that Eqs. (27) and (29) match except for the velocity remainders, RðpÞ
2

and R
ðpÞ
2 . Denoting EðpÞ

2;i ¼ xðpÞ2;i 	 �xðpÞ2;i , the following estimates are easily derived:
EðjEðpÞ
2;i jÞ 6 Q

ðpÞð1þ kX 1;i	1;X 2;i	1k2Þh2; ð31Þ

jEðEðlÞ
2;iÞ

2j
1
2 6 Q

ðlÞð1þ kX 1;i	1;X 2;i	1k2Þh
3
2: ð32Þ
Using Proposition 3.2, it is clear that the local and global error orders for the LTL-based
velocity vector, X 2, are respectively given by rs = 1.5 and rg = 1.0. Error orders for velocity
components are therefore one order less than their corresponding values for the displacement
components. h



3.2. The case of multiplicative noises

Proposition 3.6. Consider the LTL-based replacement given by Eq. (3) corresponding to the system
of SDE-s in Eq. (2a) with Br(X1,X2, t) 5 0, r = 1, . . . q. Let the original drift and diffusion vectors
be at least once differentiable with respect to t and at least twice differentiable with respect to all the
displacement and velocity components. Then the exact solution of the LTL-based SDE-s of Eq. (3)
has local error orders of O(h)2.0 and O(h)1.0 for displacement and velocity components respectively. In
case the diffusion vector Br(X1,X2, t) = Br(X1, t) is not a function of the velocity vector, then the exact
solution of the LTL-based SDE-s of Eq. (3) has local error orders of O(h)2.5 and O(h)1.5 for
displacement and velocity components respectively (as in the case of purely additive noises). In each
case, the global orders of accuracy are less by order 0.5 than their corresponding local counterparts.

Proof. Consider Eq. (2) with Br(X1,X2, t)5 0 for one or more r 2 [1,q] and following the same
logic as for the case of additive noises, an implicit form of the stochastic Taylor expansion for
the displacement variable xðpÞ1;i may be written as
xðpÞ1;i ¼ xðpÞ1;i	1 þ xðpÞ2;i	1hþ
Xq
r¼1

rðpÞ
r;i	1 þ

Xq
r¼1

BðpÞ
r;i

 !
Iro þ ðAðpÞ

l;i	1 þ AðpÞ
n;i Þh2=2þ DðpÞ

1;i ; ð33Þ
where the local error DðpÞ
1;i is given by:
DðpÞ
1;i ¼

X
r

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

KrA
ðpÞ
l ðX ðs2ÞÞdW rðs2Þds1 dsþ

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

LAðpÞ
l ðX ðs2ÞÞds2 ds1 ds

	
X
r

Z ti

ti	1

KrA
ðpÞ
n ðX ðuÞ; uÞdW rðuÞ

 !
h2=2	

Z ti

ti	1

LAðpÞ
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� �
h2=2

þ
X
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Z ti
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Z s

ti	1

Z s1

ti	1

KrA
ðpÞ
n ðX ðs2Þ; s2ÞdW rðs2Þds1 ds

þ
Z ti
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Z s
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Z s1

ti	1

LAðpÞ
n ðX ðs2Þ; s2Þds2 ds1 dsþ

X
r

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

_rðpÞ
r ðs2Þds2 ds1 ds

	
X
r

X
m

Z ti

ti	1

KrBðpÞ
r ðX ðuÞ; uÞdW rðuÞ

 !
Iro 	

X
r

Z ti

ti	1

LBðpÞ
r ðX ðuÞ; uÞdu

� �
Iro

þ
X
r

X
m

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

KmBðpÞ
r ðX ðs2Þ; s2ÞdW mðs2ÞdW rðs1Þds

þ
X
r

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

LBðpÞ
r ðX ðs2Þ; s2Þds2 dW rðs1Þds: ð34Þ
A corresponding expansion of the vector field for the LTL-based displacement component, �xðlÞ1;i
is:
�xðpÞ1;i ¼ �xðpÞ1;i	1 þ �xðlÞ2;i	1hþ
X
r

