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Abstract 
Neural network models comprising elements 
which have exclusively excitatory or in- 
hibitory synapses are capable of a wide 
range of dynamic behavior, including chaos. 
In this paper, a simple excitatory-inhibitory 
neural pair, which forms the building block 
of larger networks, is subjected to exter- 
nal stimulation. The response shows transi- 
tion between various types of dynamics, de- 
pending upon the magnitude of the stimu- 
lus. Coupling such pairs over a local neigh- 
borhood in a two-dimensional plane, the re- 
sultant network can achieve a satisfactory 
segmentation of an image into “object” and 
“background”. 

1 Introduction 

Dynamical transitions in brain activity, in 
the presence of an external stimulus, has re- 
ceived considerable attention recently. Most 
investigations of these phenomena have fo- 
cussed on the phase synchronization of oscil- 
latory activity in neural assemblies. An ex- 
ample is the detection of synchronization of 
“40 Hz” oscillations within and between vi- 
sual areas and between cerebral hemispheres 
of cats [I] and other animals. Assemblies of 
neurons have been observed to  form and sep- 
arate depending on the stimulus. This has 
led to the speculation that, phase synchro- 
nization of oscillatory neural activity is the 
mechanism for “visual binding” - the process 
by which local stimulus features of an ob- 
ject (f. color, motion, shape), after being 
procek 1 ,  ~ ~ i r a l l e l  by different (spatially 

separate) regions of the cortex are correctly 
integrated in higher brain areas, forming a 
coherent representation (“gestalt”). 

Sensory segmentation, the ability to  pick 
out certain objects by segregating them 
from their surroundings, is a prime example 
of “binding”. The problem of segmentation 
of sensory input is of primary importance in 
several fields. In the case of visual percep- 
tion, !‘object-background” discrimination is 
the most obvious form of such sensory seg- 
mentation: the object to  be attended to, is 
segregated from the surrounding objects in 
the visual field. Several methods for seg- 
mentation, both classical [2] and connection- 
ist are reported in literature. 

Most of the studies on segmentation 
through neural assembly formation has con- 
centrated on networks of oscillators which 
synchronize when representing the same ob- 
ject. Malsburg and coworkers [3) have 
sought to explain segmentation through dy-  
namic link architecture with synapses that 
rapidly switch their functional state. Sim- 
ilar approaches using synaptic couplings 
which change rapidly depending on the 
stimulus have been used in a neural model 
for segmentation by Sporns et a1 [4]. Gross- 
berg and Sommers [5] have performed 
figure-ground separation with a network of 
oscillators, some of which belong to  the ‘lob- 
ject” and the others to  the “background”. 
Oscillations of the former are synchronized, 
whereas the others have non-oscillatory ac- 
tivity. Han et al [6) have used an oscillatory 
network for Hopfield-type auto-association 
in pattern segmentation, using the temporal 
dynamics of the nonlinear oscillators driven 
by noise and subthreshold periodic forcing. 

  



Similar segmentation through synchroniza- 
tion of activity among a cluster of neurons 
have been shown by other groups [7, 8). 

In contrast to the above approach, we 
present a method of utilizing the transi- 
tion between different types of dynamics 
(e.g., between fixed-point and periodic be- 
haviors) of the network elements, for per- 
forming segmentation tasks. For this pur- 
pose, we have used a network of excitatory- 
inhibitory neuron models, updated in dis- 
crete time. The discrete-time evolution al- 
lows even this extremely simplified model to 
possess a rich variety of dynamical behavior, 
including chaos. As chaotic behavior has 
been reported in brain activity (91, it is inter- 
esting to study models which can show such 
phenomena, while remaining simple enough 
to be theoretically tractable. Note that, al- 
though most existing neuron models com- 
prise of differential equations, which evolve 
in continuous time, this is not really a limi- 
tation of our model - as any N-dimensional 
discrete-time dynamical system may be re- 
lated to a corresponding (N+l)-dimensional 
continuous-time dynamical system through 
the concept of Poincare sections [lo]. It fol- 
lows that the discrete-time model we have 
studied has a higher dimensional differential 
equation analogue, which will show quali- 
tatively similar behavior. Several differen- 
tial equation models already exist which de- 
scribe the activity of single neurons, with 
varying degrees of fidelity. But it is difficult 
to study large networks of such continuously 
evolving systems in detail. It is for this rea- 
son that we have focussed on discrete-time 
systems. 

