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Abstract. The first order kinetic flux vector split scheme is found to be more dissipative,
resulting in smearing of discontinuties. In this paper we have proposed a modified kfuvs
based on M CIR splitting with a molecular velocity dependent dissipation control function.
Different choices for the dissipation control function and the corresponding physical arguments
have been presented. The m — kfuvs split fluxes are presented. The corresponding split flux
Jacobians and the coefficient of numerical dissipation are studied. The scheme is tested on
some standard test cases and the results are presented. The m — k fvs scheme is shown to be
non-oscillatory at discontinuties and near second order accurate in smooth regions.
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1 Introduction

The Kinetic Flux Vector Split scheme [4, 7] commonly known as kfvs is an upwind scheme based
on the moment method strategy [4] where an upwind scheme is developed at the Boltzmann level and
taking moments we arrive at an upwind scheme for the conservation laws of gas dynamics. To capture
the discontinuties sharply and for resolving various flow features, a numerical scheme should have less
dissipation. The usual first order kfvs scheme is found to be more dissipative, resulting in smearing of
discontinuties. However, higher order accurate schemes have been employed for better accuracy and for
reducing the numerical dissipation considerably. To control the dissipation in the first order k fvs scheme,
Deshpande [8] has proposed a modified way of CIR splitting, namely MCIR splitting of the molecular
velocity by introducing a dissipation control function. Using the above idea and with suitable choices
for the dissipation control function, low dissipation and single point shock capturing kinetic schemes
[5, 6, 8, 1] have been developed recently.

In this paper we pursue yet another version of low dissipative modified kfvs method based on MCIR
splitting with molecular velocity dependent dissipation control functions.

2 Basic theory of kinetic schemes

We now explain the basic concepts of kfvs scheme with reference to 1D unsteady Euler equations.
Consider the 1D Boltzmann equation in the Euler limit
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Where F' is the Maxwellian velocity distribution function given by
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The 1D Euler equations can then be obtained as ¥-moments of the Boltzmann equation (1). That is
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The moment function vector ¥ is defined by
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Using CIR splitting of the molecular veolcity and replacing the spatial derivatives with respective finite
difference approximations, we get
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Using Taylor series, eq. (4) gives the modified partial differential equation (mpde),
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The leading term in the truncation error shows that the upwind scheme for (1) based on CIR splitting is
first order accurate and is dissipative.

3 Modified CIR (MCIR) splitting

The mpde given by eq. (5) shows that |v| contributes to the numerical dissipation. To reduce the
dissipation, Deshpande [8] has introduced a dissipation control function ¢ as a multiplying factor for |v].
The modified CIR (MCIR) splitting is given by
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It is important to note that v # 0 for v < 0 and v~ # 0 for v > 0. The excessive dissipation in the
usual CIR scheme can be reduced because of some downwind effect present in the MCIR scheme. Due
to this, vt and v~ are never zero regardless of sign of v. Using the above defined MCIR splitting, the
mpde analysis for the Boltzmann equation (1) gives
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Taking the ¥ - moments, we get the mpde corresponding to 1D Euler equations
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It is evident from the above equation that ¢ = 0 leads to central differencing and ¢ = 1 gives the usual
first order kfvs method. Thus, by tuning ¢ such that 0 < ¢ <1 we can control the numerical dissipation
and hence order of accuracy. At exactly ¢ = 0, the numerical scheme is known to be unstable.



4 Choices for the function ¢

We now present different choices [1] for the dissipation control function ¢, which is a non linear
function of molecular velocity v. Let us consider the mpde obtained in the eq. (8). When ¥ = 1, the
mpde corresponding to the mass balance equation is given by
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where v, is the kinematic numerical viscosity given by
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From the above equation we observe that when ¢ = 1, maximum contribution to the numerical viscosity
comes from particles with velocities close to u, i.e., ¢ = v —u = 0. Particles with large |c| contribute very
little to vpum- If we can suitably weight the particles contributing maximum to v,y , then we can reduce
the numerical viscosity in the scheme. The control function ¢ plays this role. Based on these arguments
Anil and Deshpande [1] have considered two choices for ¢, given by

p=e T and ¢ = el (11)
where « could be a mesh dependent function, which we will define later. Note that, for both the choices,
we have « - 0 = ¢ = 1 and @ — o0 = ¢ = 0, resulting in first order accurate kfvs and central
differencing schemes respectively.

When ¢ = e 1, for particles with |v| < «, that is, for low velocity particles the function ¢ is very
small and hence contributes very less to vpym. The high velocity particles for which [v] > a = ¢ = 1
contribute to the numerical dissipation. In the case of ¢ = e~®/¥l the low velocity particles, that is,
particles for which a|v] < 1 contribute most to Vpym. Obviously, particles for which ajv| > 1 will
contribute very little to kinematic numerical viscosity. Thus, it is possible to weight the velocity space
suitably for reducing the dissipation.