ðrðpÞ
r;i	1 þ BðpÞ

r ðX 1;i;X 2;i; tiÞÞIr0 þ ðAðpÞ
l;i	1 þ AðpÞ

n;i Þh2=2þ D
ðpÞ
1;i ; ð35Þ



where the remainder term,
D
ðpÞ
1;i ¼

X
r

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

KrA
ðpÞ
l ðX ðs2ÞÞdW rðs2Þds1 dsþ

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

LAðpÞ
l ðX ðs2ÞÞds2 ds1 ds

þ
X
r

Z ti

ti	1

Z s

ti	1

Z s1

ti	1

_rðpÞ
r ðs2Þds2 ds1 ds: ð36aÞ
In deriving the above remainder term, use has been made of the identities:
Kmr
ðpÞ
r ¼ 0;8m; r½1; q; ð36bÞ

AðpÞ
n;i	1 ¼ AðpÞ

n;i 	
X
r

Z ti

ti	1

KðpÞ
n ðX ðuÞ; uÞdW rðuÞ 	

Z ti

ti	1

LAðpÞ
n ðX ðuÞ; uÞdu; ð36cÞ

BðpÞ
r;i	1 ¼ BðpÞ

r;i 	
X
r

Z ti

ti	1

KrBðpÞ
r ðX ðuÞ; uÞdW rðuÞ 	

Z ti

ti	1

LBðpÞ
r ðX ðuÞ; uÞdu: ð36dÞ
With the displacement error vector defined as E1;i ¼ fEðpÞ
1;i g ¼ fxðpÞ1;i 	 �xðpÞ1;i g; p ¼ 1; . . . ; n; one may

readily see, using the identities (3) and (11), that the stochastic Taylor expansions (33) and (35)

precisely match except for their respective remainders, DðpÞ
1 and D

ðpÞ
1 , so that one has

fEðpÞ
1;i g ¼ fDðpÞ

1 	 D
ðpÞ
1 g. Based on propositions 1 and 2, one has
EðjEðpÞ
1;i jÞ 6 Q

ðpÞð1þ jX i	1j2Þh3; ð37Þ

jEðEðpÞ
1;i Þ

2j
1
2 6 Q

ðpÞð1þ jX i	1j2Þh2 ð38Þ
and hence the local and global displacement errors are respectively rs = 2.0 and rg = 1.5, i.e., 0.5
less than their corresponding values in the purely additive case (Section 3.1). Thus the accuracy of
the present version of the LTL method is generally less under multiplicative noises. Expansions
similar to (33) through (36) may also be readily derived for the velocity components, xðpÞ2;i and
�xðpÞ2;i , and their corresponding remainders, DðpÞ

2 and D
ðpÞ
2 . It may consequently be shown that the

local and global error orders under a general set of multiplicative noise vectors are rs = 1.0 and
rg = 0.5.

The Special Case of Br(X1,X2, t) = Br(X1, t):
It is however interesting to note that in the specific case of multiplicative coefficients being

functions of displacements alone, i.e., Br(X1,X2, t) = Br(X1, t), the first and third terms of order
O(h2) in Eq. (34) vanish (via Eq. 15(b)) and thus rs = 2.5 and rg = 2.0, which is the same as for the
purely additive case. Similarly, it can be shown that the error order for the velocity vector is same
as that of the purely additive case, i.e., rs = 1.5 and rg = 1.0. h

It is worth noting at this stage that, unlike the stochastic Heun method, no restrictions are im-
posed in this study on the number of independent white noise processes driving the system for the
above error estimates to hold true. For a ready reference, the error orders for different cases as
discussed in Sections 3.1 and 3.2 are shown in Table 1.



Table 1
Error orders in the new stochastic LTL method

State space
vector

Local error Global error

Additive
noise Br = 0

Multiplicative
noise
Br ¼ BrðX ; _X ; tÞ

Multiplicative
noise
Br = Br(X, t)

Additive
noise Br = 0

Multiplicative
noise
Br = BrðX ; _X ; tÞ

Multiplicative
noise
Br = Br(X, t)

Displacement 2.5 2.0 2.5 2.0 1.5 2.0
Velocity 1.5 1.0 1.5 1.0 0.5 1.0
4. Certain computational issues