In this paper, we investigate the dynami- 
cal response of an excitatory- inhibitory net- 
work model (with autonomous chaotic be- 
havior) to external stimulation of constant 
intensity I (in time). We focus on how 
the behavior of an individual element within 
the network changes with I .  A theoretical 
analysis has been presented for the transi- 
tion from period-2 cycles to fixed-point be- 
havior for an isolated excitatory- inhibitory 
pair (i.e., not coupled to any other element). 
Simulation results for the spatially interact- 
ing coupled network are presented. The ap- 
plication of the system for segmenting gray- 
level images is studied. Finally, the possible 
impiovements of the proposed method are 
discussed. 

Figure 1: The basic excitatory (z)- 
inhibitory (y) neural module. 

2 The Excitatory- 
Inhibitory Network 
Model 

The model, we have based our investiga- 
tions, comprises excitatory and inhibitory 
neurons, coupled to each other over a lo- 
cal neighborhood. As we are updating the 
model only a t  discrete time intervals, it is 
the time-averaged activity of the neurons 
that is being considered. Therefore, the 
“neuronal activity” can be represented as 
a con!inuous function, saturating to some 
maximum value, inversely related to the ab- 
solute refractory period. This is arbitrarily 
taken to be 1, so that we can choose the fol- 
lowing sigmoid-type function to be the neu- 
ral activation function for our model: 

F,,(z) = 1 -exp(-pz), if z 20 
= 0, otherwise. 

(1) 
The basic module of the proposed network is 
a pair of excitatory and inhibitory neurons 
coupled to each other (Fig. 1). 

If z and y be the activities of the exci- 
tatory and the inhibitory elements respec- 
tively, then they evolve in time according 
to: 

zn+l = Fa(wzzzn - WzUYn + In> 
gn+l = F’(wyzzn - WyyYn + 

(2) 
where, wij  is the weight of synaptic coupling 
from element j to element i, F is the acti- 
vation function defined by (1) and I, I‘ are 
external stimuli. By imposing the follow- 
ing restriction on the values of the synaptic 
weights: 

W z y = W y y = k ,  
wzz wyz 

and absorbing w,, and wyy within a and b 
(respectively), we can simplify the dynam- 



ics to that of the following one-dimensional 
difference equation or “map”: 

zn+1 = Fa(zn + In) - k F b ( Z n  + I:,). (3) 
Without loss of generality, we can take k = 
1. In the following account we will be con- 
sidering only time-invariant external stim- 
uli, so that, for our purposes: 

I, = I:, = I. 
The resultant neural map, exhibits a wide 
range of dynamics (fixed point, periodic and 
chaotic), despite the simplicity of the model 
[ l l ,  121. 
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2.1 Dynamics of a single 
excitatory-inhibitory neu- 
ral pair 

The autonomous behavior (i.e,, I, I‘ = 0) of 
an isolated pair of excitatory-inhibitory neu- 
rons show a transition from fixed point to 
periodic behavior and chaos with the vari- 
ation of the parameters a,b, following the 
‘period-doubling’ route, universal to all uni- 
modal maps. The map 

Zn+l - - F(zn) = Fa(zn) - Fb(zn), (4) 
describing the dynamics of the pair (Fig. 2), 
has two fixed points, at  z; = 0 and z; (which 
is the solution of the transcendental equa- 
tion z = exp(-bz) - exp(-az)). The fured 
point, z; is stable if the local slope (N a - b) 
is less than 1. 

1 
For 

a>-  

where p = g, this condition no longer holds 
and z; loses stability while z; becomes sta- 
ble, by a transcritical bifurcation. On fur- 
ther increase of a (say), this fixed point also 
loses stability, with the local slope becom- 
ing less than -1, and a 2-period cycle occurs. 
Increasing a leads to a sequence of period- 
doublings ultimately giving rise to chaos. 

The introduction of an external stimulus 
of magnitude I has the effect of horizon- 
tally displacing the map, Eqn. (4), to the 
left by I. This implies that t i  = 0 is no 
longer a fixed point, while the other fixed 
point z; is now a solution of the equation 
z = exp(-b(z + I))*- exp(-a(z + I ) ) .  The 
slope at z; decreases with increasing I - giv- 
ing r i a ?  t,o a reverse period-doubling transi- 
tion rhaos to periodic cycles to finally, 
fixed-, it, behavior. 

