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Abstract. We review some advances in the theory of homogeneous, isotropic turbulence. Our 
emphasis is on the new insights that have been gained from recent numerical studies of the three- 
dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we 
examine the status of multisealing corrections to Kolmogorov sealing, extended self similarity, 
generalized extended self similarity, and non-Gaussian probability distributions for velocity 
differences and related quantities. We recount our recent proposal of a wave-vector-space version of 
generalized extended self similarity and show how it allows us to explore an intriguing and 
apparently universal crossover from inertial- to dissipation-range asymptotics. 
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1. Introduction 

If a fluid is forced through a grid (say in a wind tunnel) or through an orifice, the flow 
downstream is turbulent [1 ]. Most of the energy is contained in the large scales of the 
flow; transport too is dominated by the large scales. Nevertheless, there has been great 
interest in the study of turbulence at small scales; these include the dissipation range, in 
which energy is dissipated, and the inertial range, that lies in between dissipation and 
large scales. There are both practical and fundamental reasons for this continuing interest. 
We concentrate on the latter here and refer the reader to the recent article by Sreenivasan 
and Antonia [2] for a more detailed discussion. Other recent reviews include those by 
Siggia [3] and Nelkin [4], the brief overview by L'vov and Procaccia [5], and the books 
by McComb [6], Frisch [7], and Bohr, Jensen, Paladin, and Vulpiani [8]; older material 
can be found in the classics by Batchelor [9], Tennnekes and Lumley [10], and Monin and 
Yaglom [11]. 

There are many fundamental reasons for studying the statistical properties of small- 
scale turbulence, which is (in many cases, e.g., far from boundaries, etc.), to a good 
approximation [2, 12, 13], homogeneous and isotropic: (1) These properties are believed 
to be universal, i.e., independent of the details of the flow; specifically, the asymptotic 
behaviours of certain correlation functions (the structure functions defined below) are 
universal in a way that is reminiscent of, but perhaps richer than, the universality of 
correlation functions at continuous phase transitions [14]. (2) From the point of view of 

325 



Sujan K Dhar et al 

dynamical systems, turbulence is the quintessential example of spatiotemporal chaos [8] 
in an extended, deterministic, driven system. (3) To the extent that the chaos generated by 
turbulence can be mimicked by an external noise [15], one can try to obtain the properties 
of correlation functions by studying effective stochastic equations, which are amenable to 
analytical studies that use renormalization-group, field-theoretical, or closure techniques 
[16-20]. (4) And last, the scale-invariance of correlation functions in the inertial range is 
an example of self-organized criticality [21], though very little has been gained by 
thinking about turbulence in this manner. 

This paper is organized as follows: Section 2 gives a brief, elementary overview of the 
phenomenology of homogeneous, isotropic turbulence to establish notations. Section 3 
introduces some of the deterministic models that have been used in theoretical and 
numerical work and reviews what has emerged from such studies. We make some 
concluding remarks in § 4. 

2. The phenomenology of homogeneous isotropie turbulence 

Experiments on turbulent flows often measure the velocity v(r,  t) or  the energy dissipa- 
tion e at a given spatial point r at time t, by using probes such as hot-wire anemometers. 
These are also augmented by flow-visualisation measurements [1]. Therefore, a typical 
experiment yields a time series for v or e at a given spatial point. Most experiments are 
done with a mean background flow with velocity U and the resulting temporal informa- 
tion is converted into spatial information by using Taylor's frozen-flow hypothesis: This 
states that the turbulence is advected by the mean flow without significant distortion, so a 
temporal delay At can be converted into a spatial separation (along the mean flow) 
A x  = A t U  to obtain spatial correlation functions. Such a hypothesis is reasonable when 
IUI >> Vr~, the root-mean-square fluctuations in the velocity because of the turbulence; 
for a more critical evaluation of its validity we refer the reader to refs [2, 4, 7]. The 
Reynolds number Re = UL/t,  is the relevant control parameter, which, when large, leads 
to turbulence; here U and L are typical velocity and length scales, respectively, and t/is 
the kinematic viscosity. The Taylor-microscale Reynolds number Re~, which is useful in 
comparing widely different systems, will be defined in § 3. 

Another important approximation is made in obtaining the energy dissipation 
f. ~ ~E i j (OiV j  "~ ~jVi) 2, where the subscripts i and j denote Cartesian components and 
v is the kinematic viscosity: It turns out to be difficult to measure ~, so, typically, the 
surrogate ~ ,,~ (OUl/Ot) 2 is measured, with Ul the velocity in the streamwise direction; 
again we recommend [2] for a discussion of the validity of using this approximation. 

Given such data, a variety of information can be extracted about the turbulent flow in 
question. We concentrate on measurements that can be classified into three rough 
categories: 

1. The first is predominantly qualitative information about coherent structures, such as 
vortex streets, eddies, etc. These are helpful, as we will see below, in developing 
physically appealing scenarios for turbulent cascades, intermittency, and multifractal 
dissipation. 

2. The second is the measurement of spatial correlation functions (typically via the 
Taylor hypothesis), the most important ones being the order-p velocity structure 
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funcaons, 

Se(r ) = ([vi(x + r) - vi(x)]P). (1) 

The angular brackets imply, in principle, a spatiotemporal average over the statistical 
steady state that obtains in the turbulent fluid. In experiments, often only the 
component parallel to the mean flow is used. Some workers use a modulus instead of 
the square brackets in (1), but others [2] discourage its use; it clearly makes no 
difference for even p but can affect exponents [22] for odd p. Other commonly 
measured correlation functions include the energy spectrum E ( k ) -  47rk2(lv(k)12), 
where v(k) is the spatial Fourier transform of the velocity, k the wave vector, and 

k - Ik l .  
3. The third is the measurement of probability distribution functions for velocity 

differences, such as 6 vi = [vi(x + r) - vi(r)] (in experiments i is often the direction 
of the mean flow), the energy dissipation e, etc. 

2.1 Flow visualization 

The first category of measurements, namely, flow visualization, have shown that 
fluid turbulence is typically associated with coherent structures. These can be eddies, 
as in mixing-layer experiments, or plumes, as in Rayleigh-B6enard systems, etc. [1]. 
These structures, though clear to the eye, are difficult to quantify and define. In recent 
elegant experiments [23, 24, 25] high-vorticity, low-pressure filaments, of the type seen 
in direct numerical simulations (§ 3), have been visualized directly in different turbulent 
flows. 

Many years ago Richardson [26] suggested the following cascade picture: Turbulent 
flow is considered to be made up of a hierarchy of eddies (disturbances or 
inhomogeneities in the flow) of various length scales. Energy is added to the turbulence 
in the integral range, which corresponds to large length scales or small wave numbers, 
via large-scale processes like stirring. The nonlinear interactions in the fluid cause this 
energy to flow towards small scales (large wave numbers), by the formation of 
successively smaller eddies: large eddies lose stability, form smaller eddies, which in turn 
lose stability, break into even smaller eddies, and so on. In this process, the energy 
cascades from large to small length scales, with negligible energy dissipation in the 
inertial range. Viscous processes lead to significant dissipation once the sizes of eddies 
become comparable to, or smaller than, the dissipation scale r/d = (u3/(e)) 1/4. 

2.2 Structure functions 

ff the Reynolds number Re is sufficiently large then there is a substantial inertial range, in 
which there can be universal scaling behaviour as noted first by Kolmogorov [27] in 1941 
(henceforth K41). His theory is based on the following premises: 

1. On small scales and far away from boundaries fluctuations in a turbulent flow are 
homogeneous and isotropic, statistically steady, and universally determined by the 
mean energy dissipation rate (per unit mass of fluid) e and the kinematic viscosity u. 
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Figure 1. A plot comparing data for the inertial-range exponent Cp with different 
theoretical predictions. Experimental data are from Anselmet et al (1984) and Benzi 
et al (1993). Theoretical predictions are from K41, the Kolmogorov log-normal model 
[42], with # = 0.2, the/3 model (with D = 2.8), and the SL model (see text). Clearly 
the SL prediction agrees best with experimental data. 

2. In the inertial range, viscosity does not play a significant part, so the statistical 
properties at a given length scale £ are determined by e (which is finite, and non-zero) 
and the length scale £ itself. 

Given these assumptions, correlation functions assume simple and universal scaling 
forms in the inertial range, which follow via dimensional analysis. (Note that the 
dimensions of e and the energy spectrum E(k), which measures the distribution of energy 
over different length scales, are, respectively, L2T -3 and L3T-2.) Specifically 

Sp(r) ,~ Cp((e)r) p/3, (2) 

where Cp are universal amplitudes; the case p = 3 yields the Kolmogorov 4/5 law 
(C3 = -4/5) .  Also 

E(k) = C(~)2/3k -5/3, (3) 

which is the celebrated - 5 / 3  law. 
The second category of experimental measurements comprise studies of such structure 

functions. They find that low-order structure functions (p < 3) are in close agreement 
with the predictions of K41 [28]. In particular, the - 5 / 3  law has been checked [2, 13, 29] 
over several decades of wavenumber k; the Kolmogorov constant is found to be [2, 30] 
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Figure 2. Typical signals of a representative component of the surrogate for the 
energy dissipation d (normalized by its mean) versus time t from an atmospheric 
boundary layer at a moderate Reynolds number (after Menevean and Sreenivasan 
[50]). 

C = 0.5 • 0.05. However, the kurtosis K =_ S4(r)/(S2(r)) 2, which is a measure of the 
flatness of the distribution of velocity differences, has values larger than the K41 
prediction as r ~ 0 [11], which indicates that the velocity gradients are intermittent (i.e., 
large values of velocity differences are more probable than in K41). This suggests, in 
turn, that the energy dissipation is nonuniform, contrary to one of the assumptions made 
by Kolmogorov in K41. 