Computations of the fundamental solution matrix and its inverse, crucial for the construction
of a linearized solution, require exponentiation of certain (possibly quite large) system matrices.
For ti	1 < t < ti, let it be required to numerically obtain [U(t, ti	1) = exp{[A](t 	 ti	1)}. An �exact�
evaluation of [U(t, ti	1)] needs the determination of eigenvalues and eigenvectors of [A]. Since this
is generally a computationally expensive task, especially for higher dimensional systems, a more
expedient way to evaluate [U (t, ti	1)] would be via a suitable truncation of the deterministic Tay-
lor expansion followed by the retention of the first few terms (may be four or even fewer) as
½Uðt; ti	1Þ ¼ ½U  þ ½Aðt 	 ti	1Þ þ
1

2!
½A2ðt 	 ti	1Þ2 þ

1

3!
½A3ðt 	 ti	1Þ3 þ � � � ð39Þ
where [U] is an 2n · 2n identity matrix. A similar scheme may also be utilized to obtain the inverse
U	1(t, ti	 1) = exp{	[A](t 	 ti	1)}. In this case,
½U	1ðt; ti	1Þ ¼ ½U  	 ½Aðt 	 ti	1Þ þ
1

2!
½A2ðt 	 ti	1Þ2 	

1

3!
½A3ðt 	 ti	1Þ3 þ � � � ð40Þ
The minimum number of terms in the Taylor expansion of the FSM should be dictated by the
associated error orders of displacement and velocity components. It needs to be mentioned here
that a truncated Taylor expansion for computing matrix exponentials is certainly not the best way
to do so. Indeed, 19 different ways of computing matrix exponentials have been reviewed in a re-
cent article [17]. While the expansion scheme in Eqs. (39) and (40) does not interfere with the for-
mal orders of accuracy of the LTL method, it may indeed reduce the stochastic numerical stability
of the method. Moreover, it needs to be noted that the concept of transversal linearization has the
potential of being modified into a geometrical integration method, wherein the exponential form
of the solution could be forced to evolve on a Lie manifold. In such a case, to be considered in a
future article, the scheme for computing matrix exponentials must be modified.

Implementation of the linearization methods requires an appropriate modelling of the vector
Wiener process {Wr(t)jr = 1,. . ., q}. This is numerically done by independently generating
N(0,1) a set of Gaussian random vectors fgðrÞi jr ¼ 1; . . . ; qg for every positive integer i (including
zero) corresponding to the time interval ti. One thus has
DW r;i ¼ W rðtiÞ 	 W rðti	1Þ ¼ gðrÞi
ffiffiffi
h

p
; ð41Þ
where h = ti 	 ti	1 is the uniform time step size.
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Fig. 1. Displacement and velocity plots via old and new LTL methods; e2 = 0.5, e3 = 0.1, h = 0.01 s. (a,b): e4 = 0.1,
e5 = 0.0; (c,d): e4 = 0.5, e5 = 0.0; (e,f): e4 = 0.5, e5 = 0.5.
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Fig. 3. Duffing oscillator under medium additive noise: (a) displacement histories and (b) velocity histories (e1 = 0.25,
e2 = 1.0, e3 = 0.0, e4 = 5.0, e5 = 0.0).
It may be noted from Eq. (8) that the construction of particular solutions for the linearized
equations involve determining the Gaussian stochastic integrals of the forms

R ti
ti	1

wðsÞdW rðsÞ
for u,r = 1,2, . . . ,q. Interpreted according to Ito, expectations of both these integrals are zero.
Moreover, one has for the standard deviation of the integral
r1 ¼ E
Z ti

ti	1

wðsÞdW rðsÞ
���� ����2
 !( )1

2

¼
Z ti

ti	1

w2ðsÞds
� �1

2

: ð42Þ
In this work, the RHS of the above equation is generated using a 3-point Gauss quadrature and
finally the stochastic integral is obtained as

R ti
ti	1

wðsÞdW rðsÞ ¼ gðrÞi r1.
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Fig. 4. Duffing oscillator under strong additive noise: (a) displacement histories and (b) velocity histories (e1 = 0.25,
e2 = 1.0, e3 = 0.0, e4 = 20.0, e5 = 0.0).
5. The basic or old LTL method

