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Abstract. We discuss three methods to correct spherical aberration for a point to point imaging 
system. First, results obtained using Fermat's principle and the ray tracing method are described 
briefly. Next, we obtain solutions using Lie algebraic techniques. Even though one cannot always 
obtain analytical results using this method, it is often more powerful than the first method. The 
result obtained with this approach is compared and found to agree with the exact result of the first 
method. 
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1. Introduction 

In this paper we discuss three different computational methods for correction of spherical 
aberration in an optical imaging system. The imaging system considered is a lens that 
focusses rays originating from a single initial point onto a final point. The final point is at 
the same distance from the centre of the lens as the initial point. 

If the above system is assumed to be ideal, as in figure 1, it would take all light rays 
originating from point a and focus them onto the focal point b irrespective of the angles 
these rays make with the optic axis. If the system is nonideal (as it would be in general), 
the above situation is obtained only in the Gaussian or paraxial approximation. In the 
non-Gaussian regime, rays are displaced away from the focal point. In particular, if 
spherical aberration [1] is present, a given ray is displaced in the transverse direction 
away from the paraxial focus. The magnitude of this displacement is dependent on the 
angle the ray makes with the optic axis. 

Our system is taken to be symmetric about a plane through the origin perpendicular to 
the optic axis. This enables us to split the system in two right down the middle, and to 
consider the equivalent but simpler system shown in figure 2. Our goal is to find the 
equation for the curved surface of the lens (in figure 2) such that all rays come to a sharp 
focus at the point b irrespective of the angles they make with the optic axis. Then, this 
imaging system would be free of on-axis spherical aberration. 
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Figure 1. An ideal point-to-point imaging system. It takes all light rays originating 
at a point a and focusses them onto the focal point b. Points a and b are equidistant (at 
a distance t +/)  from the centre of the lens. The thickness of the lens along the optic 
axis is 2t. Our choice of coordinate system is also indicated in the figure. 

L,/-°2 

Figure 2. A simpler imaging system equivalent to the original one given in figure 1. 
Refractive index n2 = 1 in our case. 

In the next section, we directly use Fermat's principle to derive the known analytic 
expression [1] for the surface of the lens. However, such analytic expressions are possible 
only for special systems. In the subsequent sections, we compute the surface using more 
powerful methods that can be used to obtain solutions systematically for general optical 
systems. In the present case, the exact solution allows us to benchmark solutions obtained 
using the latter methods. We also briefly describe the result using the method of ray 
tracing. 

In § 3, we introduce the Lie algebraic treatment of optical systems. This method is 
applied to the problem at hand in § 4, and the results are shown to agree with the exact 
solution. We give our conclusions in the final section. 
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2. Exact solution using Fermat's principle 

In this section, we derive the equation for the surface of the lens using Fermat's principle. 
For our optical system (see figure 2), this principle states that rays 1 and 2 should have the 
same optical path length. Thus (in the y - z plane) 

A = n(t + z) + ~/(l - z) 2 + y2 = nt + l, (2.1) 

where n is the index of refraction of the lens, t is its thickness along the optic axis and I is 
its focal length. 

Solving the above equation, we obtain z as a function ofy  (we pick the solution where z 
decreases as y increases, this being the physically appropriate solution for our problem): 

l I ~ ( n + l ) y 2  ] 
z--  1 - 1 + (2.2) 

n + 1 ( n -  1)l 2 " 

In fact, this is an equation for a hyperbola. Expanding the square root, we get 

y2 ( n + l ) y  4 ( n + l ) 2 y  6 + 5 ( n + l ) 3 y  8 

Z 21(n-- 1---------~+8/3(n - 1) 2 16/5(n-- 1) 3 12"~7-(n---~ 4 ~- ' ""  (2.3) 

Thus we have succeeded in obtaining the exact shape of a lens such that our point-to- 
point imaging systems are free of on-axis spherical aberration. This solution will enable 
us to verify the correctness of results obtained using the Lie algebraic methods. 