The validity of K41 can be tested experimentally by the measurement of high-order 
(p >> 3) structure functions, which can capture rare events. Such experiments show that 

Sp(r) ~,, r¢,; (4) 

the K41 prediction is ffp = (r41 = p/3. Even though the measurement of high-order ~p 

structure functions is a difficult task, there are good data from the recent experiments 
[31,32,33] which show that: (1) the ffp's are monotonically increasing, nonlinear 
functions of p (i.e., we have multiscaling); (2) the deviation from the K41 prediction 
6~p =_ p/3 - ~p is an increasing function of p and starts becoming significant for p > 4 
(figure 1). 

We mention in passing that some experimental studies [34] indicate that 6~p decreases 
with increasing Re, as also suggested by some theories [35, 36]; there are also suggestions 
[37] of (In Re) -1 corrections to K41~ However, we believe it is fair to say that the general 
experimental position [2, 33] is that the multiscaling corrections to K41 persist. A careful 
study over a wide range of Re, possible, e.g., in flows in Helium gas [38, 39], should be 
able to resolve this potentially significant point. Another intriguing issue has been raised 
by recent experiments on both open [38] and closed [39] flows in Helium gas: these 
provide some evidence of a transition or a crossover (in, e.g., the kurtosis K) with 
increasing Re. Careful studies, already under way [40], must resolve whether these 

P r a m a n a  - J. Phys . ,  Vol. 48, No. 1, January 1997 (Part I) 

Special issue on "Nonlinearity & Chaos in the Physical Sciences" 329 



Sujan K Dhar et al 

transitions are real or arise because of the limitations of responses of the probes used in 
these measurements. 

How might multiscaling corrections to K41 arise? Experimental data (figure 2) show 
that the energy dissipation rate e is strongly intermittent. This is ignored in the K41 
theory. High-order velocity structure functions are sensitive to the rare but large events 
which lead to intermittency, hence the discrepancy between K41 and the experimental 
(t,'s for large p. 

Many phenomenological theories have been proposed to account for the intermittency 
of e. The oldest is the refined similarity hypothesis (RSH) of Kolmogorov [41], which 
replaces (e) in (2) by er, the energy dissipation rate averaged over a sphere of radius r, i.e., 

Sp(r) ~ (~P/3)rP/3. (5) 

The validity of the RSH has been tested to some extent [42--45], but the issue is certainly 
not closed as noted by Chen et al [46] on the basis of direct numerical simulations (§ 3) 
and Sreenivasan and Antonia [2]. However, it is often used as a good working hypothesis. 
If, in the inertial range, we further assume the scaling form 

~ r , ( 6 )  

it follows from (4) and (5) that 

(v = p/3 + Tp/3. (7) 

Note that the RSH yields a relation between the statistics of velocity differences and the 
unknown behaviour of (e~/3). An assumption about the latter yields 7), and hence (p. In 
his 1962 theory, Kolmogorov assumed that er/(e) has a log-normai distribution, which, 
along with the RSH, and the constraint ~1 = 0, gives 

TK62 = #p(1 - p)/2,  (8) P 
or 

~pK62 P P(I  P), (9) 

where the intermittency exponent # = -~'2 -~ 0.2. This yields [47] better agreement with 
experiments (figure 1) than K41; however, for large p, deviations are noticeable and, as 
many authors have noted [2], there are several problems with a log-normal distribution 
for er/(e). 

Other phenomenological theories include the 3 model, proposed by Frisch, Sulem and 
Nelkin [48], and the rnultifractal description of turbulence, postulated by Parisi and Frisch 
[49]. The 3 model yields 

¢~mod~! = P13 + (3 - D)(1 - P13), 

E(k) 3m°del N k-5/3-(I-D/3). (10) 

Here D ---- In 3 / In  b, identified with thefractal dimension of the space filled by the eddies 
(at each stage of the cascade the linear size of the eddy is scaled down by a factor b > 1 
and 3 is the ratio between the volumes of mother and daughter eddies), is used as a fitting 
parameter. Figure 1 shows a fit to ~p with D = 2.8; clearly, the 3-model fit overestimates 
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(p for 8 ~< p. It also yields an inertial-range energy spectrum which is steeper than the 
- 5 / 3  spectrum of K41. 

It is easy to see [8] that the Navier--Stokes equation (see below) for an incompressible 
fluid is invariant under the scale transformation r ~ br, v ~ bhv, t/ --* bl+ht/, t --~ bl-ht, 
with an arbitrary exponent h. It has been suggested [49] that, at high Re, i.e., small v, one 
must account for multifractality with many exponents h as has been shown explicitly [50] 
for e (see below): Global scale-invariance (as in K41) is replaced by local scale-invariant 
structures, i.e., the scaling, or Htlder, exponent h varies at different points in the fluid, 
which is considered to be a superposition of fractal subsets, each with an h-dependent 
dimension D(h). Structure functions, which now have contributions from each fractal 
subset, can be written as 

~ f ( r / L , ) " ' + 3 - " ( h ) ~ ,  (11) Sp(r) 

where L1 is the integral scale. A saddle-point estimate yields (cf., (4)) 

Cp = minh[hp q- 3 - O(h)] (12) 

o r  

D(h) - 3 = maxe[ph - Cp]. (13) 

The K41 theory corresponds to a single exponent h = 1/3 with D(h) = 3. 
The emergence of multifractal scaling for e through an asymmetric breakdown of 

eddies has been discussed in detail and substantiated experimentally in the elegant studies 
of Meneveau and Sreenivasan [50]. In their picture, an eddy of size t in d dimensions 
breaks up into 2 a eddies of equal size t /2.  The key assumption in this model is that 
the energy flow to these smaller eddies takes place asymmetrically. The simplest 
nontrivial choice is that a fraction Pl of the total energy gets distributed equally to half of 
these new 2 a eddies; the remaining fraction (P2 = 1 - P l )  of energy goes to the other 
half. These eddies, in turn, break up into smaller eddies, and this process is repeated with 
fixed pl,  until one obtains eddies of the order of the dissipation scale. A one-dimensional 
section of the resulting multifractal set should look qualitatively similar to the energy 
dissipation signal shown in figure 2. Indeed, Meneveau and Sreenivasan [50] have shown 
that such a multiplicative process with pl = 0.7 yields a multifractal set which has the 
same singularity spectrum as the one obtained by a multifractal analysis of the data in 
figure 2. 

Recently, She and Leveque (SL) [51] proposed a simple model which leads to a 
prediction for ff~, in very good agreement with experimental results. This model is based 
on a set of hypotheses about the statistics of small-scale fluctuations in turbulence. These 
lead to a formula for fie, which has no adjustable parameters. The SL hypotheses are: 

(i) The RSH (5) and (6) is assumed to hold. 
(ii) Furthermore the moments of the energy dissipation are assumed to obey the 

hierarchy 

=Ap .(o~)~ep_l , 0 </~ < 1, (14) 
t e /  
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where Ap are constants and E~ ~) = l imp.~ (~ +1) /(e~) is a quantity that is sensitive 
to the tail of the distribution of ~e, i.e., to very intermittent structures. SL postulate 
that the hierarchy originates from some hidden statistical symmetry of the Navier- 
Stokes equation. 

(iii) The quantity E~ ~) appearing in the moment hierarchy (14) is associated with the 
most intermittent dissipative structures and SL suggest that it has a divergent scale 
dependence, namely, 

They argue further that ¢~oo) ~ 6EOO/te, where 6E °° ,,~ 6 ~  ~ (e)2/3g2o/3 is the largest 
amount of energy available for dissipation (i.e., the energy t in the largest 
structures) and the scale-dependent energy-transfer time te ~ (e)-/3g2/3. The last 
asymptotic relation follows from dimensional analysis and the assumption that tl 
shows no anomalous scaling. Finally one obtains A = 2/3. 

(iv) The most intermittent dissipative structures are assumed to be filamentary, i.e., of 
spatial dimension 1 or codimension 2. 

Equations (6) and (14) yield a difference equation for rp which, when solved with the 
boundary conditions that follow from the SL hypotheses, gives 

SL = _2p  + 2[1 -- (2)v1, (16) Tp 

or, via (7), 
p 

= 211 - ( 1 7 )  

The most important boundary condition follows from (14) and (15) and is limp_+oo 
(rp+l - rp) = - 2 / 3 ,  i.e., rp --o -2p /3  + Co asp ~ c~; it is easy to see from (13) that Co 
is the codimension of the most singular structure, i.e., the one with the smallest H61der 
exponent hmin. Assumption (iv) yields Co = 2 which corresponds to hmin = 1/9. 

The SL formula is in good agreement with the experimental values of ~p as can be seen 
from figure 1. The success of this formula is indeed remarkable, since the validity of the 
assumptions made is not yet clear. Of the assumptions (i)-(iv), (i) is generally accepted to 
be a good working approximation. Direct numerical simulations indicate that high- 
vorticity regions are filamentary [52, 53], which is used to motivate assumption (iv); we 
return to this point in § 3. Assumption (iii) awaits detailed experimental and numerical 
verification. Recently, this hierarchy has been verified experimentally [54] to some extent 
using wind-tunnel data. Dubtulle [55] mentions that a similar hierarchy has been shown 
to exist in the GOY shell model (see below). 