In order to appreciate the development of the present LTL methodology, a passing reference
may be made to the basic or the old LTL method developed by the first author. The Eq. (1)
may be cast via the following incremental form in the state space:
dX 1 ¼ X 2 dt

dX 2 ¼ fAlðX 1;X 2Þ þ f ðtÞ þ AnðX 1;X 2; tÞgdt þ
Xq
r¼1

frrðtÞ þ BrðX 1;X 2; tÞgdW rðtÞ;
ð43Þ
where the suffices l and n stand for linearized and non-linear vector fields. First, it is assumed that
the non-linear vector function An(X1,X2, t) may be decomposed as
fAnðX 1;X 2; tÞg ¼ 	½C1ðX 1;X 2; tÞfX 2g 	 ½K1ðX 1;X 2; tÞfX 1g; ð44Þ
where C1 and K1 stand respectively for state and time dependent damping and stiffness matrices.
Moreover, the linear part of the drift vector, Al(X1,X2), may be written as
fAlðX 1;X 2Þg ¼ 	½CfX 2g 	 ½KfX 1g; ð45Þ

where [C] and [K] are respectively the damping and stiffness matrices with constant coefficients.
The linearized SDE-s at t = ti according to the old LTL scheme take the form
dX 1 ¼ X 2 dt

dX 2 ¼ 	½½C þ ½C1ðX 1;i;X 2;i; tiÞfX 2gdt 	 ½½K þ ½K1ðX 1;i;X 2;i; tiÞfX 1gdt

þ ff ðtÞgdt þ
Xq
r¼1

frrðtÞ þ BrðX 1;i;X 2;i; tÞgdW rðtÞ: ð46Þ
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Fig. 5. Duffing oscillator under combined additive and multiplicative noises: (a) displacement histories e5 = 1.0; (b)
velocity histories e5 = 1.0; (c) displacement histories e5 = 10.0; (d) velocity histories e5 = 10.0: e1 = 0.25, e2 = 1.0,
e3 = 0.0, e4 = 0.5.
Unlike the case of the new LTL approach, the system coefficient matrix A (X1,i,X2,i, ti) is a func-
tion of the unknown, discretized state variables X1,i and X2,i. Accordingly, for the old LTL case,
the FSM is given by
Uðxi; tÞ ¼ expf½MðX i; tiÞðt 	 ti	1Þg; ð47Þ

where the 2n · 2n coefficient matrix, M, has the form
½M  ¼
½0 ½I 
½C ½C1

� �
: ð48Þ
One readily observes the need to form the above matrix for every ti, i 2 Z+. Such a laborious
process of repeated evaluations of the FSM is the main reason for the old LTL approach to be-
come computationally expensive, especially as compared with its new counterpart. This point will
be further elaborated through an example problem in the next section.



en
t

sp
la

ce

0 2 4 6 8 10 12 14 16 18 20

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8  LTL
 LSNM

D
i

m

Time (sec)
0 10 12 14 16 18 20

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6
 LTL
 LSNM

Ve
lo

ci
ty

Time (sec)(b) (a) 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
-6

-4

-2

0

2

4

6

 LTL

Ve
lo

ci
ty

Displacement(c) 

2 4 6 8

Fig. 6. Duffing oscillator under combined deterministic excitation and weak additive noise: (a) displacement histories;
(b) velocity histories and (c) phase plot (LTL) (e1 = 0.25, e2 = 1.0, e3 = 0.2, e4 = 1.0, e5 = 0.0).
6. Numerical illustrations

The focus of the present work is on the proposition and theoretical error estimates of a new
variant of the stochastic transversal linearization scheme. Presently, a limited numerical illustra-
tion on the stochastic response of an SDOF oscillator is provided here.

The problem considered a single-degree-of-freedom (SDOF) hardening Duffing equation driven
by combined additive and multiplicative noises, in addition to a deterministic periodic excitation.
The equation of motion is written in an incremental form as
dx1ðtÞ ¼ x2ðtÞdt
dx2ðtÞ ¼ ð	2pe1x2 	 4p2e2ð1þ x21Þx1 þ 4p2e3 cosð2ptÞÞdt þ e4 dW 1ðtÞ þ e5x1 dW 2ðtÞ:

ð49Þ
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Fig. 7. Duffing oscillator under combined deterministic excitation and strong additive noise: (a) displacement histories;
(b) velocity histories and (c) phase plot (LTL) (e1 = 0.25, e2 = 1.0, e3 = 0.2, e4 = 15.0, e5 = 0.0).
The corresponding local closed form solution takes the form
X ðtiÞ ¼ ½Uðti; ti	1Þ X i	1 þ
Z ti

ti	1

½U	1ðs; ti	1Þ�wðsÞdsþ
Z ti

ti	1

½U	1ðs; ti	1ÞdW ðsÞ
� �

; ð50Þ
where X ðtiÞ ¼ f�x1;i;�x2;igT is the linearized solution based on the initial conditionbX i	1 ¼ fx1;i	1; x2;i	1gT ; �wðsÞ ¼ f0; 4p2e3 cosð2ptÞ 	 4p2e2x31;ig
T is the deterministic force vector,

dW ðtÞ ¼ f0; e4 dW 1ðtÞ þ e5x1;i dW 2ðtÞgT is the (modulated) Wiener vector and [U(ti,ti	1)] is the fun-
damental solution matrix corresponding to the linear part of the vector field. The superscript �T�
stands for vector transposition. The fundamental solution matrix is constructed via the following
matrix exponentiation:
½Uðti; ti	1Þ ¼ expf½Aðti 	 ti	1Þg; ð51Þ

where the 2 · 2 coefficient matrix [A] is given by:
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½A ¼
0 1

	4p2e2 	2pe1

� �
: ð52Þ
Now, the LTL-based solution, �x1ðtiÞ, for the displacement component is written in the long
hand over i th interval as
�x1ðtiÞ ¼ U11ðti; ti	1Þx1;i	1 þ U12ðti; ti	1Þx2;i	1 þ U11ðti; ti	1Þ
Z ti

ti	1

U	1
12 ðs; ti	1Þf4p2e3 cosð2psÞ

	 4p2e2x31;igdsþ U12ðti; ti	1Þ
Z ti

ti	1

U	1
22 ðs; ti	1Þf4p2e3 cosð2psÞ 	 4p2e2x31;igds

þ U11ðti; ti	1Þ
Z ti

ti	1

U	1
12 ðs; ti	1Þd bW ðsÞ þ U12ðti; ti	1Þ

Z ti

ti	1

U	1
22 ðs; ti	1Þd bW ðsÞ

� �
¼ Wðti; ti	1; x1;i	1; x2;i	1; x1;iÞ; ð53Þ
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Fig. 9. Duffing oscillator under deterministic excitation and weak multiplicative noise: (a) displacement histories; (b)
velocity histories and (c) phase plot (LTL) (e1 = 0.25, e2 = 1.0, e3 = 0.2, e4 = 0.0, e5 = 0.5).
where
d bW ðtÞ ¼ e4 dW 1ðtÞ þ e5x1;idW 2ðtÞ: ð54Þ

Imposition of the constraint condition (11) (i.e., �x1;i ¼ x1;i for the present case) leads to a non-

linear algebraic equation to determine x1,i. For the present set of problems, it is readily verified
that a 3-term expansion (Eqs. (39) and (40)) is enough to maintain the same error orders, as de-
rived in the Section 3 on error analysis. A consistent time step size h =0.01 sec has been adopted in
all the following numerical results. To check the accuracy and limitation of the proposed LTL
technique, comparisons of results have been made with lower order stochastic Newmark method
(LSNM, [18]) under different combination of periodic, additive and multiplicative loads. It may be
noted that comparisons of LTL solutions with those obtained with other popular schemes, espe-
cially the stochastic Heun or Euler schemes, are not provided here as the transversal linearization
schemes have already been shown to have a higher accuracy over a given time step.



To begin with, Fig. 1 provides a set of comparisons of displacement and velocity histories
obtained via the old LTL method and the new one proposed herein for a few combinations of
additive and multiplicative noise intensities. In Figs. 2–4, displacement and velocity histories of
LTL-based solutions of the oscillator under weak, medium and strong intensities of additive
white-noise inputs are shown and compared with a lower order stochastic Newmark method
(LSNM) of comparable accuracy [18]. No deterministic and multiplicative stochastic inputs are
assumed to be acting on the oscillator in these examples. Comparisons of time histories obtained
via LTL with those via LSNM appear to be quite close. Fig. 5(a–d) show displacement and velo-
city histories, obtained via LTL and LSNM, under combined additive and multiplicative excita-
tions with the deterministic forcing amplitude parameter e3 = 0. The two methods are found to be
in good agreement for a low multiplicative noise intensity e5 = 1.0, but vary considerably under a
strong multiplicative noise input e5 = 10.0. The effects of low and strong additive noise intensities
for a small deterministic sinusoidal input (e3 = 0.2) have been studied through time history plots
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Fig. 10. Duffing oscillator under deterministic excitation and strong multiplicative noise: (a) displacement histories; (b)
velocity histories and (c) phase plot (LTL) (e1 = 0.25, e2 = 1.0, e3 = 0.2, e4 = 0.0, e5 = 15.0).