One can rederive the equation for the surface of the lens using the method of ray 
tracing. Employing Snell's law, the following differential equation satisfied by the surface 
of the lens can be obtained as 

dz y (2.4) 
dy ( l_ z) _ n[(l_ z)2 + y2]U 2" 

The above differential equation can be solved numerically to obtain the equation for the 
surface of the lens. It can also be easily verified that the exact solution derived earlier [cf. 
eq. (2.2)] satisfies this differential equation. 

3. Lie algebraic techniques in optics 

In this section, we consider the application of Lie algebraic techniques to a general 
optical system [2, 3] with the optic axis oriented along the z-direction. We assume the 
optical system to be axially symmetric about the z-axis and also symmetric with respect 
to reflections through some plane containing the z-axis. 

The optical path length A of a general ray going from the plane z / to the plane z f is 
defined as follows: 

£ A = n(r)ds, (3.1) 

where n(r) is the index of refraction at a point r and s is the distance parameter along a 
curve joining points a and b. Taking z to be the independent variable, the distance 
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function ds (in A) now becomes 

ds = (dx 2 + @2+ dz2)l/z = (1 + x  cz + yr2)l/2dz, 

where the prime denotes differentiation with respect to z. Thus 

z ! 

a = f z  i n ( x , y , z ) ( 1  + x  r2 +ya)l/2dz. 

Comparing this with the action functional in mechanics [4], the 
expression for A can be identified as the Lagrangian L for our system 

L = n ( x , y , z ) ( 1  + x  t2 + yr2)l/2. 

We can also define the conjugate momenta: 

OL x' 
px - Or' - n(x,  y,  z) [1 + x  '2 +y,.Z]x/2' 

OL y' 
PY -- c,~ -- n(x,  y, z) 

[1 + x  a + 

(3.2) 

(3.3) 

integrand in the 

(3.4) 

(3.5) 

Apart from the factor of n, these are just the direction cosines of the ray. Using these, we 
obtain the Hamiltonian in the usual way: 

H = - [n2(x, y, z) - px 2 - py2] 1/2. (3.6) 

In Lie perturbation theory, instead of solving the Hamilton's equations of motion directly, 
one solves the problem in the following map form 

w f = .A4w i, (3.7) 

where .M is a nonlinear symplectic map mapping the initial values of the phase-space 4- 
vector w = (x ,y ,  px ,py)  to its final values. For further details see ref. [5]. There is a 
standard procedure to obtain .A4 from the Hamiltonian which is described elsewhere [6]. 
It can be further shown that M can be factorized as follows: 

.A4 = e:f~:e :f~: e :f4: . . .  e :f":. . .  , (3.8) 

where fin's are homogeneous polynomials of degree m in the phase space variables. The 
quantity :fro : is the Lie operator associated with the function fm and is defined by its 
action on a general phase-space function g as follows: 

: fm:g  = [fm, g], (3.9) 

where [, ] denotes the usual Poisson bracket. Finally, we define the Lie transformation 
associated with the Lie operator :fro : as 

O(3 

exp(:fm :) = E :fm:n n! (3.10) 
n = 0  

It can be shown [2, 3] that the various f,, 's occuring in the factored form of .A4 have 
a definite physical interpretation for an imaging system. The f2's represent paraxial 
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optics, the f3's are related to second order aberrations, the fa's to third order aberrations 
and so on. 

We end this section by writing down the symplectic map for two systems which will be 
used later. First, consider the simple case of transit through a slab of thickness l with 
refractive index n. It can be easily shown that the symplectic map corresponding to this 
system is given by 

.Ad = exp[/: (n 2 - p2)U2], (3.11) 

where p = (Px,Py). In the factorized form, this is given as 

.M = e x p ( - / : p 2 : ) e x p ( -  ~n3: (p2)2 :) 

x exp(-7~/-5 :(p2)3 ) exp( - \  Ion : 128n 751 .(p2)4;) " - ' ,  (3.12) 

where p2 = px 2 + py2. In order to verify this equation, note that 

p f  : .A4pi : pi  (3.13) 

q f  = A4qi = qi + I pi/[n2 - (pi)2]U2, (3.14) 

where q = (x, y). Using (3.5) in the above equations we get 

p f  = pi, q f  = qi + l(q,)i .  (3.15) 

Remembering that q' = dq/dz,  we see that this is just what would be expected for transit 
through a distance l along the z-axis. 