Benzi et al [32] have proposed a very interesting way of extending the region over 
which inertial-range exponents may be extracted from structure functions. The extended 
self-similarity (ESS), as the procedure is called, states that the real-space structure 
functions present an extended inertial scaling range in log-log plots of one structure 
function against another. From (4) it follows that 

G(r)  ~ Sq(r)~'/¢% (18) 

and Benzi et al [32] have shown, by using experimental data, that the inertial scaling 
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region extends up to r ~_ 5 r/a in ESS plots. (By contrast, plots of Sp(r) versus r show 
inertial range scaling only up to r "~ 20r/d.) It is conventional to use q = 3 in (18), so 
(p/(3 ~ (p since ~3 is very nearly equal to unity, when the flow is homogeneous and 
isotropic. (Indeed the Karman-Howarth relation [7] yields (3 = 1.) Thus ESS provides an 
effective method for determining (p from data for which the extent of the inertial range is 
often restricted. However, the reason behind the success of ESS is still unclear (but see 
[56, 57] for some progress on this front). 

Although ESS is an effective method for determining inertial-range scaling behaviour 
in some turbulent flows, it does not work well for all such flows, particularly in the 
presence of a strong shear. For such systems, Benzi et al [58] have proposed the 
generalized extended self similarity (GESS) ansatz, which they claim extends the scaling 
down to the smallest resolvable spatial separations. They begin with the dimensionless, 
real-space structure functions 

Sp(r) (19) 
~,(r) - 83(r) p/3 " 

If K41 were true, ~p(r) would be independent of r in the inertial range. However, because 
of multiscaling, ~p(r) displays nontrivial scaling behaviour. Specifically, Benzi et al [58] 
propose that Gp(r) is self-scaling over all resolvable length scales, i.e., 

~p(r) = [Gq(r)] ~" . (20) 

From the r-dependence of Sp (4) it follows that 

(p - p~3/3 (21) 
PP'q = (q -- q(3/3 " 

Thus, if log ~p(r) is plotted against log ~q(r) one should get a straight line with slope pp,q 
up to all resolvable length scales. This has been checked to some extent by Benzi et al 
[58] from numerical and experimental data for (p, q) = (5, 6). 

Dissipation-range behaviors of structure functions have been studied less than their 
counterparts in the inertial range. There are some data for the energy spectrum E(k).  In 
particular, K41 suggests that 

E(k) = (e)2/3k-5/3f(k/kd), (22) 

where the dissipation scale kd 1 -- r/d and the scaling function f ( k /ka)  ~ C, for small 
k/kd. The general form off(kr/d) is not known, but the consensus from experiments [2,13] 
and direct numerical studies [59] is that, in the far dissipation range, i.e., for large k/kd, 
E(k) ,,~ k ~ exp( -ck /kd) ,  a form first suggested by Kraiclman [60]. The exponent 6 and 
the constant c are not easy to determine; the best numerical studies [59] yield 6 -~ 3.3 and 
c _  7.1. It is also worth noting that f (k /kd)  does not decay monotonically with k/kd; 
rather, it increases mildly in the inertial range and then starts decreasing in the dissipation 
range leading to a slight pile up in the energy spectrum in the crossover regime. This has 
been referred to as a bottleneck phenomenon [61]. 

Soon after the introduction of ESS it was pointed out by Stolovitzky and Sreenivasan 
[22] that ESS plots cross over from their inertial-range asymptotic behaviour to another 
asymptotic behaviour in the far dissipation range that is characterized by a steeper power 
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law (cf. (18)). This has not been explored experimentally in the GESS context. We will 
study this in detail in § 3 in the context of our wave-vector-space (henceforth k space) 
generalizations of ESS and GESS. 

10-1 

The third category of measurements yield probability distributions for quantifies such as 
the velocity, components of velocity differences (i.e., 6vi = [vl (x + r ) - v i  (x)]), etc. 
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Figure 3. PDFs of velocity differences for separations r within the inertial range for 
(a) wind-tunnel data: r/Od = 37.5 (O), 351 (m), and 1870(zx); (b) atmospheric surface 
layer: r/oa = 61.3 (o), 408 (D), and 2900(z~). The solid lines correspond to best fits 
which are of the exponential form (after Praskovsky and Oncley [62]). 
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Figure 4. PDFs of band-pass-filtered signals with fc = (a) 0.07 kHz, (b) 0.15 kHz, 
(c) 0.70kHz, (d) 3.0kHz, and (e) 10kHz (see text). Solid curves show Gaussian 
distributions (after Katsuyama, Horiuchi and Nagata [34]). 

There is considerable evidence [62] that the distribution of velocity differences is not 
Gaussian at small length scales in fully developed turbulence: Experimental data show 
that the probability distribution functions (PDFs) of velocity gradients over small 
distances (i.e., large wavenumbers) have a tail which falls more slowly than that of a 
Gaussian distribution [62, 63]. It is often said [64] that such non-Gaussian behaviour is 
associated with the presence of small-scale coherent structures which lead to 
intermittency. Whereas this might well be true, it is worth noting [8] that even K41 
yields a non-Gaussian, stretched-exponential distribution for the distribution of velocity 
gradients; however, the stretching predicted by K41 is less than that observed 
experimentally. Figure 3 shows a plot of the PDFs of velocity differences obtained by 
Praskovsky and Oncley [62] from wind-tunnel experiments and from the atmospheric 
surface layer; they fit well to an exponential form. However, a general theoretical 
understanding of the precise relation between small-scale coherent structures and such 
PDFs is still lacking. 

Katsuyama, Horiuchi and Nagata [34] have studied the behaviour of PDFs obtained 
f~om a band-pass-filtered velocity signal. In this study, the velocity time series, recorded 
in wind-tunnel experiments, was band-pass filtered to obtain the record V(t; fc), where fc 
is the midband frequency of the filter. The PDFs of V(t, f~) are Gaussian at small f ,  but 
decay more slowly than Gaussian distributions as fc is increased (figure 4). A number of 
authors had suggested earlier [63, 65] that such PDFs can be approximated by stretched 
exponentials of the form P(V)<x exp(-alvIm). For their band-pass-filtered signals, 
Katsuyama et al [34] measured the stretching exponent m and found that, for small fc, 
corresponding to integral-range time scales, m ~ 2, i.e., a Gaussian PDF; as fc was 
increased (times corresponding to inertial-range timescales), m started falling below 2. 
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This fall became more and more significant for high f~'s, corresponding to dissipation- 
range timescales. 

Katsuyama et al used another method for characterising the deviation of the PDF 
V(t; fc) from a Gaussian PDF: They calculated the normalized moments 

(2p - 1)!! ([V(t;fc)]2) e 
72p = 2 (IV(t; fc)]2P) ' p = 2, 3, 4 , . . .  (23) 

where ( 2 p -  1)!! = ( 2 p -  1 ) (2p-  3). .-3.1.  For a Gaussian distribution, 7 ~  = 0.5 for 
all p. Even a very weak deviation from a Gaussian distribution becomes apparent if we 
calculate 72p for sufficiently large p. The band-pass-filtered data show that 72~, goes 
slightly below 0.5 for fc's corresponding to inertial-range timescales. This is followed by 
a more rapid decay in dissipation-range timescales and, as anticipated, the deviation from 
Gaussian behaviour is clearly more prominent for large p. 

Recall that, in his 1962 theory [42], Kolmogorov assumed that er/(C) has a log-normal 
distribution. This is not substantiated by experiments, which yield data that can be fit [50] 
to a stretched-exponential form with a stretching exponent of 1/2; however, this latter 
form violates the Carleman criterion, i.e., such a PDF is not determined uniquely by its 
moments [2, 66]. It has also been shown recently [55, 67] that the SL assumptions lead to 
distributions in the log-Poisson class. We are not aware of a detailed experimental 
verification of this. 

3. Deterministic models for the study of homogeneous isotropic turbulence 

The tasks before a theory of homogeneous, isotropic turbulence are many. Given the 
perspective adopted in this paper, these must include an understanding of the multiscaling 
behaviours of the structure functions and probability distributions defined in § 2. It is also 
important to elucidate the role, if any, of coherent structures in determining these 
properties. At the moment we are very far from this g°al. However, progress has been 
made over the past decade by using: (a) approximate analytical methods to study 
stochastic models, which are discussed in the companion paper by Bhattacharjee [20]; 
and (b) direct numerical studies of deterministic models. We concentrate on the latter in 
this section, which is organised as follows: It begins with an introduction to direct 
numerical solutions of the Navier-Stokes equation and the GOY shell model, which are 
used in studies of homogeneous, isotropic turbulence. This is followed by a brief 
overview of what has been learnt about intermittent structures, the scaling of structure 
functions (including ESS and GESS), and various PDFs from such studies. Our emphasis 
is on showing how studies of both the Navier-Stokes equation and reduced models like 
the GOY shell model can augment each other as we have shown in recent studies [89] of 
k-space ESS and GESS. 

3.1 Models 

The model of choice for the study of fluid turbulence is, of course, the deterministically 
forced Navier-Stokes (NS) equation for an incompressible fluid. If we restrict ourselves 
to low-Mach-number flows and cases where the equation for the energy density can be 
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Table 1, Parameters u (viscosity), UH (hyperviscosity), ReA (Taylor-microscale Reynolds 
number), % (box-size eddy-turnover time), Tav (averaging time), Tt (transient time) and kd 
(dissipation-scale wavenumber) for our 3d NS runs NS1-4 (L = 7r, kmax = 64) and GOY-model runs 
G1-8 (kmax = 222k0). The step size (60 used is 0.02 for NS1-4, 10 -4  for G1-4, and 2.10 -5 for G5-8. 
In our NS runs we estimate kd = r/all by solving the nonlinear e.quation, obtained by balancing 
dissipative and convective time scales, Ur/d2 + / . ' h ~ d  4 : (£)1/3~]d2/3 , which reduces to the formula 
given above for ~d if the hyperviscosity vh = O. 