Table 2
A comparison of CPU times required in the strong stochastic LTL solution via new and old approaches while
integrating a Duffing oscillator; e1 = 0.25, e2 = 0.5, e3 = 1.0 with different combination of additive and multiplicative
noise intensities e4 and e5

e4 e5 CPU times required for different time step size, h

h = 0.001 s h = 0.01 s h = 0.02 s

Old LTL New LTL Old LTL New LTL Old LTL New LTL

0.01 0.00 55.53 2.85 6.14 0.33 3.34 0.16
0.10 0.00 56.18 2.86 6.15 0.32 3.34 0.16
0.25 0.00 55.91 2.91 6.15 0.32 3.34 0.16
0.25 0.25 55.86 2.91 6.09 0.32 3.39 0.16
in Figs. 6 and 7. The comparison through both the methods consistently yield satisfactory results.
For a strong deterministic input, phase plots under weak and strong additive noise intensity have
been shown in Fig. 8(a–d). The effects of weak and strong multiplicative noise intensities under
small deterministic amplitude are shown in Figs. 9 and 10. The two methods achieve quite close
results under weak multiplicative intensity, whereas, under strong multiplicative noise, LTL re-
sults err substantially compared to LSNM. Finally, in order to bring out the relative computa-
tional efficiency of the new LTL method vis-à-vis its old counterpart, Table 2 shows a typical
comparison of the CPU times consumed by the two methods during path wise integration of
the Duffing equation.
7. Conclusions

A new, efficient and simpler version of the stochastic locally transversal linearization (LTL)
procedure is proposed and theoretically explored for accurate path wise integration of non-linear
stochastic engineering dynamical systems. Detailed estimates for local and global error orders for
displacement and velocity components are provided. These estimates are based on implicit Ito–
Taylor expansions in terms of the LTL-based and original vector fields. The presently developed
technique is notably higher in accuracy than several other existing algorithms, such as the Heun
scheme or similar other schemes based on stochastic Runge–Kutta and computationally faster
than the existing LTL methods. The other competing algorithms, based on stochastic Taylor
expansions of displacement and velocity vectors and thereby leading (formally) to similar accu-
racy levels, involves extremely cumbersome (and, sometimes, nearly impossible) computations
of multiple stochastic integrals (MSI-s). The LTL methodology however effectively avoids such
complexities. A computationally attractive feature of the proposed LTL technique over its previ-
ously developed counterparts lies with the fact that the fundamental solution matrix (FSM) and
its inverse are calculated only once for all time steps. This is in contrast with a repeated compu-
tation of FSM in the earlier version of the stochastic LTL technique. A limited numerical
implementation of the proposed algorithms is provided by obtaining sample path solutions of
a single-degree non-linear dynamical system under additive and multiplicative white noise excita-
tions. The comparisons of LTL and LSNM solutions are generally good and even under high



intensity additive noise, both the methods yield very close solution. However, they appear to differ
to an extent in some cases, especially when the intensities of multiplicative stochastic excitations
are quite high.

It must be emphasized that the spirit of the transversal linearizaion method is quite consistent
with the class of geometric integrators preserving the Lie algebraic structure of the evolving flow.
For stochastically driven dynamical systems, such methods have hardly been explored in the lit-
erature. Since the LTL-based linearized system may be constructed in a non-unique way and the
solution of the linearized system nearly always involves exponential transformation (for the deri-
vation of the fundamental system matrices), it seems logical to explore the possibility of adapting
the method for a geometric integration of stochastically driven oscillators. This observation points
to an important research direction to be pursued shortly.

In most engineering applications, one is more interested in obtaining the expected values of cer-
tain functionals of displacement and velocity processes rather than their path wise solutions.
From this point of view, a weak form of the LTL method is far more desirable as it is computa-
tionally more efficient and simpler to implement. The authors have already developed and com-
putationally implemented a weak form of the LTL method and the development is being reported
in a companion paper.
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