Note that only even powers ofp occur in the expression for A4 in (3.12). This is in fact 
true for all optical systems having the assumed axial and reflection symmetries. These 
symmetries imply that only the phase space variables p2, p .  q and q2 (and their various 
combinations and powers) can occur in fin's. This automatically implies that only even 
degree homogeneous polynomials i.e. f2, f4, etc. are allowed. 

Next, we consider propagation of a light ray through the system given in figure 3. We 
again assume axial and reflection symmetries. The surface of the interface is 
parametrized by the equation 

L~ = fl2(x2}_y2)q_fl4(x2 _+_y2)2 _~_ fl6(x 2 _~_y2)3 + fls(x 2 q_y2)4 + . . . .  (3.16) 

After some computation, one finds the .M (truncated to order 8) for such a surface to be 

./k4 = e:f2: e :f4: e:ft: e :fs: , (3.17) 

where 

and 

f2 =/32(nl - n2)q 2 (3.18) 

- -  f14 2n2] (q2)2 f4 = - - f l  3 (nlnl n2) Inl(2--~-~) -- 

+ 2/32 (nl  -- n2) q2(p. q) q f l2(nl  - n2) q2p2. 
n l  2 n l n 2  

(3.19) 
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Figure 3. An (axially symmetric) optical system consisting of an interface separating 
media of refractive indices nl and n2. A ray originating at z i with initial conditions q' 
and pi passes through the interface and terminates at z f with final conditions qf and 
pf. The interface is parametrized by the equation z ~ = g(qS). 

The expressions for f6 andfs are too long to be documented here. Since we have truncated 
A'I to order 8, the error made in using this truncated expression is also of order 8. 

4. Correction of spherical aberration using Lie algebraic method 

Before applying the Lie algebraic method to our problem, we briefly describe our plan of 
action. We will first construct the symplectic map A4 (up to order 8) corresponding to our 
optical system (see figure 2). Since we include all terms up to fs in A4, we would have 
taken into account all aberrations up to the seventh order..M will depend on the surface of 
the lens and hence on ~z through f18 [cf. eq. (3.16)]. Next, we will require that our 
map satisfy a set of conditions which ensure that A4 (and hence our system) is free 
of spherical aberration up to seventh order. Since A4 is a function of fli's, this would 
be equivalent to the statement that these/3i's should satisfy certain equations. This will fix 
our fli's and hence the equation for the surface of the lens to eight order. Finally, we 
compare this equation with the exact result obtained in § 2 and show that they agree (up to 
order 8). 

Coming back to our problem, we see that our system (figure 2) has three components: 

(1) A transit through distance t in a medium of refractive index n (the lens). 
(2) The surface of the lens separating media of refractive indices n and 1 (air) 

respectively. 
(3) A transit through distance l (the focal length) in air (n = 1). 

The symplectic maps A41 and .M3 for (1) and (3) are given by expressions of the 
general form of equation (3.12). The map .M2 for (2) is given by equation (3.17). One of 
the advantages of the Lie algebraic approach now becomes apparent - the combined map 
.M for the entire system is just the product of the maps for the individual components: 

( ' )  ) A 4 = A 4 x A 4 2 . M a = e x p - ~ n : p 2 :  exp(-\ an :(p2)2 : . . .  

exp(lh(n - 1):q: :) exp(:f4 :) exp(:f6 :) exp(:fs :)- . .  
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(_  1 2 l : 51 
~:P t e x p ( - g  ( p 2 ) 2 t e x p ( - l : ( p 2 ) 3 t e x p ( - ] ~ : ( P 2 ) 4 t ' " .  exp 

\ 

(4.1) 

Using Lie algebraic manipulation techniques [5], we recast the symplectic map .M into 
the standard form: 

.A4 = exp(: g2 :) exp(:g4 :) exp(:g6 :) exp(:gs :), 

where g2, g4 etc are of the form 

g2 = A2p 2 + B2p " q + C2q 2, 

g4 = A4(p2) 2 + B4(p.  q)p2 + . . . ,  

g6 = A6(p2) 3 + B6(p.  q)(p2)2 + . . . ,  

g8 = As(p2) 4 +Bg(p 'q) (p2)3  + . . . .  