1- /A1 

1 

Figure 2: The 1-dimensional neural map, F 
(Eqn. (4)), with the activation functions for 
the constituent excitatory (slope, a = 20) 
and inhibitory ( b  = 5) neurons. 
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2.2 Analysis of response to 
constant magnitude exter- 
nal stimulus 

We shall now consider how the dynamics of 
the excitatory-inhibitory pair changes in re- 
sponse to external stimulus. Let us consider 
the isolated neural pair, whose time evolu- 
tion is given by Eqn. (3). On replacing the , 
expression of the transfer function from ( l ) ,  
we get 

zn+1 = exp(-b(z, +I)) - exp(-a(Zz, +I)). 
(5) 

Now, c 

z*+1 = 2, = Z*, 

for a fixed point. It is stable if 

i.e., 

(a - b) exp(-a(Z, + I)) - bzn+l 2 -1. 

Therefore, for the fixed point to be 
marginally stable (i.e. = -l), it must 
satisfy the following condition: 

(a - b)  exp(-a(z* + I c ) )  = bz’ - 1, (6) 

where, I, is the critical external stimulus for 
which Z* just attains stability. 

Let us define a new variable, a, as 

(7) 
bz’ - 1 -. 
a - b  

 



Therefore, from (6), we get 

exp(-a(z* + I,)) = a. (8) 

Also from (7), 

(9) 

where p = b/a. Now, from (5), a marginally 
stable fixed point can be expressed as 

Z* = -exp(-a(%* +I,)) +exp(-b(z* + I,)). 
Therefore, from (8) and (9), the above ex- 
pression can be written as 

1 1 - p  
b C L  

afi - a =  -+(- )a. (10) * 

By simple algebraic manipulation, we get 

Assuming aa << 1, we need to consider 
only the first order terms in a in the right 
hand side, so that 

a a  
P 

b'lPa = 1 + -, 

which gives the following expression for a: 

(13) 
1 a=- 

P 
b l / r  - ' 

For a real solution of z* to exist, we must 
have bz* - 1 > 0, since, otherwise, z* will 
have an imaginary component (from (16)). 
In other words, a > 0 (from (6)). Therefore, 
from (13), we must have 

a < pb'IP. (14) 

Since b = pa, we get 

(15) 
td2 a > pp-1. 

For example, if p = 0.5 then a > 8 for z* to 
be real. From (6) we get 

a - b  
bz* - 1 

exp(a1,) = - exp(-az*). (16) 

Taking logarithms ofi both sides, we have, 

1 
a 

I, = -z* - - log(a). 

Thprefore replacing Z* from (9), 

0.1 

1, 
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Figure 3: Critical magnitude (I,) of the ex- 
ternal stimulus, at  which transition from pe- 
riodic to fixed point behavior occurs. The 
circles (filled and blank) and squares repre- 
sent the values obtained exactly through nu- 
merical procedures for b/a = p = 0.5, 0.25 
and 0.1, respectively. The curves indicate 
the theoretically predicted values. 

The equation (17), together with (13), pro- 
vides the critical value of the external stim- 
ulus which leads the oscillatory neuron pair 
to a fixed stdble state, subject to the restric- 
tion (15). 

This expression can be further simplified. 
From ( l l ) ,  we can write 

plog(a) = -log@) + log(l+ .a). 

As before, assuming a a  << 1, we need to 
consider only the first order terms in a in the 
right hand side of the logarithmic expansion, 
which gives us 

aa 1 
P P  

log(a) = - - -log(b). (18) 

Fkom (13), (17), and (18), the critical mag- 
nitude of the external stimulus is given as 

where e = exp(1). Fig. 3 shows the a vs. I, 
curves for different values of p,  viz. p = 0.1, 
0.25 and 0.5. 

2.3 Choosing the operating re- 
gion 

To make the network segment regions of dif- 
ferent intensities (11 < 1 2 ,  say), one can 



fix p and choose a suitable a, such that 
I1 < I, < 12. So elements, which receive in- 
put of intensity 11, will undergo oscillatory 
behavior, while elements receiving input of 
intensity 1 2 ,  will go to a fixed-point solu- 
tion. Notice that, the curves obtained from 
(19) gives two values of a for the same I,. 
This gives rise to an operational question: 
given a certain I,, which value of a is more 
appropriate? Notice that, the region of the 
a vs I, curve (Fig. (3)) to the left of the 
maxima, has a very high gradient. This im- 
plies that, in the presence of wide variation 
in the possible value of Ic ,  choice of a from 
this region will show very small variation - 
i.e., the system performance will be robust 
with respect to uncertainty in the determi- 
nation of the appropriate value of I,. This is 
possible in the case of any gray-level image 
with a bimodal intensity distribution, hav- 
ing a long, almost uniform valley in between 
the two maxima. 