Run u UH Re;~ %/6t rt/7-e ~-av/% kmax/kd 

NS1 5 . 1 0  -4  

NS2 2.10 -4  

NS3 5 . 1 0  -4  

NS4 5 . 1 0  - 4  

G1-4 5.t0 -6 - 10 .7 
G5-8 5.10 -8 - 10 -9 

0 ~-3.5 --_3.104 -~1 2 ~ 4  
0 "~8 -3 .104 -~1 ~2 .5  -~2.3 
5 . 1 0  . 6  '~  3.5 ~- 3.104 ~ 1 --~ 1 ~ 6.5 
10 -6 ~ 22 --~ 3.103 --~ 10 --~ 7 -- 2 
0 4.104--3.105 --~ (1.5 -- 2.0)104 --~500 ~--2500 --~25--23 
0 3.5.105-3.106 "~ (0.7--1)105 ~500  --~2500 ~--23-1 

neglected, the NS equation is 

Otv + ( v . V ) v  = u v a v -  Ve /p  + f ,  (24) 

where v is the velocity field, P the pressure, p the density, u the kinematic viscosity, f the 
external, deterministic force, and incompressibility is enforced by the condition 

V . v  = o. (25) 

Equations (24) and (25) must be solved with suitable boundary conditions and initial 
conditions; periodic boundary conditions are convenient in studies of  homogeneous, 
isotropic turbulence. At high Re, little can be said analytically about the statistical steady 
state of  this driven equation beyond the phenomenological theories described in § 2 or 
by using stochastic models [20]; one must, perforce, obtain information about this 
steady state from direct numerical solutions (DNS). In studying the properties of  
homogeneous and isotropic turbulence, it is sometimes convenient to work in k space; 
here the equation is, 

Otvi(p) + iMijk(P) Z vj(q)vk(p -- q) = --upZvi(p) + f ( p ) ,  (26) 
q 

with p and q denoting wave vectors, Mijk(P)=--[PjPik(P)+pkPij(P)]/2, P/j(p)---- 
[60 -piPj/p 2] the transverse projector, and Fourier transforms are implied by wave- 
vector  arguments.  Typical ly one uses periodic boundary conditions and, if  a 
hyperviscosity UH (table 1) is used, up z in (26) is replaced by (v + uHpZ)p 2. In numerical 
studies it is advantageous to use a pseudo-spectral scheme that evaluates certain terms in 
real space and others in k space. Such studies began with the pioneering work of Orszag 
and Patterson [68]. Subsequent studies, carried out by many groups, include 
refs. [28 ,52 ,53 ,59 ,69-76] .  We follow Meneguzzi and Vincent [73] for our NS 

simulation. 
In spite of  rapid advances in computing power, direct numerical studies of  the NS 

equation remain daunting at high Re. The largest studies have used 5123 Fourier 
modes for the velocity field and achieved a Taylor-microscale Reynolds number 
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Rex - vn~A/v ~ 220; here the Taylor-microscale is [73] A - [ f  E(k)dk/f  k2E(k)dk] V2 
and Vrms- [2f~E(k)dk] 1/2 is the root-mean-square velocity. Larger studies are not 
feasible yet because computational costs scale as Re 9/4, for storage requirements, and 
Re V2 for the number of arithmetic operations. Important time scales include the integral 
and box-size eddy-turnover times defined, respectively, as 7-1 - Ll/v~s and "re - L/vrms, 
where 1,1 -- [ f k- lE(k)dk/f  E(k)dk] 1/2 is the integral scale and L is the box size. For our 
four runs for the NS equation (table 1) "re ~- 8"ri; we report all times in terms of the 
former. 

Given these computational constraints it is useful to work with simplified models that 
are physically motivated and capture as many aspects of fluid turbulence as possible. 
Though such models must, perforce, make several approximations (see below), they can 
allow us to explore the large-Re regime, which is crucial for the resolution of many 
questions about the asymptotic behaviours of structure functions, etc. The most 
successful models of this type are shell models. Of these the one due to Gledzer [77] and 
Ohkitani and Yamada [78], infelicitously called the GOY model, has been studied most 
over the past five years; and, as we show below, the GOY model yields, in spite of its 
simplicity, results that are not only physically instructive but also in remarkably good 
agreement with experiments. 

The Richardson-cascade picture suggests that the scaling behaviour seen in fluid 
turbulence might well arise in a simplified dynamical system with a reduced number of 
degrees of freedom arranged hierarchically. This key idea motivated the seminal studies 
of Obukhov [79], Gledzer [77], and Desnyansky and Novikov [80], who postulated shell 
models quite similar to, though not as succesful as, the GOY model, on which we 
concentrate here. Other more complicated shell models are mentioned briefly below; we 
refer the reader to ref. [8] for a more extensive coverage of these. 

Such shell models must have the symmetries of the NS equation. Unfortunately, it is 
not clear whether we know all the relevant symmetries; but one can at least ensure the 
essential conservation laws (of energy and helicity) hold in the inviscid and unforced 
limit. Furthermore, to attain much larger Reynolds numbers than is possible in direct 
numerical simulations of the NS equation, the "shells" in k space are logarithmically 
spaced. In the GOY model they are the one-dimensional set of wave vectors kn, labelled 
by shell numbers n: 

kn=koA n, n :  l , 2 , . . . ,N ,  (27) 

where A is the ratio between wave vectors in nearest-neighbour shells, k0 sets the scale of 
wave vectors, and N is the total number of shells. The dynamical variables are the 
complex scalar velocities v, associated with the shells; these can be considered to 
represent the Fourier transform of the velocity characterising an eddy of scale ~ k~ 1. The 
evolution equation for v, is 

d 
~tVn + u~v,, = Fn + iCn, (28) 

where v is the kinematic viscosity, Fn is a forcing term, and Cn is the nonlinear coupling 
between different shells. Thus the NS equation is approximated by a dynamical system 
comprising 2N ordinary differential equations (each v, has both real and imaginary 
parts). Rigid boundary conditions are imposed on the v,'s, i.e., v, = 0 for n < 1 and 

338 

P r a m a n a  - J. P h y s . ,  Vol. 48, No. 1, January 1997 (Part I) 

Special issue on "Nonlinearity & Chaos in the Physical Sciences" 



Homogeneous isotropic turbulence 

n > N. The forcing term has a constant amplitude and is typically chosen to act on a 
particular shell n r, i.e., 

g n = gorn,n ,  , (29) 

with n r the index of the shell on which the force acts. As described in earlier studies 
[78, 81-85], the usual choice is n t = 4, but Kadanoff, Lohse and Schbrghofer [86] note 
that the choice n' = 1 (which we adopt in our dynamical studies below) does not change 
the behaviour of the model in the static case. To mimic the advection terms in the NS 
equation, the nonlinear term C, in (28) should have terms like k,  vn, Vn,,; but, since the 
Richardson-cascade picture suggests that an eddy of a particular length scale interacts 
significantly only with eddies of nearby scales, such interaction terms are chosen to be 
local in k space (i.e., n ~ and n" are chosen to be close to n). The GOY form of Cn is 

Cn = anknV*+lV*n+ 2 q- bnkn-lV*_lV*n+ 1 + cnkn-2v*_lV*_ 2, (30) 

with au-1 = aN = bl = bu = cl = c2 = 0; thus the velocity of a shell is affected only by 
the velocities of its nearest- and next-nearest-neighbour shells. To specify Cn completely 
we must fix the constants an,bn, cn. The first constraint is that the kinetic energy 
E = ~ n  Ivn[2/2 must be conserved in the inviscid (u = 0) and unforced (Fn  : 0 for all n) 
limit. This yields, an +bn+l  +cn+2 = 0. These coefficients are defined modulo a 
multiplicative factor, so that one can fix an = 1 without loss of generality, whence 

an = 1; bn -~- - -6 ;  C n = --1 + 6. (31) 

The parameter 6 does not have an analogue in NS dynamics, but it plays an important role 
in the GOY shell model since it determines the ratio between the backward (towards 
smaller k) and forward (towards larger k) energy cascades as shown by Biferale, Lambert, 
Lima, and Paladin [87]. The choice A = (1 - 6) -1 (in most studies 6 = 1/2 and A = 2), 
in addition to conserving the kinetic energy, also conserves H = ~(-) 'knlvn[  2 in the 
inviscid and unforced limit [88]. Kadanoff, Lohse, Wang and Benzi [84] have noted that 
H is the GOY-model analogue of the helicity, which is conserved in the inviscid, unforced 
NS equation. Note also that the term Cn in the GOY model conserves the phase-space 
volume, i.e., the total volume in the 2N-dimensional velocity space, since OCn/Ov, = O. 
And, as in the NS equation, the GOY model is forced near small k, but the dissipation 
occurs principally at large k's, which, along with the nonlinear coupling, ensures a 
cascade of energy from small to large wavenumbers. Of course the GOY shell model is 
not derivable from the NS equation in any obvious way. But its simplicity and numerical 
tractability have inspired quite a few studies, principally numerical simulations, some of 
which we discuss below. Some limitations of the GOY shell model are discussed towards 
the end of this section. 

It is easy to see that the Kolmogorov scaling relation vn ~ k~ 1/3 for the GOY model is 
a solution of the static problem in the inviscid and unforced limit. It has been shown [87] 
that static solutions of the GOY model, in the inviscid, unforced limit, are the fixed points 
of the map qn = 6/2  + ( 1 -  6)/4qn-1, where q,----vn+3/v,. The K41-type solution, 
vn ~ k~ 1/3, corresponds to the fixed point q = 1/2. For the dynamic but unforced and 
inviscid case, this K41 fixed point becomes unstable (for 6 = 1/2, see below), but 
continues to play a crucial role for the dynamics with finite viscosity and forcing. Before 
embarking on a dynamical study of the GOY model, it is, therefore, useful to understand 
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the nature of its static solutions. We refer the reader to refs [87, 92] for detailed 
discussions of such solutions. 