(4.2) 

(4.3) 
(4.4) 
(4.5) 
(4.6) 

Again, the expressions for A2, B2 etc have been omitted for the sake of brevity. These 
coefficients depend on l and n. In addition, the coefficients in g2 (i.e. A2, B2 and (72) 
depend on/32, the coefficients in g4 on/32 and f14 and so on. 

Now we are ready to determine/32,/34,/36 and ~s appearing in the equation for the 
surface of the lens [cf. eq. (3.16)]. We know that g2 in ,M represents paraxial optics. In 
the paraxial approximation, it is clear from figure 2 that we want rays that start out 
parallel (i.e. w i =  (q,0)) to come to a focus at a distance l along the z-axis (i.e. 
w f = (0,p)). Thus, 

Since I and n in g2 are already given, this equation fixes the only other free parameter/32 
tobe 

1 
/32 = - -  (4.8) 

21(1 - n)" 

We fix/34,/36, and/38 by imposing conditions which ensure that .A4 is free of spherical 
aberration (up to order 7). As defined earlier, spherical aberration is the phenomenon 
where a given ray is displaced (in the transverse direction) from the paraxial focus on the 
z-axis by an amount dependent only on its arrival angle (i.e. p in our case). 

It can be shown that only the (p2)2, (p2)3, and (p2)4 terms (in g4, g6, and g8 respec- 
tively) give rise to spherical aberration of orders 3, 5, and 7 respectively. For example, 
consider the effect of (p2)2 term in g4: 

qf  = exp(:A4(p2) 2 :)q = q + A4[(p2) 2, q] = q -4A4(p2)p.  (4.9) 

Thus, 

6q = qf  - q = -4A4(p2)p. (4.10) 

Hence the displacement of the actual arrival point q / f r o m  the Gaussian arrival point q 
depends only on its Gaussian arrival direction p. This is indeed spherical aberration. 
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Evidently to eliminate spherical aberration we need to make 6q zero. In our case, we 
can eliminate it up to order 7 by setting 

A4 = A6 = A8 = 0. (4.11) 

We can now solve these equations for/34,/36, and/38 in terms of n and I. The resulting 
expressions (after some manipulation) are 

/34-  ( n + l )  
8P(n-  1) 2' (4.12) 

/36 - (n + 1)9 (4.13) 
16/5(n- 1) 3, 

/38-- 5(n + 1)3 
128/7 (n - 1 )4" (4.14) 

Thus we have succeeded in determining the shape of the lens surface such that our 
imaging system is free of on-axis spherical aberration (to seventh order). In the y - z  
plane, this is given by [after substituting the above expressions into eq. (3.16)] 

y2 (n -+- 1)y 4 (n + 1)2y 6 5(n + 1)3y 8 (4.15) 

Z~- 21(n- 1 ~ + 8 / 3 ( n  - 1) 2 l~STn----~ 3 k 128/7(n_ 1) 4. 

We see that this agrees exactly with the equation obtained in § 2 [cf. eq. (2.3)] up to the 
calculated order. 

5. Conclusion 

In this paper, we discussed the problem of eliminating on-axis spherical aberration from a 
point-to-point imaging system. We solved the problem using three methods----direct 
application of Fermat's principle, ray tracing method, and Lie algebraic method. The 
results were shown to agree. A direct application of Fermat's principle, even though it 
gives the exact result in this particular case, is not possible for most optical systems. In 
contrast, Lie algebraic methods can be applied to a wide variety of optical systems. In 
particular, they can be applied to systems with no particular symmetry and systems with 
alignment and positioning errors. They can also be used to analyse graded index systems. 
All this is possible because the mapping from initial to final conditions in any optical 
system can be shown [3] to be a symplectic mapping. And symplectic maps can be 
analysed very efficiently using Lie algebraic methods. In fact, Lie algebraic methods have 
applications in other fields also [7-10]. 
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