On the other hand, the region of the curve 
to the right of the maxima has a very low 
gradient (almost approaching zero for high 
values of a) .  This implies structural stabil- 
ity in network performance, as wide varia- 
tion in choice of a will give almost identi- 
cal results. So, choice of a from this region 
is going to make the network performance 
stable against parametric variations. As 
both robustness against uncertain input and 
stability against parametric variations are 
highly desirable properties in network com- 
putation, a trade-off seems to be involved 
here. The nature of the task in hand is go- 
ing to be the determining factor of which 
value of a we should choose for a specific I,. 

3 Simulation and Results 
The response behavior of the excitatory- 
inhibitory neural pair, with local couplings, 
has been utilized in segmenting images and 
the results are shown in Fig. 4. Both syn- 
thetic and “real-life” gray-level images have 
been used to study the segmentation perfor- 
mance of the network. The initial state of 
the network is taken to be totally random. 
The image to be segmented is presented as 
external input to the network, which under- 
goes 200 - 300 iterations. Keeping a fixed, a 
su,’  l . 1 ~  value of p is chosen from a consider- 
atio. , the histogram of the intensity distri- 
butio, I f  the image. This allows the choice 

Figure 4: Results of implementing the pro- 
posed segmentation method on “Lincoln” 
image: (a) original image, (b) output by the 
uncoupled network, (c) output by the cou- 
pled network (re* = l ,rin = 2), and (d) out- 
put by the coupled network (re* = Tin = 2), 
after 300 iterations (a=30, b/a=0.25 and 
threshold th=0.02). 

of a value for the critical intensity (I,), such 
that, the neurons corresponding to the ‘ob- 
ject’ converge to fixed-point behavior, while 
those belonging to the ‘background’ undergo 
period-:! cycles. In practice, after the ter- 
mination of the specified number of itera- 
tions, the neurons which remain unchanged 
over successive iterations (within a tolerance 
value, th)  are labeled as the “object”, the 
remaining being labeled the “background”. 

We have considered the 5-bit gray level 
“Lincoln” image (Fig. 4(a)) as an exam- 
ple of a “real-life” picture. A suitable I, 
has been estimated by looking a t  the his- 
togram of the gray-level values, and taking 
the trough between two dominating peaks 
as the required value. As is clear froM Fig. 
4(b), the isolated neurons perform poorly in 
identifying the ‘background’ in the presence 
of noise. The segmentation performance 
improves remarkably when spatial interac- 
tions are included in the model.The results 
of including spatial interaction are shown in 
Figs. 4(c) and (d). The neighborhoods of 
the excitatory and inhibitory neurons are 
specified by the radii fez  and rin, respec- 
tively, of a discrete circular neighborhood 
(131. Most of the image has been labeled ac- 
curately, except for a few regions (e.g., near 

 



the neck). 
Note that, we have considered a single 

value of a (and hence lc) for the entire 
image. This is akin to “global threshold- 
ing” . By implementing local thresholding 
and choice of a on the basis of local neigh- 
borhood information, the performance of 
the network can be improved. 

4 Discussion 

In the present work, we have assumed con- 
stant connection weights over a local neigh- 
borhood. However, a gaussian profile of 
weights may be biologically more realistic. 
One can also make the critical intensity I, 
proportional to the ambient intensity. This 
is in tune with how the retina seems to al- 
ter its sensitivity to incoming visual stimuli 
[14]. Finally, the role of variable connec- 
tion weights, that can be implemented in 
the present model by changing the value of 
k (ratio of the weights), may be investigated. 
Further, in this paper, we have used only the 
distinction between fixed-point and period- 
2 cycles to achieve two-level segmentation. 
However, this principle can be extended to 
achieve multi-level segmentation, by distin- 
guishing between neurons with fixed-point 
behavior, period-2 cycle behavior, period-4 
cycle behavior, and so on. 

Chaotic neurodynamics has been used to 
segment images by Hasegawa et  a1 1151. 
However, their method is based on using 
chaos to avoid the local minima problem 
in the variable shape block segmentation 
method. We have instead concentrated on 
using stimulus induced transitions in neural 
network dynamics to segment images. This 
is closer to the neurobiological reality. AS 

Malsburg [3] has indicated, the reason oscil- 
latory synchronization has been studied so 
far, as a mean of segmenting sensory stimuli 
is its relative ease of analysis. However, with 
the developments in nonlinear dynamics and 
chaos theory, we can advance to segmenta- 
tion using more general dynamical behavior. 
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