Though the GOY-model equations look simple, they cannot be solved analytically. 
Thus one must resort to direct numerical studies, which must be carried out carefully 
since the equations form a stiff system. We follow the numerical scheme of ref. [83]. 

In addition to the choice of the constants a,b,c  and A given in eq. (31), we must 
specify the forcing term (29). We choose: F0 = 5(1 + i)10 -3 , n' = 1, i.e., we force the 
first shell, not the fourth as in most earlier studies [81-84]. However, we have checked 
explicitly that the scaling behaviour of the model is the same with n' = 4 and n' = 1. The 
advantage of using n~= 1 is that the inertial-range is broader, so we obtain better 
estimates of the inertial-range exponents. Furthermore, we set k0 = 2 -4 and work with 
N -- 22. Since we set A = 2, this leads to a wavenumber range of 2 -3 < kn <_ 218. Earlier 
studies [82-84] have shown that the choice N = 22 leads to a broad wavenumber regime, 
which, depending on Re, yields sizeable inertial and dissipation ranges. Data for our 
GOY-model runs are given in table 1. 

Biferale and Kerr [90] have pointed out that the GOY shell model has an apparent 
asymmetry between the odd and even shells. This does not have any counterpart in NS 
dynamics. To overcome this they have proposed two velocity fields per shell that 
transport positive- and negative-heticity components, respectively. Studies of such models 
are in their infancy and we refer the reader to ref. [90] for details. Even more realistic are 
the hierarchical shell models studied by Eggers and Grossmann [95] and Grossmann and 
Lohse [96]. Their scheme, also referred to as the reduced wavevector approximation 
(REWA), will be described briefly below. 

We are now in a position to discuss some of the results that have been obtained by 
direct numerical studies of the NS equation and the GOY model. We begin with 
visualisations of intermittent structures, then discuss structure functions, ESS, and GESS, 
and end with probability distributions. 

3.2 The visualisation of intermittent structures 

Siggia [52] was the first to provide numerical evidence that, at large Re, regions of large 
Iwl (where the vorticity ~v ___ V x v ) are fairly long-lived, tube-like structures. The 
existence of these filamentary, high-vorticity tubes has been confirmed by subsequent 
high-resolution runs [53, 69, 71,73]. As the value of in an iso-I~ [ plot is decreased, the 
vorticity tubes thicken until they eventually become sheet-like. This is illustrated in 
figure 5, which has been obtained from our relatively low-resolution pseudo-spectral 
simulation that uses 643 Fourier modes. In figure 5 we superimpose the velocity field 
(white arrows) on the iso-lwl surfaces and in their vicinities; the circulation of the velocity 
vectors is as expected around regions of high vorticity. She et al [53] have noted that the 
velocity field around such vortex tubes exhibits swirling motion with a sizeable 
component along the local vortex-tube axis, which might lead to a local weakening of 
nonlinear effects [2, 93]. The viewing angles in these photographs have been chosen to 
display the tubular nature of the filaments clearly. 

The existence of such filamentary structures is a crucial input into the She-Leveque 
model (§ 2). Since this model relies on a set of assumptions for the small-scale behaviour 
of the energy dissipation e, it is interesting to check whether the existence of vorticity 
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Figure 5. Iso-Iw I surfaces with superimposed velocity vectors (at points near these 
surfaces) obtained from an instantaneous snapshot of the velocity and vorticity fields 
from our run NS4 (table 1). The iso-lwI surfaces go through points with fixed 
[WI/[W[max : O, where IWImax is the maximum value of [w[; the velocity vectors are 
shown by white arrows whose lengths are proportional to their magnitudes and whose 
heads are too small to be seen. (The small red arrowhead is a pointer that should be 
ignored here and in all subsequent photographs.) The red surface (top plate) goes 
through points with (9 ~ 0.31 and the orange surface (bottom plate) goes through 
points with (_9 _~ 0.12; this illustrates the thickening of the vorticity filaments with 
decreasing Iw[. These are perspective views with the simulation box shown by a white 
boundary; we use periodic boundary conditions. 
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Figure 6. Superimposed iso-lw I and iso-e surfaces obtained from an instantaneous 
snapshot of the vorticity and dissipation fields from our run NS4 (table 1). The cream- 
coloured surfaces go through points with fixed Iwl/l~lm~x = O whereas blue-green 
surfaces go through points with fi~_d e/emax = C (the subscript max denotes 
maximum value). Here (.9 = C = 0.5. The top figure (a) is a rotated version of the 
bottom one (b). The iso-I~l surfaces clearly show that high-vorticity regions are 
filamentary; however, the iso-e surfaces seem more like shredded sheets or blobs. 
Also, high-vorticity and high-diss!pation regions do not coincide. These are 
perspective views with the simulation box shown by a white boundary; we use 
periodic boundary conditions. 
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Figure 7. The same as figure 6 but with O = E "~ 0.33, so the vorticity tubes are 
thicker; however, the iso-e surfaces still seem like shredded sheets or blobs. The top 
figure (a) is a rotated version of the bottom one (b). 

P r a m a n a  - J. Phys . ,  Vol. 48, No. 1, January 1997 (Part I) 

Special issue on "Nonlinearity & Chaos in the Physical Sciences" 343 



Sujan K Dhar et al 

tubes is associated with filamentary regions of large energy dissipation. (Though the 
averages of c and uw 2 over the full box volume are the same, their spatial distributions 
might well be different.) Indeed, even the early numerical studies of Siggia [52] and the 
study of the Taylor-Green vortex by Brachet et al [94] had indicated that regions of high 
vorticity are regions of low E. This is illustrated in figures 6 and 7, which we have 
obtained from an instantaneous snapshot of the real-space velocity field in our numerical 
study of the NS equation (run NS4 in table 1); the w and ~ fields follow from this velocity 
field. In figures 6 and 7 the cream-coloured iso-I~l surfaces show well-formed tubes for 
the [w I values used. The blue-green iso-dissipation surfaces show clearly that regions of 
large ~ are, by contrast, like small shredded sheets or blobs (cf. [52]), which have no 
overlap with the high-vorticity tubes. Nor does their codimension seem to be the same as 
that of the vortex filaments. (Cream-coloured surfaces go through points with fixed 
I l/l lmax -- o whereas blue-green surfaces go through points with fixed £/£max : ~ ;  

and, to make the comparison of these surfaces as meaningful as possible, we use equal 
ratios, i.e., O = E.) The precise implications of this for the derivation of the SL formula 
(§ 2) are unclear. If its success in predicting (p is any clue, there might be a way of 
deriving it without using the precise codimensions of high-dissipation, as opposed to 
high-vorticity, regions. 

It is debatable whether any real-space structures can be obtained reliably from the 
GOY model, which is defined on a logarithmically discretised k space. Some authors 
have recently proposed [8] a procedure for generating an artificial velocity field v(r,  t) in 
three-dimensional real space from the shell-model velocity fields. The first step is to 
introduce a three-dimensional wavevector k = knen, where kn is the wavenumber of the 
n-th shell and the en's vectors of unit norm. Next the j-th component (j = x, y, z) of the 
real-space velocity field is constructed through some kind of an "inverse Fourier 
transform" 

N 

vj(r, t) = ~ C (j) [vn(t)e ik"'r + c.c.], (32) 
n = l  

where the coefficients C(n j) are random numbers of O(1) and c.c. denotes complex 
conjugate. It can be checked that the resulting vj's obey the incompressibility condition 

(25), since the coefficients satisfy ~ j31  -(J) (j) t-.n en : 0, for all n. However, it remains to be 
checked explicitly whether the velocity fields calculated by using such a prescription 
conform with those seen experimentally. 

3.3 Structure functions, ESS and GESS 

The scaling of real-space structure functions Sp(r) has been studied via numerical 
simulations of the NS equation by several groups [71,73, 76]. Agreement with K41 is 
good for p _< 3 and E(k) follows the - 5 / 3  law well [73]. Some numerical studies have 
found that the RSH (5) holds reasonably well. However, the most recent study has 
cautioned that the result depends on which surrogate (see § 1) of c is used. Specifically, if 
one defines eij = v(Ovi/Oxj)2, then the RSH holds better with the surrogate e l l  than with 
e 21, in agreement with recent experiments. 
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As regards multiscaling, data for (p from direct numerical studies of the NS equation 
[71, 73] show significant deviations from K41 for p > 3; however, it is still not feasible 
computationally to attain very large Re~ (the largest so far [76] seems to be Re~ --- 216). 
Unfortunately this is not large enough to settle certain issues of principle: For example, 
does ~(p : p/3  - (p --+ 0 as Re ~ c~, as suggested by some studies [34-36]? This is 
best done by using simpler models like the GOY shell model described above; of course, 
one must then contend with the issue of the relation of shell-model and NS results, which 
we discuss later. 