Let us understand more about low and high velocity molecules. Consider the steady 1D Boltzmann
equation with a BGK - model for the collision terms
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Here, f is the velocity distribution function, A~! the relaxation time scale and F the local Maxwellian
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velocity distribution function. Using the interating factor e4%/¥ we can write the solution of (12) as
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Assuming F(z') to be a constant over the interval xo < 2’ < x (which is ~ Azx), we get
fa,0) = f(o,v)e™F=720) 4 1 — = Hemm)] (14)

It is clear from the above equation that the low velocity molecules are almost always lost (in the sense of
loss term in the Boltzmann equation) while high velocity molecules are lost negligibly, that is, they travel



over Az without any collision. Therefore, it makes sense in using a weight function in velocity space
which has the above property. The choice of ¢ = e~ T is therefore consistent with the above physical
argument. The second choice ¢ = e~ /¥l leads to much simpler formulae for split fluxes and is shown in
the next section.

5 Modified kfvs split fluxes

The m — kfuvs split fluxes denoted by Gm* are given by

Gm* = <x1/ wF> = / W%qudf (15)
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For the choice ¢ = e_%, closed form expressions for the split fluxes are not available. Also, numerical

integration is found to be very expensive. However, some asymptotic and series expansions are available.

Anil and Deshpande [1] has observed that the evaluation of the split fluxes using these expressions is

computationally expensive and causes some loss in accuracy.

For the second choice, ¢ = e~??l, closed form expressions are available and are given by
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where G is the unsplit flux, G* are the usual kfvs split fluxes for the 1D Euler equations. The parameter
a can be non-dimensionalised by & = % Note that, these expressions are simpler as they are similar
to that of kfvs split fluxes, except that it involves some exponentials and the arguments of error function
are different. Anil et al. [2] have numerically found that for & ~ 4.0, Gm* ~ £. Which clearly shows

that the upwinding is lost completely. The modified split kinetic flux Jacobians Am* are given by
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Since Gm® are functions of &, and for the case of & = 0, we get the Jacobians corresponding to kfuvs
fluxes. As & increases from zero, the eigenvalues move away from the kfvs case and at & =~ 4.0 the
eigenvalues become half the eigenvalues of the full flux Jacobian.

To find the numerical dissipation, rewriting (8) as

Am* =

(17)
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where A is the full flux Jacobian and let us denote D = %% (Gm™ — Gm™). For the upwind scheme

based on m — kfvs to have positive dissipation, the dissipation matrix D should be positive definite.
That is, all the eigen values must be real positve and non-zero. Fig. 2 shows that the eigenvalues of D are
approaching zero as & increases. A more detailed information on the modified split flux Jacobians and
the dissipation analysis are presented in [2]. Thus, by choosing proper & we can reduce the numerical
dissipation and can get near second order accuracy in smooth regions although the formal order of
accuracy is first order.

6 Results and Discussion

We now illustrate the performance of m — kfvs method by applying it to standard test cases for one-
dimensional flows. Based on a sensor[1], near the discontinuity a low value of & is chosen in such a way
that the solution is non-oscillatory and discontinuties are not unduly smeared. In smooth regions a high
value of & is chosen so that we can obtain near second order accuracy.



6.1 Convergent-divergent nozzle problem:

The m-kfvs scheme has been applied to a convergent-divergent nozzle problem. The Maxwellian dis-
tribution function and the split fluxes for this quasi-one-dimensional flow are presented in [1]. Numerical
simulations are performed on a uniform grid with 61 cells. Fig. 1(a) shows the pressure distribution
through the nozzle. Numerical results show that the m-kfvs scheme is less dissipative and captures the
shock more accurately when compared to kfvs. Although the formal order of accuracy is first order,
the computed results are in very good agreement with well-known second order accurate MacCormack
scheme. Fig. 1(b) shows the corresponding variation in @&.

6.2 Shock tube problem:

The initial conditions are chosen with a pressure jump of 2 across the shock. Numerical solutions are
performed on the computational domain 0 < z < 1 with 500 equally spaced cells. Fig. 3 shows the results
obtained using m-kfvs method with ¢ = e T and é = e~@?l. It has been observed that the m-kfvs
method captures the discontinuties more crisply compared to usual first order accurate kfvs method and
very good accuracy is achieved in smooth regions. Fig. 3(c) shows the variation in & after the final
solution.

7 Conclusions

—alv|

The m-kfvs method based on MCIR splitting with dissipation control functions ¢ = e T or p=e

sharply resolves the discontinuties without spurious oscillations and nearly second order accuracy is
achieved in smooth regions. The choice ¢ = e~ %l is preferred as the expressions for the modified split
fluxes are simpler and computationally the method based on these fluxes is almost as fast as the first
order kfvs method. Some more mathematical analysis and numerical experiments are required to find the
optimal value of &.
The potential value addition of the above idea to existing finite volume or grid free codes based on kfvs
is immense. Just by changing the expressions for the split fluxes in the flux calculation subroutine will
yvield m-kfvs based codes having less numerical disipation, resulting in accurate capture of leading edge
suction, crisp shocks, negligible loss of stagnation pressure in isentropic regions and accurate prediction
of vortex dominated flows.
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Figure 1: Convergent divergent nozzle problem using the choices ¢ = e Tl (left column) and ¢ = el
(right column). Computed results are compared with first order kfvs, second order MacCormack scheme
and exact solution.
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Eigen values of the dissipation matrix when alpha = 0.0, the kivs case
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Figure 2: Eigen values
different values of &.

of the dissipation

matrix based on m-kfvs are plotted with Mach number for
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Figure 3: Shock tube problem using m-kfvs with ¢ = e~ 1 (left column) and ¢ = e~°I*! (right column).
Computed results are compared with first order kfvs scheme and exact solution.