The velocity structure functions for the GOY shell model are 

Sp(kn) = ([Vn[P)- (33) 

Since the k,'s in the GOY shell model are logarithmically spaced, the GOY-model 
analogue of the energy spectrum is E(k) = IvnlZ/kn and the exponents (p are given by 

Sp(kn) ~ k~ Cp. (34) 

It is natural in the GOY model to use these k-space structure functions. Since we want to 
use direct numerical simulations of the NS equation and the GOY model in 
complementary ways, it is useful to study k-space structure functions in the NS context. 
We define these as 

S,(k) =_ (Iv(k)l°). (35) 

We use the convention that calligraphic symbols like S o denote real-space structure 
functions and Roman symbols like S o their k-space analogues (not Fourier transforms). In 
a recent study we have provided numerical evidence that yields [89] 

Sp(k) ~ k -(G+3p/2), (36) 

for k in the inertial range. This difference between GOY-model and NS k-space structure 
functions arises because of phase space reasons (i.e., the logarithmic discretisation of k 
space in the former and the usual discretisation in the latter). To have a meaningful 
comparison between these two models, we also define GOY-model analogues of the 
Taylor-microscale and the root-mean-square velocity (see above for the 3d NS equation): 
A = 27r/kl [(~n [vnl2)/(~n k2lvn]2)] 1/2 and Vrm~ : [(2 ~--~, Iv~]2)/(27r/kl)] U2, which can 
be used to obtain the Taylor-microscale Reynolds number Re~ = VrmsA/u ; furthermore, 
we use (cf., [83]) E ( k ) =  S,,2/k,. The time-scale associated with the smallest 
wavenumber is ~ kT~/Iv~ [; when averaged over the steady state it gives the large-scale 
eddy turnover time %, which is the analogue of the box-size eddy-turnover time in the NS 
case. For our GOY-model runs we find Re~ ~ u -°5, as expected [102] at large u -1 . We 
will return to a comparison of these two models when we discuss our k-space versions of 
ESS and GESS [89] in inertial and dissipation ranges below. 

Our GOY-model runs span the range 104<Re~<3 × 106. In figure 8 we show the 
energy spectrum as a function of the shell number for our runs G1-8. (Care must be taken 
to ensure that the coputational runs are sufficiently long to obtain a statistical steady state; 
see table 1 for our run parameters.) Note that E(k) is plotted on a lOgl0 scale and the shell 
number is proportional to the logarithm (base 2) of the wavenumber. The slight rise in the 
curves near n --- 1 is a vestige of the forcing in the first shell. The straight-line portion of 
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Figure 8. The energy spectrum E(k.)(plotted on a log base 10 scale) as a function of 
shell number (n), for the runs G1-8 (table 1). The dashed line represents the k -5/3 
form. The curves for large values of v (runs GI--G3) start veering off from the -5 /3  
form near the onset of the dissipation range. For small values of ~, (runs G6-8), the 
dissipation range starts beyond n = 22. 

the plot for intermediate k marks the inertial range and fits the expected k -5/3 form well. 
For runs G1-3, which have the highest viscosities we use, E(k) starts falling from the 
k -5/3 line in figure 8. This marks the beginning of the dissipation range. Note that, for the 
small-viscosity runs (G5-8), only the beginning of this crossover is visible given our 
wavenumber range. We will return to the form of E(k) in the dissipation range below. 

Many authors [82-84] have used such studies to show that GOY-model structure 
functions exhibit significant deviations from K41 for p > 3 and, for the conventional 
choice of parameters which conserve both the energy and the helicity in the inviscid, 
unforced limit, yield exponents (p in good agreement with experiments and the SL 
formula. (An approximate analytical understanding of multifractality in the GOY shell 
model may be obtained by a closure scheme as shown by Benzi, Biferale and Parisi [91].) 
These studies have also pointed out that log-log plots of Sp(k,) versus k, show an 
oscillatory behaviour that is a GOY-model artifact related to an underlying 3-cycle in the 
static solution [92]. In figure 9 we show such a plot for different values o fp  from our run 
G1. The increase in Sp near n = 1 arises because we force the first shell. In the region 
4 < n < 14 the plots are nearly linear, suggesting the algebraic decay of Sp(k,) in the 
inertial range. The dissipation range starts around n _~ 13 - 17 for runs G1-G3; this is 
marked by the bend in the structure functions. The period-three oscillations mentioned 
earlier show clearly in the inertial range of figure 9. We have obtained (p'S by fitting the 
structure functions to a power-law form in the inertial range. As can be seen from 
figure 15, the fitting errors increase with increasing p because the period-three 
oscillations are stronger in high-order structure functions. 
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Figure 9. A plot of logSp(kn) versus the shell number n for the run G1 and for 
p = 2, 4, 6 , . . . ,  20 (from top to bottom). Note the period-three oscillations that show 
clearly in high-order structure functions. 

Kadanoff et al [84] have pointed out that a simple way of removing these oscillations is 
to calculate triple moments of velocities; the most effective in removing these oscillations 
is the structure function 

~v,,_,v, ,vn+l)l  / ,  (37) 

which scales like Sp(kn) in the inertial range. Here .~ denotes the imaginary part and we 
use 6 : 1/2 and A = 2. In figure 10, we show plots of log Ep(kn) against the shell number 
(n) for our run G1 with 2 < p <_ 20; note that the period-three oscillations of Sp(k.) 
(figure 9) are absent and the inertial scaling region is a few octaves larger than the one in 
figure 9. A comparison of the exponents ~, calculated from Sp(k~) and Ep(kn) is shown in 
figure 11. The latter not only yields estimates with smaller error bars but also results 
much closer to the SL prediction (17). Thus we use Ep(k~) to calculate the Re;~ 
dependence of (p (see below). However, for consistency we use Sp (kn) when we compare 
our GOY-model results with those of our direct numerical simulation of the 3d NS 
equation. 

Before presenting our study of 6(p we note that a similar study has been carried out by 
using the hierarchical shell model studied by Eggers and Grossmann [95] and Grossmann 
and Lohse [96]. Their scheme is also referred to as the reduced wavevector approxima- 
tion (REWA). The model considers the velocity field associated with the n-th shell to be 
given by a set of variables v,,j, where j = 1 , . . .  ,J~, with J > 1. Each variable v~,j 
interacts with all the variables in the n-t-1 and n ± 2 shells. The resulting set of 
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Figure 10. A plot of log ~,,p(k,) (see text) versus the shell number n for the mn G1 
and forp = 2, 4, 6 , . . . ,  20 (from top to bottom). Note that the curves are free from the 
oscillations that appear in the st~c~re-function plots (figure 9). 

differential equations has many more nonlinear terms than its analogue in the GOY 
model. The advantage of this added complexity is that the nonlinear term has a greater 
similarity with its counterpart in the NS equation (26). The REWA model has many more 
degrees of freedom than the GOY model, so its numerical solution is almost as difficult as 
a direct solution of the 3d NS equation. Of course, much higher values of Re can be 
achieved for the REWA models than for the 3d NS equation. We refer the reader to 
refs [8, 95, 96] for details of this model. Grossmann, Lohse, L'vov and Procaccia [35] 
have used the REWA model to cover the range 104 < Re < 107. (In these simulations, 
ReA ,~ 12v/-Re as shown in ref. [96].) From their plots of 6(p = - p / 3 ]  versus Re, 
these authors argue that the theoretical prediction of ref. [36], namely, 6(p ~ Re -3/1°, 
might well be true as Re ~ c~. 

We have tried to address this issue for the GOY shell model. Specifically, we have 
obtained (p and hence 6(p from Zp(kn) for eight different Reynolds numbers (runs G1-8, 
table 1) in the range 4 × 104< ReA3 × 106. The resulting data are shown in the plot of 
6(p versus Re;~ in figure 12; the SL prediction is also shown for some values ofp .  There 
seems to be no indication of a decrease in 6(p with increasing ReA; if anything, there is a 
marginal increase. (We have checked that the increase in 6(p at the highest value of Re~ 
(run G8) remains on choosing a smaller time step and larger averaging time for this run.) 
This result is in contrast with the conclusion of Grossmann et al [96]. It is possible that 
this discrepancy arises because of some feature that is present in the REWA model but not 
in the GOY shell model. Only more exhaustive numerical simulations (ideally of the 3d 
NS equation) and systematic experimental studies will be able to decide whether the trend 
shown in figure 12 actually obtains in fluid turbulence. We also note that, on the basis of 
their static analysis of the GOY model, Sch6rghofer, Kadanoff, and Lohse [92] have 
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Figure 11. ~p versus p for our run G1 obtained from the best straight-line fit in the 
inertial range by using (a) Sp(k.) and (b) Ep(kn). Error bars in (a) denote the fitting 
errors; similar error bars are also shown in (b) but are not apparent since they are 
comparable to the symbol sizes. The K41 and the SL predictions are also shown. 

suggested that ~p should have an oscillatory dependence on log v; our fully dynamical 
calculation (figure 12) seems to be in agreement with this suggestion. 

The obvious question that arises is whether the ffp's are universal. The data of figure 12 
suggest they are not. This has also been found by Leveque and She [97] in their study of 
the GOY model in the presence of pure hyperviscosity, i.e., with a -vnk ~n dissipation 
and c~n not necessarily 2: their ffp'S depend on c~n. Similar results have been obtained by 
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Figure 12. Log-log plot of tS(p versus the Taylor-microscale Reynolds number ReA 
for our GOY-model runs (G1-8) with p = 6, 8 , . . . ,  20 (from bottom to top). The dotted 
(p = 6) and dashed (p = 8) lines show the SL results. Error bars are shown but are 
often smaller than the symbol sizes. 

Borue and Orszag [98] in a direct numerical solution of the NS equation with pure 
hyperviscosity. However, this nonuniversality is removed [97] if one uses the ratios (p/(3. 
We shall return to this point in our discussion of k-space ESS and GESS below. 

Before presenting our numerical studies of ESS and GESS, we wish to discuss the form 
of E(k) in the dissipation range. It has been suggested by some authors [60, 99] that the 
energy spectrum in the far-dissipation range is of the form 

E(k) ,,~ f (k /kd)  exp[-c(k/ka)n], (38) 

where c is a constant, f is a weak function of k/kd, and 1 < n < 2. In their direct 
numerical simulation of the NS equation, Chen et al [59] find that the form 

E(k) ,,~ k ~ exp(-ck/kd)  (39) 

is consistent with their data with ~ ~ 3.3 and c "~ 7.1. This pseudo-spectral simulation 
uses 2563 Fourier modes and has achieved the best numerical resolution of the far 
dissipation range of the 3d NS equation to date. Our low-Re~ studies (table 1) also yield a 
dissipation range in which E(k) fits such a form. We have also checked explicitly that our 
data for $3 in the GOY model can be fit to the form 

$3 ,,~ k ~ exp(-ck/kd)  (40) 

in the dissipation range (run G1) with t5 -- 3.80 and c/ka = 4.13 x 10 -4. (We note that 
such fits are difficult in the GOY model and may not be unique: given the logarithmic 
sampling of k space,  we have only five points in five octaves of k.) 
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Figure 13. Log-log plots for S]2(k) versus S3(k) for our runs (a) NS1 (the inertial 
range), (b) NS1 (the dissipation range) and (c) G1. The inset in (c) shows a magnified 
view of data in the inertial range. The straight lines represent S]2 ~ --S~ sL. Deviations 
from this line show clearly for data in the dissipation range (large k, i.e,, small $3). 

In recent work three of us [89] have proposed and verified a k-space version of ESS 
and GESS in the inertial range. We have also extended the applicability of ESS and GESS 
to the far dissipation range to uncover intriguing and apparently universal crossover from 
inertial to dissipation ranges. Our k-space ESS postulate is 

Sp - (Iv(k)[ p) ~ Alp(S3) ~'e, L -1 << k S  1.5kd, 

sp _= <Iv(K)IP> ,~ADp(S3) c~", 1.5kd < k < <  A, (41) 

where the Alp and Aop are, respectively, amplitudes for inertial and dissipation ranges and 
A -1 the (molecular) length at which hydrodynamics fails. Note that our postulate 
suggests different power-law behaviours in inertial and dissipation ranges; the real-space 
analogue of this was noted by Stolovitzky and Sreenivasan [22], who used experimental 
data, soon after the proposal of real-space ESS by Benzi, et al [32]. We do find that this 
way of presenting the data extends the apparent inertial range in both our NS and GOY- 
model studies, so the expression k-space ESS is justified. Representative log-log ESS 
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I Figure 14. A plot of (p versus p. The squares indicate data from our run NS4. 

The line is (p' = (2 (p  + 3p)/ll  , with (p -- (pSL (see text). 

plots of S12(k) versus S3(k) from our run NS1 (table 1) are shown in figure 13: here panel 
(a) covers the inertial range and yields the inertial-range power ('12, which is in agreement 
with the SL prediction; panel (b) covers the dissipation-range and yields a power a12, 
which deviates noticeably from the SL prediction; panel (c) illustrates the same crossover 
from inertial- to dissipation-range asymptotic behaviours for the GOY shell model, where 
we can resolve much larger inertial and dissipation ranges, so this crossover shows 
clearly. Note also that the period-3 oscillations in figure 9 (structure functions for the 
GOY model) are removed in such ESS plots, yielding better estimates for the exponents. 
The agreement between our NS and GOY results, both qualitative and quantitative (see 
below), indicates that this crossover is real and not a numerical artifact. To ensure that we 
have good statistics, all our NS runs have been done in quadruple precision and we have 
checked that our estimates for ~'p and ap do not change noticeably when we double our 
averaging time or halve our integration time step. Our NS runs are such that NS1, NS2, 
and NS3 resolve enough of the dissipation range (table 1) to yield dissipation-range 
exponents o~p; run NS4 does not yield many points in the dissipation range, so we do not 
use it to obtain at,. 

In (41) the inertial-range exponent: (p = (p, for the GOY model; however, we find 
explicitly (figure 14) that, for the 3d NS case, 

t (p = ((p + 3p/2)/(~3 + 9/2), (42) 

whence we get (36), i.e., Sp (k) ~ k-(G+3p/z), in the inertial range. To our knowledge this 
result for Sp(k) is new. Our NS runs, though restricted to relatively low Re~ ( <  22), 
obtain it via ESS (41) and if3 = 1. For even values of p we can obtain this result via 
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Figure 15. A plot of~p versus p for the runs NS4 and G1. The K41 and SL lines are 
also shown. For NS4 we obtain (r by inverting (47) and using our data for ¢~; this 
inversion also magnifies the error bars (cf. figure 14).The estimates for these 
exponents are obtained from ESS plots like figure 13 for both GOY and NS runs. 
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Figure 16. A plot of ap versus p for the runs NS1-3 and GI. The K41 line is also 
shown. The estimates for % are obtained from the dissipation-range asymptotes of 
ESS plots like figure 13. 
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dimensional analysis if we Fourier transform the real-space structure function Sp and 
make one numerically plausible assumption: namely, that (Vil(kl),...,Vip(kp)) is 
dominated by terms in which the kin, m -- 1, . . .  ,p, arguments form equal and opposite 
pairs all with magnitude k, i.e., (va(kl), . . . ,Vip(kp))~Sp(k) [ 6 ( k l + k E ) . . -  
6(kp_l + kp) + permutations]. 

Both (p (figure 15) and ap (figure 16) seem universal, to the extent that, given our error 
bars, they are the same for all our GOY-model and 3d NS runs (table 1). (p agrees 
reasonbly well with the She-Leveque (SL) formula [51] for the ranges o f p  and Re~ in 
figure 15; and ap is close to, but systematically less than, p/3. Of course, figure 12 
indicates that the GOY-model exponents have a mild depedence on v; however, as noted 
above, this nonuniversality is removed in our ESS and GESS plots (see below) in which 
only ratios of the exponents (p appear. 

Given our k-space ESS (41), the asymptotic k dependences of Sp(k) in inertial and 
dissipation ranges follow from the dependence of $3 on k. We find 

$3 "~' BI k-~3-9/2, L -1 << k ~  1.5kd, (43) 

$3 ,~ Bok~exp(-ck/kd), 1.5kd~<k << A, (44) 

where Bt and Bo are, respectively, nonuniversal amplitudes. (Equation (44) holds for the 
3d NS equation (see above); for the GOY model the factor 9/2 is absent.) This implies 
that, in the far dissipation range, 

Sp ~ k °" exp(-capk/kd), kd << k << A, (45) 

with Op = up6, for all p. This form is not easy to verify numerically for large p, given the 
rapid decay at large k. To the best of our knowledge it has been suggested so far [59] only 
for $2. 

In (44), 6, c, and kd are not universal. Our k-space ESS shows that there is a universal 
part to the inertial- to dissipation-range crossover. We now show that this universal 
crossover can be extracted best by a k-space version of GESS that three of us have 
proposed recently [89]. This holds for both the GOY model and the NS equation. (Real- 
space GESS, due to Benzi et al [32], has been discussed in § 2.) We begin by defining 

Gp = Sp/(S3) p/3. (46) 

Log-log plots of Gp versus Gq yield curves with asymptotes which have universal, but 
different, slopes in inertial and dissipation ranges. Figure 17 shows a representative plot, 
with both GOY-model and NS data, for p = 6 and q = 9. The inertial-range asymptote 
has a slope p(p,q) given by (21); it is easy to check from the formulae above that this is 
the same as the slope of real-space GESS plots [58] in the inertial range. From the SL 
value [51] for (p (17) we can obtain the SL prediction for p(p, q); the resulting inertial- 
range asymptote is in good agreement with our data in the inertial-range part of figure 17. 
From our k-space ESS and GESS ans/itze above, it also follows that the dissipation-range 
asymptote has a slope 

w(p,q) --[Olp-p/3]/[aq- q/3], (47) 

where ap is defined in (41) and shown in figure 16. Note that GESS plots amplify 
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Figure 17. Log-log plots for (a) G6 versus Gg, and (b) H9,6 versus/-/6,9 (see text) for 
all our NS and GOY-model runs. The data collapse in (b) yields the universal scaling 
function that characterizes the crossover from the inertial to the dissipation range, for 
p = 6 and q = 9 here. 

considerably the difference between inertial- and dissipation-range asymptotes, which is 
not very prominent in ESS plots; this amplification can be estimated analytically. 

In GESS plots like figure 17 the slopes of these inertial- and dissipation-range 
asymptotes are universal, at least at the level of accuracy of figures 15 and 16; but the 
point at which the curve in a GESS plot starts deviating from the inertial-range asymptote 
depends on the model (GOY, NS, with and without hyperviscosity, etc.). It is easily seen, 
though, that the following transformation yields a universal crossover scaling function 
(this curve is, of course, different for each pair of values of p and q because of 
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multiscaling): We define 

log(Hpq) =- Dpq log(Go), 

log(Hqe ) - Dqp log(Gq), (48) 

where the scale factors Dpq = Dqp are nonuniversal. Now plots of log(Hpq) versus 
log(Hqp) show data collapsing onto one universal curve within our error bars. This 
is illustrated in figure 17b for p = 6 and q = 9; we emphasize that the data collapse 
occurs for all GOY and 3d NS runs and for all k and Re~. In essence this transformation 
holds one of the GESS plots fixed and slides those of other models till the asymptotes 
match. 

In their discussion of real-space GESS, Benzi et al have suggested a hierarchy for the 
~p(r), which leads to the SL formula if one uses the SL boundary conditions mentioned 
above. This hierarchy has a k-space analogue [89], namely 

1-- 

[Gp+l/Gp] = [Ge/Gp-1] ~ x , l im  Gp+l/Gp , (49) 
i p ~  

with 3 ̀3 = 2/3. If we make the additional assumption Gp(k) ~ kB~, which holds in the 
inertial range, we get a difference equation for ~p identical to the SL one, which, when 
solved with the boundary conditions ~0 = ~3 = 0 and limp__.~(~p+l - ~e) = 2/9, yields 
the SL formula (17) via (7) (our ~p = - t o ~  3 there). Elementary manipulations show 
that our k-space GESS gives [Go+I/Go] ~ [Go~Go_l] T', with T o = (<o+1 - <o - 1/3) /  
((o - <o-1 - 1/3). At first sight this seems inconsistent with the assumed hierarchy (49); 
however, it can be seen to be consistent if T o = 3' - 2(1 - 3`)/[9(< 0 - (e-1 - <3/3)], 
which turns out to be the SL difference equation. Thus we cannot claim to have checked 
either of the assumed hierarchies (14) or (49) directly. Our k-space GESS can certainly 
hold with ~0 7 ~ ~SL. We can only claim that the hierarchy might hold to the extent that 
our calculated values of <p agree reasonably with those predicted by the SL formula 
(figure 15). 

The difference between inertial- and dissipation-range asymptotic behaviours has not 
been noted in real-space GESS so far. As we have mentioned above, experimental 
evidence for slope differences between inertial- and dissipation-range asymptotes in 
real-space ESS plots was given by Stolovitzky and Sreenivasan [22]. They postulated 

S o ~ $3 p m the dissipation range and suggested 

, <3p/2+p/2 
ap _~ <9/2 + 3 /2"  (50) 

Unfortunately, we have not been able to find a simple, direct relation between their real- 
space exponents ap and our k-space exponents a o (unlike (42) for inertial-range 
exponents), since S v does not have a simple power-law dependence on k in the dissipation 
range. Furthermore, in this range, Gp '~ k~ exp(-c'pk/ka), so there is no analogue of the 
SL formula for our dissipation-range exponents ao- Nonetheless it should be interesting 
to study the apparently universal inertial- to dissipation-range crossover that we have 
elucidated above in experimental flows. 
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3.4 Probability distributions 

Direct numerical simulations have obtained data for various probability ditributions 
[64, 73]. In these studies, which have attained Rea = 150, it has been found that the 
distribution of velocity components is close to Gaussian. However, the distributions of 
velocity derivatives such as axvx show significant deviations from Gaussian behaviour, 
which are consistent with experimental results. This deviation is even more visible in the 
distribution of derivatives like OyVx. The PDFs of such velocity derivatives show tails that 
decay even more slowly than tails of exponential distributions. 

PDFs of velocity differences have also been obtained by these direct numerical studies 
[73]. The distributions found are similar to those seen in experiments [31, 62] and seem to 
have exponential tails for small separtions r;  as this separtion increases, the deviations 
from Gaussian character decrease till, at large separtions comparable to integral scales, 
these PDFs approach Gaussians. 

These simulations [73] have tried to check the log-normal hypothesis of Kolmogorov 
[42] for the distribution of the energy dissipation rate (. Though there is reasonable 
agreement near the peak of the distribution, there are significant deviations from this 
form in the tails. We are not aware of any direct numerical checks of the log-Poisson 
class of distributions that follow from the She-Leveque assumptions [55, 67]. Data from 
our Navier-Stokes runs would not be good enough to rule out other possible distributions. 
To obtain information about the distribution of c in the GOY model, one must transform 
to real space. As we have said earlier, the logarithmic discretisation of k space makes 
such transformation questionable for this model, so we restrict ourselves to the 
distributions of Fourier components (see below). The best we can do is to check the 
analogue of She-Leveque hierarchy for the moments of (, which implies a distribution of 
the log-Poisson class. We have discussed this above in terms of Gp (see the paragraph 
with (49)). 

The study of probability distributions in shell models is of more recent origin. 
Non-Gaussian behaviour in the GOY shell model has been studied by Biferale 
[100]. He has shown, by tal0ng a Fourier transform of vn, that PDFs of the real- 
space velocity gradients are non-Gaussian for the GOY shell model and not far 
from the predictions of a multifractal theory. Also, the deviations from Gaussian 
behaviour increase with decreasing spatial separation, in qualitative accord with 
the results for the NS equation and from experiments. One might question whether 
Fourier transforms over the logarithmically spaced wavenumbers in the GOY model can 
give reasonable real-space information. Thus, in our study, we restrict ourselves to k- 
space quantities and look for possible non-Gaussian statistics. The REWA models 
sample k-space better than the GOY model. These have also been used to obtain 
the PDFs of velocity differences [101] which show a crossover from Gaussian 
behaviour, at the largest spatial scales, to PDFs with increasingly stretched tails at 
smaller scales. 

In analogy with the experimental studies of Katsuyama et al we first construct k-space 
'y2p'S (cf. (23)) for the GOY shell model: 

( 2 p -  1)!! (Iv,12) p 
72p = 2 (IVnl 2p) ' p = 2 , 3 , 4 , . . . ,  (51) 
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Figure 15. Plots of (a) ~ and (b) I'~ versus the shell number n for 
2p = 4 ,6 , . . . ,20 ,  for our mn G1. The dashed lines indicate "Y2p = 0.5 and 
1 ~  = 0.5, respectively. One can see that the plots in (b) are free from the oscillations 
present in (a). 

which can be rewritten as 

( 2 p -  1)!! S~ 
p = 2, 3, 4, . . . .  (52) 72e 2 $2/, 

Note that the midband frequency fc in (23) has been replaced, effectively, by the shell 
number  n here. In figure 18a we plot 72p (calculated via eq. (52)) as a function of  n, the 
shell number, for run G1. One can clearly observe the deviation of  "y2p from the Gaussian 
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Figure 19. Inertial-range behaviour of (a) r4 (b) P10 and (c) 1~16 for run G1 
(figure 18). Continuous lines represent the form 1~2p O( ½ (2p-  1)!! k~n 2p-p(2 , with the 
(p's calculated from the SL formula. 

value of 0.5 in the inertial range and the rapid decay of '~2p in the dissipation range 
(beyond n = 14). However, the curves show oscillations that arises because of the 
underlying 3-cycle in the GOY shell model (see above). To eliminate these we define a 
new function F2p in terms of Ep ((37)): 

( 2 p -  1)!! EP 
r2p -- 2 EEp' p = 2, 3, 4 , . . . .  (53) 

Figure 18b shows the variation of FEp (calculated using (53)) with n for run G1. As one 
might have anticipated, the use of the correlation function Ep has removed the 
oscillations so the deviations from Gaussian behaviour show clearly. 

Since we know that ~p ~ k~ ~ in the inertial range, we can infer from (53) the form of 
F2p in the inertial range, i.e., 

rEpoc ( 2 p -  1)[!kn(2p_p¢2, L_ 1 << k<l.Skd. (54) 
2 

To specify FEp completely in the inertial range we must also provide the amplitudes for 
the power-law dependence of Ep on k. However, this is not necessary for the purpose 
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Figure 20. 1~2v as functions of the shell number n for our runs G1, G3, G5, and G7 
for 2p = 4, 6 , . . . ,  20 (top to bottom). Dashed lines indicate F~, = 0.5. 

of figure 19, where we show comparisons between the F2p's shown in figure 18b and 
the form suggested in (54) (with the (v's calculated from the SL formula) for 2p = 4, 10 
and 16. Clearly, similar power laws obtain in the inertial range. We note in passing that 
the slight hump before the dissipation range is an indication of the bottleneck 
phenomenon [61]. 

Figure 20 shows F2p as a function of the shell number n for four different Rex (our runs 
G1, G3, G5 and G7). The general conclusion that we can draw from these graphs is that 
the distribution P(Iv.I) crosses over from being close to Gaussian at small k, to ones that 
fall more and more slowly with increasing k,. This is in accord with the data 
of Katsuyama et al (1994) (note our wavenumber k, is the analogue of their midband 
frequency re). These graphs also illustrate that, with increasing Rex, the extent of the 
inertial range increases and that the deviations from Ganssian distributions is far more in 
the dissipation range than in the inertial range. Direct plots of log F~, versus Rex are in 
general agreement with these statements, but are not very smooth (like our plots of 6(p 
versus Rex (figure 12)) since we have studied only eight widely separated values of Rex. 
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4. Concluding remarks 

We have provided a brief overview of experimental and numerical studies of coherent 
structures, structure functions, and probability distributions in turbulent flows that are, to 
a good approximation, homogeneous and isotropic. We have also outlined some of the 
phenomenological and stochastic models that have been used to develop an under- 
standing of these quantities. However, as is well known, a complete theoretical 
understanding of homogeneous, isotropic turbulence has remained an elusive goal, in 
spite of the substantial progress that has been made in all the areas described above. 

Our emphasis here has been on using direct numerical studies of the deterministically 
forced NS equation and the GOY shell model in conjunction with each other. In 
particular, we have explored, via ESS and GESS, an apparently universal crossover from 
inertial- to dissipation-range behaviours in these models. Thus our study adds to the 
growing evidence for similar multiscaling in NS and GOY models. It is tempting to say, 
therefore, that the GOY model captures some of the universal scaling properties of fluid 
turbulence because all known conservation laws have been built in by a suitable choice of 
parameters (see above). However, we must temper this optimistic view for there are many 
features, which seem important for fluid turbulence, that are not contained in, or poorly 
represented by, the GOY model. As noted by Kadanoff et al [84], there is no analogue of 
sweeping effects in the GOY model. Furthermore, since the GOY model has only scalar 
velocities and k's which are logarithmically spaced, it cannot represent well the high- 
vorticity filamentary structures, which are believed to be important in fully developed 
turbulence. Recall that the arguments which lead to the She-Leveque formula rely on the 
filamentary nature of these structures; yet, strangely enough, the GOY-model exponents 
(p agree reasonably well with this formula. Are all these apparently important effects, 
which are not contained in the GOY shell model, irrelevant in some way? Unfortunately 
there is no clear answer to this question at this moment. Further studies are needed to 
elucidate the similarities and differences between the statistical properties of the solutions 
of the GOY shell model and the 3d NS equation. However, given that numerical studies 
of the GOY shell model are clearly far easier than direct numerical simulations of the 3d 
NS equation, the former can be used (with caution) as preliminary testing grounds for 
new theoretical ideas. 
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